
 [PYTHON FUNDAMENTALS] | COMPUTER SC.| STUDY NOTES

ODM Educational Group Page 1

Period-01

Learning Outcomes

• An in-depth understanding Data Types.

• Introduce the fundamentals of Mutable & Immutable Types.

• Working with different types of Operators.

• Concepts of Expression

• Concept of function

• Debugging Concepts

Introduction:

Python programming language was developed by Guido Van Rossum in February 1991. Python

is based on or influenced with two programming languages:

 ABC language, a teaching language created as a replacement of BASIC,

and

 Modula-3

Python is an easy-to-learn yet powerful object oriented programming language. It is a very

high level programming Language yet as powerful as many other middle-level not so high-level

languages like C, C++, Java etc.

Though Python language came into being in early 1990's, yet it is competing with ever-popular

languages such as C, C++, Java etc. in popularity index. Although, it is not perfect for every type of

application, yet it has much strength that makes it a good choice for many situations. Let's see

what these pluses of Python are.

 Pluses of Python:

Jai Gurudev
Typewritten text
CLASS-XI

Jai Gurudev
Typewritten text
Study Notes

Jai Gurudev
Typewritten text
Python Fundamentals

 [PYTHON FUNDAMENTALS] | COMPUTER SC.| STUDY NOTES

ODM Educational Group Page 2

 Easy to Use Object Oriented Language

 Expressive Language

 Interpreted Language

 Its Completeness

 Cross-platform Language

 Free and Open Source

1. Easy to Use:

 Python is compact and very easy to use object oriented language with very simple syntax

rules. It is a very high level language and thus very-very programmer-friendly.

2. Expressive Language:

 Python's expressiveness means it is more capable to expressing the code's purpose than

many other languages. Reason being- fewer lines of code, simpler syntax.

 For example, consider following two sets of codes:

 # In C++ : Swap Values # In Python : Swap values

 int a = 2, b = 3, tmp ; a, b = 2, 3

 tmp = a ; a, b = b, a

 a= b ;

 b = tmp;

3. Interpreted Language:

 [PYTHON FUNDAMENTALS] | COMPUTER SC.| STUDY NOTES

ODM Educational Group Page 3

 Python is an interpreted language, not a compiled language. This means that the

Python installation interprets and executes the code line by line at a time. It makes Python

an easy-to-debug language and thus suitable for beginners to advanced user.

4. Its Completeness:

 When you install Python, you get everything you need to do real work. You do not need

download and install additional libraries ; all types of required functionality is available

through various modules of Python standard library. For example, for diverse functionality such

as emails, web-pages, databases, GUI development network connections and many more,

everything is available in Python standard library. Thus, it is also called - Python follows -

"Batteries Included" philosophy.

5. Cross-platform Language:

 Python can run equally well on variety of platforms - Windows, Linux/UNIX,

Macintosh, supercomputers, smart phones etc.2 Isn't that amazing ? And that makes

Python a cross-platform language. Or in other words, Python is a portable language.

6. Free and Open Source:

 Python language is freely available i.e., without any cost (from www.python.org). And not

only it free, its source-code (i.e., complete program instructions) is also available, i.e.,

it is open-source also. Do you know, you can modify, improve/extend open-source software.

7. Variety of Usage/Applications:

 Python has evolved into a powerful, complete and useful language over these years. These

days Python is being used in many diverse fields/applications, some of which are:

 Scripting

http://www.python.org/

 [PYTHON FUNDAMENTALS] | COMPUTER SC.| STUDY NOTES

ODM Educational Group Page 4

 Web Applications

 Game development

 System Administrations

 Rapid Prototyping

 GUI Programs

 Database Applications

PYTHON - SOME MINUSES (SO HUMAN LIKE):

 Although Python is very powerful yet simple language with so many advantages, it is not

the Perfect Programming language. There are some areas where Python does not offer much or is

not that capable. Let's see what these are:

1. Not the Fastest Language: Python is an interpreted language not a fully compiled one. Python is

first semi-compiled into an internal byte-code, which is then exerted

by a Python interpreter. Fully compiled languages are faster than

their interpreted counterparts. So, here Python is little weaker

though it offers faster development times but execution-times are

not that fast compared to some compiled languages.

2. Lesser Libraries than C, Java, Perl:

 Python offers library support for almost all computing programs, but

its library is still competent with languages like C, Java, and Perl as

 [PYTHON FUNDAMENTALS] | COMPUTER SC.| STUDY NOTES

ODM Educational Group Page 5

they have larger collections available. Some· in some cases, these

languages offer better and multiple solutions than Python.

3. Not Strong on Type-binding:

 Python interpreter is not very strong on catching ‘Type-mismatch'

issues. For example, if you declare a variable as integer but later

store a string value in it, Python won't complain or pin-point it.

4. Not Easily Convertible:

 Because of its lack of syntax, Python is an easy language to program

in. But this advantage has a flip-side too: it becomes a disadvantage

when it comes to translating a program into another programming

language. This is because most other languages have structured

defined syntax.

 Since most other programming languages have strong-syntax, the

translation from Python to another language would require the user

to carefully examine the Python code and its structure and then

implement the same structure into other programming language's

syntax.

 So, now you are familiar with what all Python offers. As a free

and open-source language, its users are growing by leaps and

bounds.

Period-02

Introduction:

 [PYTHON FUNDAMENTALS] | COMPUTER SC.| STUDY NOTES

ODM Educational Group Page 6

Familiarization with the basics of Python Programming:

(Interactive & Script mode)

 WORKING IN PYTHON:

Before you start working in Python, you need to install Python on your computers. There are

multiple Python distributions available today.

