

Davission-Germer Experiment

CLASS-XII

SUBJECT: PHYSICS

CHAPTER NUMBER: 11

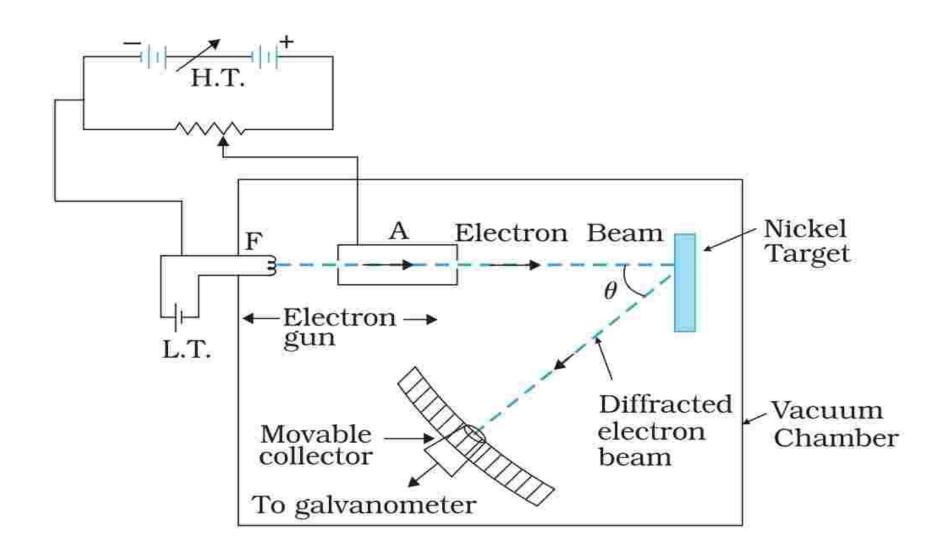
CHAPTER NAME: Dual Nature of Radiation and Matter

CHANGING YOUR TOMORROW

Website: www.odmegroup.org

Email: info@odmps.org

Toll Free: **1800 120 2316**


Sishu Vihar, Infocity Road, Patia, Bhubaneswar- 751024

LEARNING OUTCOME

- To study wave nature of electrons.
- To understand existence of the de-Broglie wave for slow-moving electron.

Davission-Germer Experiment

Confirmation of wave nature of e- by the experiment

According to Bragg's law.

For the 1st order diffraction max

$$2^{nd} \sin \theta = \lambda$$

$$\rightarrow 2(2.15 \times 10^{-10}) \sin 50^{0} = 0.165 \text{nm}$$

According to de-Broglie
$$\lambda = \frac{1.227}{\sqrt{V}} \text{nm} = \frac{1.227}{\sqrt{54}} = 0.167 \text{nm}$$

There is a close agreement between the experimental value (i.e 0.165 nm) given by Division and Germer and the estimated value by de-Broglie

THANKING YOU ODM EDUCATIONAL GROUP

