

Einstein's photoelectric equation-particle nature of light. CLASS-XII

SUBJECT : PHYSICS CHAPTER NUMBER: 11 CHAPTER NAME : Dual Nature of Radiation and Matter

CHANGING YOUR TOMORROW

Website: www.odmegroup.org Email: info@odmps.org

Toll Free: 1800 120 2316

Sishu Vihar, Infocity Road, Patia, Bhubaneswar-751024

LEARNING OUTCOME

- Understand the concept of Einstein's photoelectric equation.
- . To understand Laws of photoelectric emission.
- To determine Planck's constant and work function from stopping vs frequency graph.

Laws of Photoelectric emission:-

(i) For a given photosensitive material and frequency (above).

Photocurrent \propto Intensity

(ii) For a given photosensitive material and a given frequency

Intensity \propto Saturation current

But independent of stopping potential

(iii) For a given photosensitive material, there exists a certain minimum frequency (called threshold frequency) below which no emission of the photoelectron is possible.

(iv) The photoelectric emission is an instantaneous process (i.e it takes 10-9sec or less)

Einstein's Photoelectric effect

The energy of incident photon = maximum K.E of photoelectron + Work function

E = W + KE hv = W + KE KE = hv - w $KE = 1/2mv^{2}max = hv - hv_{0}$ $1/2mv^{2}max = h(v - v_{0})$ Where v₀ is the threshold frequency

Einstein's Photoelectric effect

Einstein's photoelectric equations and can be used to explain the laws of photoelectric effect as follows :

- 1. Explanation of effect of intensity.
- 2. Explanation of threshold frequency..
- 3. Explanation of kinetic energy.
- 4. Explanation of time lag.

Determination of Planck's constant and work function

 $K_{max} = hv - W_0$

 $K_{max} = eV_0$

 $\therefore eV_0 = hv - W_0$ or $V_0 = \left(\frac{h}{e}\right)v - \frac{W_0}{e}$

AC

 $\therefore h = e \times \frac{AC}{BC} = e \times \text{slope of } V_0 - v \text{ graph}$

 \therefore W₀ = e \times Magnitude of the intercept on vertical axis.

Particle nature of light:-

1st suggested by Einstein. According to him when radiation interacts with matter, radiation behaves as if it is made of a packet of energy or quanta. It is later named as Photon.

Characteristics of Photons:-

- Energy of Photon (E = hv = hc/ λ)
- Its rest mass is zero
- momentum $p(=hv/c = h/\lambda)$
- Photons are electrically neutral

Numerical

1.Light of wavelength 5000 A falls on a metal surface of work function 1.9 eV. Find (i) the energy of photons in eV (ii) the K.E. of photoelectrons and (iii) the stopping potential

2. A sheet of silver is illuminated by monochromatic ultraviolet light of wavelength = 1810 A What is the maximum energy of the emitted electron ? Threshold wavelength of silver is 2640 Å.

3. The maximum kinetic energy of the photoelectrons gets doubled when the wavelength of light incident on the surface changes from λ_1 to λ_2 . Derive the expressions for the threshold wavelength λ_0 and work function for the metal surface.

4. When light of frequency 2.4 \times 10¹⁵ Hz, falls on a photosensitive surface, the retarding potential needed to completely stop the emitted photoelectrons, is found to be 6.8 V. What is the work function (in eV) of the given photosensitive surface ?

5.A monochromatic source, emitting light of wavelength, 600 nm, has a power output of 66 W. Calculate the number of photons emitted by this source in 2 minutes.

THANKING YOU ODM EDUCATIONAL GROUP