 Default installation available from www.python.org is called CPython installation and comes

with Python interpreter, Python IDLE (Python GUI) and Pip (package installer).

 There are many other Python distributions available these days. Anaconda Python

distribution is one such highly recommended distribution that comes preloaded with many

packages and libraries (e.g., NumPy, SciPy, Panda libraries etc),

 Many popular IDEs are also available e.g., Spyder IDE, PyCharm IDE etc. Of these, Spyder

IDE is already available as a part of Anaconda Python distribution.

Once you have Python installed on your computers, you are ready to work on it. You can work in

Python in following different ways:

 (i) In Interactive mode (also called Immediate Mode)

 (ii) In Script mode

Working in Default CPython Distribution:

 The default distribution, CPython, comes with Python interpreter, Python IDLE (GUI

based) and pip (package installer). To work in interactive as well as script mode, you need to

open Python IDLE.

Working in Interactive Mode (Python IDLE):

http://www.python.org/

 [PYTHON FUNDAMENTALS] | COMPUTER SC.| STUDY NOTES

ODM Educational Group Page 7

 Interactive mode of working means you type the command - one command at a

time, and the Python executes the given command there and then and gives you output. In

interactive mode, you type the command in front of Python command prompt >>>.

For example, if you type 2 + 5 in front of Python prompt, it will give you result as 7 :

 >>> 2 + 5 command/expression given here

 7

Result returned by Python

To work in interactive mode, follow the process given below :

 (i) Click Start button -> All Programs -> Python 3.6.x -> IDLE (Python GUI) [see Fig. 5.1(a)]

Or

 Click Start button -> All Programs -> Python 3.6.x -> Python (command line)

(ii) It will open Python Shell [see Fig. 5.1(b)] where you'll see the Python prompt (three '>' signs

i.e, >>>). The interactive interpreter of Python is also called Python Shell.

 [PYTHON FUNDAMENTALS] | COMPUTER SC.| STUDY NOTES

ODM Educational Group Page 8

(iii) Type command in front of this Python prompt and Python will immediately give you the

result. [See Fig. 5.1(c)]

For example, to print string "Hello" on the screen, you need to type the following in front of

Python prompt (>>>).

 >>> print ("Hello")

And Python interpreter will immediately display string Hello below the command. To display,

you just need to mention name or expression [Fig. 5.1(c)] in front of the prompt.

Figure 5.1(c) shows you some sample commands that we typed in Python shell and the output

returned by Python interpreter.

Interactive mode proves very useful for testing code; you type the commands one by one and get

the result or error one by one.

Working in Script Mode (Python IDLE):

 [PYTHON FUNDAMENTALS] | COMPUTER SC.| STUDY NOTES

ODM Educational Group Page 9

 What if you want to save all the commands in the form of program file and

want to see all output lines together rather than sandwiched between successive commands?

With interactive mode, you cannot do so, for:

 Interactive mode does not save the commands entered by you in the form

of a program.

 The output is sandwiched between the command lines [see Fig. 5.1(c)].

 The solution to above problems is the Script mode. To work in a script mode, you need to do the

following.

Step 1: Create Module / Script / Program File:

 Firstly, you have to create and save a module / Script / Program file. To do so, follow these

instructions:

 (i) Click Start button ->All Programs -> Python 3.6.x -> IDLE. [Fig. 5.2(a)]

 (ii) Click File -> New in IDLE Python Shell. [Fig. 5.2(a)]

 (iii) In the New window that opens, type the commands you want to save in the form of a

program (or script). [Fig. 5.2(b)]

For instance, for the simple Hello World program, you'll need to type following line:

 print (" Hello World ! ")

 You can display as well as print values in interactive mode, but for script mode, print()

command is preferably used to print results.

 [PYTHON FUNDAMENTALS] | COMPUTER SC.| STUDY NOTES

ODM Educational Group Page 10

(iv)Click File-> Save and then save the file with an extension .py. The Python program has .py

extension [Fig. 5.2(c)]. For instance, we gave the name to our program as Hello.py

Now your program would be saved on the disk and the saved file will have .py extension.

Step 2: Run Module / Script / Program File:

After the program/script file is created, you can run it by following the given instructions:

 (i) Open the desired program/script file that you created in previous Step 1 by using IDLE's

File -> Open command.

 [PYTHON FUNDAMENTALS] | COMPUTER SC.| STUDY NOTES

ODM Educational Group Page 11

 If the program / script file is already open, you can directly move to next instruction

 (ii) Click Run->Run Module command [Fig. 5.3(a)] in the open program / script file's

window.

 You may also press F5 key.

 (iii) And it will execute all the commands stored in module I program I script that you

had opened and show you the complete output in a separate Python Shell window. [Fig. 5.3(b)]

 [PYTHON FUNDAMENTALS] | COMPUTER SC.| STUDY NOTES

ODM Educational Group Page 12

Period-03

Introduction:

Common Data types: Integer, float and strings

Numeric Literals:

The numeric literals in Python can belong to any of the following three different numerical types:

int (signed integers) often called just integers or ints, are positive or negative

whole numbers with no decimal point.

float (floating point real values) floats represent real numbers and are written with a

decimal point dividing the integer and fractional parts.

complex (complex numbers) are of the form a + b j, where a and b are floats and j

represents H, which is an imaginary number). a is the real

part of the number, and b is the imaginary part.

Integer Literals:

Integer literals are whole numbers without any fractional part. The method of writing integer

constants has been specified in the following rule:

An integer constant must have at least one digit and must not contain any decimal point.

It may contain either (+) or (-) sign. A number with no sign is assumed to be positive. Commas

cannot appear in an integer constant.

Python allows three types of integer literals:

(i) Decimal Integer Literals. An integer literal consisting of a sequence of digits is taken to be

 decimal integer literal unless it begins with 0 (digit zero).

 [PYTHON FUNDAMENTALS] | COMPUTER SC.| STUDY NOTES

ODM Educational Group Page 13

For instance, 1234, 41, +97, -17 are decimal integer literals.

(ii) Octal Integer Literals. A sequence of digits starting with 0o (digit zero followed by

letter o) is taken to be an octal integer.

For instance, decimal integer 8 will be written as 0o10 as

octal integer. (810 = 108) and decimal integer 12 will be

written as 0o14 as octal integer (1210 = 148).

An octal value can contain only digits 0-7 ; 8 and 9 are

invalid digits in an octal number i.e., 0o28, 0o19, 0o987

etc., are examples of invalid octal numbers as they contain

digits 8 and 9 in them.

(iii) Hexadecimal Integer Literals. A sequence of digits preceded by 0x or 0X is taken to be an

 Hexadecimal integer.

For instance, decimal 12 will be written as 0XC as

hexadecimal integer.

Thus, number 12 will be written either as 12 (as decimal),

0o14 (as octal) and 0XC (as hexadecimal). A hexadecimal

value can contain digits 0-9 and letters A-F only i.e., 0XBK9,

0xPQR, 0x19AZ etc., are examples of invalid hexadecimal

numbers as they contain invalid letters, i.e., letters other

than A - F.

 [PYTHON FUNDAMENTALS] | COMPUTER SC.| STUDY NOTES

ODM Educational Group Page 14

Floating Point Literals:

 Floating literals are also called real literals. Real literals are numbers having

fractional parts. These may be written in one of the two forms called Fractional Form or the

Exponent Form.

1. Fractional form. A real literal in Fractional Form consists of signed or unsigned digits including a

decimal point between digits.

The rule for writing a real literal in fractional form is:

A real constant in fractional form must have at least one digit with the decimal point, either before

or after. It may also have either+ or-sign preceding it. A real constant with no sign is

assumed to be positive.

The following are valid real literals in fractional form:

 2.0, 17.5, - 13.0, - 0.00625, .3(will represent 0.3), 7. (will represent 7.0)

The following are invalid real literals in fractional form:

 7 (No decimal point)

 +17 / 2 (/-illegal symbol)

 17,250.26.2 (Two decimal points)

 17,250.262 (comma not allowed)

2. Exponent form. A real literal in Exponent form consists of two parts mantissa and exponent.

For instance, 5.8 can be written as 0.58x 101 = 0.58 E01, where mantissa part is 0.58 (the part

appearing before E) and exponent part is 1 (the part appearing after E). E01 represents 101.

 [PYTHON FUNDAMENTALS] | COMPUTER SC.| STUDY NOTES

ODM Educational Group Page 15

The rule for writing a real literal in exponent form is:

 A real constant in exponent form has two parts: a mantissa and an exponent. The

mantissa must be either an integer or a proper real constant. The mantissa is followed by a letter

E or e and the exponent. The exponent must be an integer.

The following are the valid real literals in exponent form:

152E05, l.52E07, 0.152E08, 152.0E05, 152E+8, 1520E04, - 0.172E-3, 172.E3, .25E-4,

3.E3 (equivalent to 3.0E3)

(Even if there is no preceding or following digit of a decimal point, Python 3.x will consider it right)

The following are invalid real literals in exponent form

The following are invalid real literals in exponent form:

 1.7E (No digit specified for exponent)

 0.17E2.3 (Exponent cannot have fractional part)

 17,225E02 (No comma allowed)

Numeric values with commas are not considered int or float value; rather Python treats them as a

tuple. A tuples is a special type in Python that stores a sequence of values. (You will learn about

tuples in coming chapters - for now just understand a tuple as a sequence of values only.)

Boolean Literals:

 Boolean literal in Python is used to represent one of the two Boolean values i.e.,

True (Boolean true) or False (Boolean false). A Boolean literal can either have value as True or as

False.

Special Literal None:

 [PYTHON FUNDAMENTALS] | COMPUTER SC.| STUDY NOTES

ODM Educational Group Page 16

 Python has one special literal, which is None. The None literal is used to indicate

absence of value. It is also used to indicate the end of lists in Python.

The None value in Python means "There is no useful information" or "There's nothing

here." Python doesn't display anything when asked to display the value of a variable containing

value as None. Printing with print statement, on the other hand, shows that the variable contains

None (see figure here).

String Literals:

 The text enclosed in quotes forms a string literal in Python. For example, 'a', 'obc', "abc"

are all string literals in Python. Unlike any other languages, both single character enclosed in

quotes such as "a" or 'x' or multi le characters enclosed in quotes such as "abc" or 'xyz' are

treated as String literals. As you can notice, one can form string literals by enclosing text in both

forms of quotes - single quotes or double quotes. Following are some valid string literals in

Python:

'Astha' "Rizwan" 'Hello World' "Amy's" "129045“

'1-x-0-w-25' "112FBD291“

 [PYTHON FUNDAMENTALS] | COMPUTER SC.| STUDY NOTES

ODM Educational Group Page 17

 Python allows you to have certain non-graphic-characters in String values. Non-graphic

character is those characters that cannot be typed directly from keyboard e.g., backspace, tabs,

carriage return etc. (No character is typed when these keys are pressed, only some action

takes place. These non-graphic-characters can be represented by using escape sequences. An

escape sequence represented by a backslash (\) followed by one or more characters.

In the above table, you see sequences representing \, ', ". Though these characters can be type

from the keyboard but when used without escape sequence, these carry a special meaning an

have a special purpose, however, if these are to be typed as it is, then escape sequences

should be used. (In Python, you can also directly type a double-quote inside a single-quoted

string and vice-versa. e.g.,

 "anu's" is a valid string in Python)

Python allows you to have two string types: (i) Single-line Strings (ii) Multiline Strings

(i) Single-line Strings (Basic strings). The strings that you create by enclosing text in single

quotes (' ') or double quotes (" “) are normally single-line strings, i.e., they must terminate

in one line.

 To understand this, try typing the following in IDLE window and see yourselves:

 Text1= 'hello

 [PYTHON FUNDAMENTALS] | COMPUTER SC.| STUDY NOTES

ODM Educational Group Page 18

 there‘

 Python will show you an error the moment you press Enter key after hello (see below)

The reason for the above error is quite clear - Python by default creates single-line strings with

both single and double quotes. So, if at the end of a line, there is no closing quotation mark for an

opened quotation mark, Python shows an error.

(ii) Multiline Strings.

 Sometimes you need to store some text spread across multiple lines as one single

string. For that Python offers multiline strings.

 Multiline strings can be created in two ways:

 (a) By adding a backslash at the end of normal single-quote / double-quote strings. In normal

strings, just add a backslash in the end before pressing Enter to continue typing text on the next

line.

For instance,

Text1 = 'hello\ Do not indent when continuing

World' typing in next line after'\‘.

 [PYTHON FUNDAMENTALS] | COMPUTER SC.| STUDY NOTES

ODM Educational Group Page 19

Note: A basic string must be completed on a single line, or continued with a backslash (\) as

the very last character of a line if it is to be closed with a closing quote in next line.

Following figure shows this:

(b) By typing the text in triple quotation marks. (No backslash needed at the end of line). Python

allows to type multiline text string by enclosing them in triple quotation marks (both triple

apostrophe or triple quotation marks will work).

 [PYTHON FUNDAMENTALS] | COMPUTER SC.| STUDY NOTES

ODM Educational Group Page 20

Python allows to type multiline text string by enclosing them in triple quotation marks (both triple

apostrophe and triple quotation marks will work).

Size of Strings:

 [PYTHON FUNDAMENTALS] | COMPUTER SC.| STUDY NOTES

ODM Educational Group Page 21

 Python determines the size of a string as the count of characters in the string. For example,

size of string "abc” is 3 and of 'hello' is 5. But if your string literal has an escape sequence

contained within it, then make sure to count the escape sequence as one character.

Consider some examples given below :

 '\ \‘ size is 1 (\\is an escape sequence to represent backslash)

 'abc‘ size is 3

 "\ab“ size is 2 (\a is an escape sequence, thus one character).

 "Seema\'s pen“ size is 11 (for typing apostrophe (') sign, escape sequence \' has

 been used.)

"Amy's“ size is 4 Python allows a single quote (without escape sequence)

 in double-quoted string and vice-versa.

For multiline strings created with triple quotes, while calculating size, the EOL (end-of-line)

character at the end of the line is also counted in the size. For example, if you have created a

string Str3 as:

then size of the string Str3 is 5 (three characters a, b, c and two EOL characters that follow

characters a and b respectively).

For multiline strings created with single/double quotes and backslash character at end of the line,

while calculating size, the backslashes are not counted in the size of the string ; also you cannot

put EOLs using return key in single/double quoted multiline strings e.g.,

Str4 = 'a\

b\

c’

 [PYTHON FUNDAMENTALS] | COMPUTER SC.| STUDY NOTES

ODM Educational Group Page 22

The size of string Str4 is 3 (only 3 characters, no backslash counted.)

To check the size of a string, you may also type len(<string name>) command on the Python

prompt in console window shell as shown in the following figure :

Period-04

Introduction:

Features of Python - Python Character Set, Token & Identifiers, Keywords, Literals, Delimiters,

Operators.

Features of Python:

 Python Character Set

 Token & Identifiers

 Keywords

 Literals

 [PYTHON FUNDAMENTALS] | COMPUTER SC.| STUDY NOTES

ODM Educational Group Page 23

 Delimiters

 Operators

PYTHON CHARACTER SET:

Character set is a set of valid characters that a language can recognize. A character

represents any letter, digit or any other symbol. Python supports Unicode encoding standard.

That means Python has the following character set

Letters A-Z, a-z

Digits 0-9

Special symbols space + - * I ** \ () [] { } I I =! = == < , >

 & # <= >=@_(underscore) , , : % !

 Whitespaces Blank space, t abs (->), carriage return

(.J), newline, form feed

 Other characters Python can process all ASCII and Unicode characters

 as part of data or literals.

TOKENS:

 In a passage of text, individual words and punctuation marks are called

tokens or lexical unit or lexical elements. The smallest individual unit in a program is known as a

Token or a lexical unit·

Consider the following figure that tells what a token means.

 [PYTHON FUNDAMENTALS] | COMPUTER SC.| STUDY NOTES

ODM Educational Group Page 24

Python has following tokens:

1. Keywords

2. Identifiers (Names)

3. Literals

4. Operators

5. Punctuators

The smallest individual unit in program is known as a Token.

Keywords:

 Keywords are the words that convey a special meaning to the language

compiler/interpreter. These are reserved for special purpose and must not be used as normal

identifier names.

Python programming language contains the following keywords:

 [PYTHON FUNDAMENTALS] | COMPUTER SC.| STUDY NOTES

ODM Educational Group Page 25

Identifiers (Names):

 Identifiers are fundamental building blocks of a program and are used as the

general terminology for the names given to different parts of the program viz. variables, objects,

classes, functions, lists, dictionaries etc. Identifier forming rules of Python are being specified

below.

 An identifier is an arbitrarily long sequence of letters and digits.

 The first character must be a letter; the underscore (_) counts as a letter.

 Upper and lower-case letters are different. All characters are significant.

 The digits 0 through 9 can be part of the identifier except for the first character.

 Identifiers are unlimited in length. Case is significant i.e., Python is case sensitive as

it treats upper and lower-case characters differently

 An identifier must not be a keyword of Python.

 An identifier cannot contain any special character except for underscore (_).

Identifiers (Names):

 The following are some the following are some invalid identifiers

 valid identifiers :

 [PYTHON FUNDAMENTALS] | COMPUTER SC.| STUDY NOTES

ODM Educational Group Page 26

Literals I Values:

 Literals (often referred to as constant-Values) are data items that have a fixed value.

Python allows several kinds of literals:

(i) String literals

(ii) Numeric literals

(iii) Boolean literals

(iv) Special Literal None

 (iv) Literal Collections

Operators:

 Operators are tokens that trigger some computation when applied to variables and other

objects in an expression. Variables and objects to which the computation is applied, are called

operands. So, an operator requires some operands to work upon.

The following list gives a brief description of the operators and their functions / operators.

Unary Operators:

 Unary operators are those operators that require one operand to operate upon.

Following are some unary operators:

+ unary plus

 - unary minus

 ˷ Bitwise complement

 not logical negation

Binary Operators:

 Binary operators are those operators that require two operands to operate upon.

Following are some binary operators:

Arithmetic Operators:

 [PYTHON FUNDAMENTALS] | COMPUTER SC.| STUDY NOTES

ODM Educational Group Page 27

 + Addition

 - Subtraction

 * Multiplication

 / Division

 % Remainder/ Modulus

 ** Exponent (raise to power)

 // Floor division

 Bitwise operators:

 & Bitwise AND

 ^ Bitwise exclusive OR (XOR)

 | Bitwise OR

Shift operators:

 << Shift left

 >> shift right

 Identity operators:

is is the identity same

 is not is the identity not same

Relational Operator: Assignment Operator

< Less than = Assignment

> Greater than I= Assign quotient

<= Less than or equal to += Assign sum

>= Greater than or equal to *- = Assign product

= Equal to %= Assign remainder

 [PYTHON FUNDAMENTALS] | COMPUTER SC.| STUDY NOTES

ODM Educational Group Page 28

!= Not equal to -= Assign difference

 **= Assign Exponent

 II= Assign Floor division

Logical Operator Membership Operator

and Logical AND in whether variable in sequence

or Logical OR not in whether variable not in sequence

Punctuators:

 Punctuators are symbols that are used in programming languages to organize sentence

structures, and indicate the rhythm and emphasis of expressions, statements, and program

structure.

Most common punctuators of Python programming language are:

 . “ # \ () [] { } @ , : . ‘ =

Period-05

Introduction:

Working with print statements

Many languages such as C, C++, Java etc., use symbols like curly brackets to show blocks but

Python does not use any symbol for it, rather it uses indentation.

A group of individual statements which make a single code-block is also called a suite in Python.

Consider some more examples showing indentation to create blocks.

 [PYTHON FUNDAMENTALS] | COMPUTER SC.| STUDY NOTES

ODM Educational Group Page 29

Please note that values like 73 or 73. or .73 are all float convertible, hence Python will be able to

convert them to float and no error shall be reported if you enter such values.

While entering numeric values through input() along with int() /float(), make sure that you enter

values that are convertible to the target type otherwise Python will raise an error.

Output Through print() Statement:

The print() function of Python 3.x is a way to send output to standard output device, which is

normally a monitor. The simplified syntax3 to use print() function is as follows :

 print(*objects, [sep = '' or <separator-string> end= '\n' or <end-string>])

 "objects means it can be one or multiple comma separated objects to be printed.

 Let us consider some simple examples first:

 print ("hello") # a string

 print (17.5) # a number

Output Through print() Statement:

 print (3.14159*(r*r)) # the result of a calculation, which will

 # be performed by Python and then printed

 # out (assuming that some number has been

 [PYTHON FUNDAMENTALS] | COMPUTER SC.| STUDY NOTES

ODM Educational Group Page 30

 # assigned to the variable r)

 print("I\'m", 12+5,"yearsold.“) #multiple comma separated expressions

Consider some examples with outputs:

Now consider some more print statement examples:

print(obj)

print(objl, obj2, obj3)

print()

print('Objectl has more value than Object2')

print(obj 1, 'is lesser than', obj2)

The output of these print() functions, ym-1'11 be able to determine if the values of variables obj,

objl, obj2 and obj3 are known to you. (A print() without any value or name or expression prints a

blank line.)

Features of print statement:

 The print statement has a number of features:

 => it auto-converts the items to strings i.e., if you are printing a numeric value, it will

automatically convert it into equivalent string and print it; for numeric expressions, it first

evaluates them and then converts the result to string, before printing (as it did in example

statement 2 above)

IMPORTANT: With print(), the objects/items that you give, must be convertible to string type.

 [PYTHON FUNDAMENTALS] | COMPUTER SC.| STUDY NOTES

ODM Educational Group Page 31

 => it inserts spaces between items automatically because the default value of sep

argument is space(' '). The sep argument specifies the separator character. The print()

automatically adds the sep character between the items/objects being printed in a line. If you do

not give any value for sep, then by default the print() will add a space in between the items when

printing.

Consider this code

it appends a newline character at the end of the line unless you give your own end argument.

Consider the code given below:

print("My name is Amit.")

print("I am 16 years old")

It will produce output as:

My name is Amit.

I am 16 years old

So, a print() statement appended a newline at the end of objects it printed, i.e., in above code:

The print() works this way only when you have not specified any end argument with it because by

default print() takes value for end argument as '\n' - the newline character".

If you explicitly give an end argument with a print() function then the print() will print the line and

end it with the string specified with the end argument, e.g., the code

 [PYTHON FUNDAMENTALS] | COMPUTER SC.| STUDY NOTES

ODM Educational Group Page 32

So the end argument determines the end character that will be printed at the end of print line.

In print()function, the default value of end argument is newline character('\n') and of sep

argument, it is space(' ') .

The reason for above output is quite clear. Since there is end character given as a space (i.e.,

end = ' ') in first print statement, the newline (' \ n') character is not appended at the end of

output generated by first print statement. Thus the output-position-cursor stays on the same

line. Hence the output of second print statement appears in the same line

Find out the output for the following code:

Name = 'Enthusiast‘ output

print("Hello", end = ' ') Hello Enthusiast

print(Name) How do you find Python ?

print("How do you find Python ?")

In Python you can break any statement by putting a \ is the end and pressing Enter key, then

completing the statement in next line. For example, following statement is perfectly right.

The backslash at the end means
 Print ("Hello",\ that the statement is still
 end = ' ') continuing in next line

 [PYTHON FUNDAMENTALS] | COMPUTER SC.| STUDY NOTES

ODM Educational Group Page 33

Period- 06

Introduction:

Comments: (Single line & Multiline/ Continuation statements), Clarity &

 Simplification of expression

As you can see that the above sample program contains various components like:

 expressions

 statements

 comments

 blocks and indentation

 Function

Expressions:

An expression is any legal combination of symbols that represents a value. An expression

represents something, which Python evaluates and which then produces a value.

Some examples of expressions are:

 [PYTHON FUNDAMENTALS] | COMPUTER SC.| STUDY NOTES

ODM Educational Group Page 34

Now from the above sample code, can you pick out all expressions?

 These are: 15, a - 10, a + 3, b > 5

ii) Statement:

 While an expression represents something, a statement is a programming instruction that

do something i.e., some action takes place.

Following are some examples of statements:

 print ("Hello") # this statement calls print function

 if b>5:

 :

 :

While an expression is evaluated, a statement is executed i.e., some action takes place. And it not

necessary that a statement results in a value ; it may or may not yield a value.

Some statements from the above sample code are

a= 15

b = a -10

print(a+3)

if b<5:

:

 [PYTHON FUNDAMENTALS] | COMPUTER SC.| STUDY NOTES

ODM Educational Group Page 35

:

iii) comments.

 Comments are the additional readable information, which is read by the programmers but

ignored by Python interpreter. In Python, comments begin with symbol # (Pound or hash

character) and end with the end of physical line.

In the above code, you can see four comments:

(i) The physical lines beginning with # are the full line comments. There are three full comments

in the above program are :

 # This program shows a program's components

Definition of function SeeYou() follows

Main program code follows now

(ii) The fourth comment is an inline comment as it starts in the middle of a physical line, after

Python code(see below)

 if b < 5: # colon means it requires a block

Multi-line Comments:

 What if you want to enter a multi-line comment or a block comment ? You can enter

multi-line comment in Python code in two ways:

(i) Add a # symbol in the beginning of every physical line part of the multi-line comments,

e.g.,

#Multi- line comments are useful for detailed additional information.

Related to the program in question.

It helps clarify certain important things.

 [PYTHON FUNDAMENTALS] | COMPUTER SC.| STUDY NOTES

ODM Educational Group Page 36

(ii) Type comment as a triple-quoted multi-line string e.g.,

 ’’’ Multi-line comments are useful for detailed

 additional information related to the program in question.

 It helps clarify certain important things

‘’’

This type of multi-line comment is also known as docstring. You can either use triple-apostrophe (

'") or triple quotes (""") to write docstrings. The docstrings (Comments are enclosed in

triple quotes (" " ") or triple apostrophe

(‘ ‘ ‘) are called docstrings) are very useful in documentation.

iv) Functions:

 A function is a code that has a name and it can be reused (executed again) by specifying its

name in the program, where needed In the above sample program, there is one function namely

SeeYou(). The statements indented below its def statement are part of the function. [All

statements indented at the same level below def SeeYou() are part of SeeYou().] This function is

executed in main code through following statement (Refer to sample program code given above)

 SeeYou () # function-call statement

Calling of a function becomes a statement e.g., print is a function but when you call print() to

print something, then that function call becomes a statement.

(v) Blocks and Indentation

 Sometimes a group of statements is part of another statement or function. Such a group

of one or more statements is called block or code-block or suite. For example,

 [PYTHON FUNDAMENTALS] | COMPUTER SC.| STUDY NOTES

ODM Educational Group Page 37

Many languages such as C, C++, Java etc., use symbols like curly brackets to show blocks but

Python does not use any symbol for it, rather it uses indentation.

A group of individual statements which make a single code-block is also called a suite in Python.

Consider some more examples showing indentation to create blocks.

Variables and Assignments:

 [PYTHON FUNDAMENTALS] | COMPUTER SC.| STUDY NOTES

ODM Educational Group Page 38

 A variable in Python represents named location that refers to a value and whose

values can be used and processed during program run. For instance, to store name of a student

and marks of a student during a program run, we require some labels to refer to these marks so

that these can be distinguished easily. Variables, called as symbolic variables, serve the purpose.

The variables are called symbolic variables because these are named labels. For instance, the

following statement creates a variable namely marks of Numeric type:

 marks = 70

Creating a Variable:

 Recall the statement we used just now to create the variable marks

 marks = 70

As you can see, that we just assigned the value of numeric type to an identifier name and

Python created the variable of the type similar to the type of value assigned. In short, after the

above statement, we can say that marks are a numeric variable.

In Python, to create a variable, just assign to its name the value of appropriate type. For example,

to create a variable namely Student to hold student's name and variable age to hold student's age,

you just need to write somewhat similar to what is shown below :

Student= 'Jacob'

Age= 16

Python will internally create labels referring to these values as shown below:

 [PYTHON FUNDAMENTALS] | COMPUTER SC.| STUDY NOTES

ODM Educational Group Page 39

Period- 07

Introduction:

Introduce the notion of a variable and methods to manipulate it (concept of L-value and R-

value)

Python Style Rules and Conventions:

 While working in Python, one should keep in mind certain style rules and conventions. In

the following lines, we are giving some very elementary and basic style rules:

1. Statement Termination: Python does not use any symbol to terminate a statement. When

you end a physical code-line by pressing Enter key, the statement is considered terminated

by default.

2. Maximum Line Length: Line length should be maximum 79 characters.

3. Lines and Indentation: Blocks of code are denoted by line indentation, which is enforced

through 4 spaces (not tabs) per indentation level.

4. Blank Lines Use two blank lines between top-level definitions, one blank line between

method/function definitions. Functions and methods should be separated with two blank lines

and Class definitions with three blank lines.

5. Avoid multiple statements on one Line Although you can combine more than one

statements in one line using symbol semicolon (;) between two statements, but it is not

recommended.

6. Whitespaces: You should always have whitespace around operators and after punctuation

but not with parentheses. Python considers these 6 characters as whitespace:

‘ ‘(space), ‘\n’ (newline), ‘\t’ (horizontal tab), ‘\v’ (vertical tab), ‘\f’ (form feed) and ‘\r’ (carriage

return)

7. Case Sensitive: Python is case sensitive, so case of statements is very important. Be careful

while typing code and identifier-names.

8. Docstring Convention: Conventionally triple double quotes ("" ") are used for docstrings

 [PYTHON FUNDAMENTALS] | COMPUTER SC.| STUDY NOTES

ODM Educational Group Page 40

9. Identifier Naming: You may use underscores to separate words in an identifier e.g.,

loan_amount or use Camel Case by capitalizing first letter of the each word e.g., LoanAmount

or loanAmount

Variables are Not Storage Containers in Python:

If you have an earlier exposure to programming, you must be having an idea of variables. BUT

PYTHON VARIABLES ARE NOT CREATED IN THE FORM MOST OTHER PROGRAMMING LANGUAGES

DO. Most programming languages create variables as storage containers e.g.,

 Consider this:

 age = 15

 age= 20

 Firstly value 15 is assigned to variable age and then value 20 is assigned to it.

 [PYTHON FUNDAMENTALS] | COMPUTER SC.| STUDY NOTES

ODM Educational Group Page 41

Python Variables in Memory:

BUT PYTHON DOES THIS DIFFERENTLY

 Let us see how Python will do it. Python preloads some commonly used values (even

before any identifier is created) in an area of memory. We can refer to this area as front-loaded

dataspace.

The dataspace memory has literals/values at defined memory locations, and each memory

location has a memory address.

 [PYTHON FUNDAMENTALS] | COMPUTER SC.| STUDY NOTES

ODM Educational Group Page 42

Thus, variables in Python do not have fixed locations unlike other programming languages. The

location they refer to changes every time their values change (This rule is not for all types of

variables, though).

lvalue and rvalue:

lvalues are the objects to which you can assign a value or expression. lvalue can come on lhs or rhs

of an assignment statement.

rvalues are the literals and expressions that are assigned to lvalues. rvalues can come on rhs of an

assignment statement.

e.g., we can say that a=30 & b=10

But we cannot say that 30=a, 10=b, 2*a=b is absolutely incorrect.

 [PYTHON FUNDAMENTALS] | COMPUTER SC.| STUDY NOTES

ODM Educational Group Page 43

The literals or the expressions that evaluate a value cannot come on lhs of an assignment hence

they are rvalues but variables names can come on lhs of an assignment, they are 1 Lvalues can

come on lhs as well as rhs of an assignment.

Multiple Assignments:

 Python is very versatile with assignments. Let's see in how many different ways, you can

use assignments in Python.

1. Assigning some value to multiple variables:

 You can assign same value to multiple variables in a single statement, e.g.,

 a = b = c = 10

 It will assign value 10 to all three variables a, b, c. That is, all three labels a, b, c will

 re same location with value 10.

2. Assigning multiple values to multiple variables:

 You can even assign multiple values to multiple variables in single statement, e.g.,

 x, y, z = 10, 20, 30

 It will assign the values order wise, i.e., first variable is given first value, second variable the

second value and so on. That means, above statement will assign value 10 to x, 20 to y and 30 to

z

This style of assigning values is very useful and compact. For example, consider the code given

below:

 x, y = 25, 50

 print (x, y)

 It will print result as

 [PYTHON FUNDAMENTALS] | COMPUTER SC.| STUDY NOTES

ODM Educational Group Page 44

 25 50

Because x is having value 25 and y is having 50. Now, if you want to swap values of x and y, you

just need to write:

 x, y = y, x

 print (x, y)

 Now the result will be

 50 25

While assigning values through multiple assignments, please remember that Python first

evaluates the RHS (right hand side) expression(s) and then assigns them to LHS, e.g.,

 a, b, c = 5, 10, 7 # statement 1

 b, c, a = a+ 1, b + 2, c – 1 # statement 2

 print (a, b, c)

 => Statement 1 assigns 5, 10 and 7 to a, b and c respectively.

 => Statement 2 will first evaluate RHS i.e., a+ 1, b + 2, c- 1 which will yield

 5+1, 10+2, 7-1=6, 12, 6

 Then it will make the statement (by replacing the evaluated result of RHS) as:

 b, c , a = 6, 12, 6

 Thus, b = 6, c = 12 and a = 6

 => The third statement print (a, b, c) will print

 6 6 12

 [PYTHON FUNDAMENTALS] | COMPUTER SC.| STUDY NOTES

ODM Educational Group Page 45

Now find out the output of following code fragment

 p, q = 3, 5

 q, r = p - 2, p + 2

 print (p, q, r)

Please note the expressions separated with commas are evaluated from left to right

and assigned in same order e.g.,

 x = 10

 y, y = x + 2, x + 5

 Will evaluate to following (after evaluating expressions on rhs of = operator)

 y, y = 12, 15

 i.e., firstly it will assign first RHS value to first LHS variable i.e.,

 y = 12

 Then it will assign second RHS value to second LHS variable i.e.,

 y = 15

 So if you print y after this statement y will contain 15.

The output for the above should be: 3 1 5

Now, consider following code and guess the output:

 x, x = 20, 30 Well, it will print the output as

 y, y = x + 10, x + 20 30 50

 print (x, y)

 [PYTHON FUNDAMENTALS] | COMPUTER SC.| STUDY NOTES

ODM Educational Group Page 46

Variable Definition:

 Variable is created when you first assign a value to it. It also means that a variable is not

created until some value is assigned to it.

To understand it, consider the following code fragment. Try running it in script mode :

 print (x)

 x = 20

 print (x)

When you run the above code, it will produce an error for the first statement (line 1) only name

'x’ not defined

The reason for above error is implicit. As you know that a variable is not created until some value

is assigned to it. So, variable x is not created and yet being printed in line 1. Printing/using

uncreated (undefined) variable results into error.

 [PYTHON FUNDAMENTALS] | COMPUTER SC.| STUDY NOTES

ODM Educational Group Page 47

Note: A variable is defined only when you assign some value to it. Using an undefined variable is

an expression/statement causes an error called Name Error.

So, to correct the above code, you need to first assign something to x before using it in a

statement, somewhat like

 x=0 # variable x created now

 print(x)

 x = 20

 print(x)

 Now the above code will execute without any error.

Dynamic Typing:

 In Python, as you have learnt, a variable is defined by assigning to it some value (of a

particular type such as numeric, string etc.)

For instance, after the statement:

 X= 10

 We can say that variable x is referring to a value of integer type.

In your program, if you reassign a value of some other type to variable x, Python will not complain

(no error will be raised).

x = 10

print(x)

x = "Hello World"

Print (x)

Above code will yield the output as:

 [PYTHON FUNDAMENTALS] | COMPUTER SC.| STUDY NOTES

ODM Educational Group Page 48

10

Hello world

So, you can think of a Python variable as labels associated with objects (literal values in our case

here) ; with dynamic typing, Python makes the label refer to new value as described in the

following figure.

As you can see in Fig. 6.1, variable x is first pointing to/referring to an integer value 10 and then to

a string value "Hello world".

Please note here that variable x does not have a type but the value it points to does have a type.

So you can make a variable point to a value of different type by reassigning a value of that type;

Python will not raise any error. This is called Dynamic Typing feature of Python.

A variable pointing to a value of a certain type, can be made to point to a value/object of

different type. This is called Dynamic Typing.

Caution with Dynamic Typing:

 Although Python is comfortable with changing types of a variable, the programmer is

responsible for ensuring right types for certain type of operations. For example,

 [PYTHON FUNDAMENTALS] | COMPUTER SC.| STUDY NOTES

ODM Educational Group Page 49

so as programmer, you need to ensure that variables with right type of values should be used

in expressions.

If you want to determine the type of a variable i.e., what type of value does it point to?, you can

use type() in following manner:

 type (<variable name»)

For instance, consider the following sequence of commands that uses type() three times:

Dynamic typing is different from Static Typing. In Static Typing, a data type is attached with a

variable when it is defined first and it is fixed. That is, data type of a variable cannot be changed in

static typing whereas there is no such restriction in dynamic typing.

Programming languages like C, C++ support static typing.

Simple Input and Output:

 [PYTHON FUNDAMENTALS] | COMPUTER SC.| STUDY NOTES

ODM Educational Group Page 50

In Python 3.x, to get input from user interactively, you can use built-in function input(). The

function input() is used in the following manner :

 variabLe_ to_hoLd_ the_ value= input (<prompt to be displayed>)

 For example,

 name= input ('What is your name ? ')

 The above statement will display the prompt as

in front of which you can type the name. The value that you type in front of the displayed prompt

will be assigned to given variable, name in above case. Now consider the following command

sequence:

In above code, we used input() function to input two values name and age.

Please note the In[]: is the prompt of Python shell(used with Spyder IDE) and >>> is shown as

general prompt of a Python shell. You can use any of the available IDEs of Python.

 [PYTHON FUNDAMENTALS] | COMPUTER SC.| STUDY NOTES

ODM Educational Group Page 51

But input() has a property, which you must be aware of. The input() function always returns a

value of String type. Notice carefully in above code while displaying both values name and age,

Python has enclosed both the values in quotes i.e., as 'Simar' and '16'. This is because whatever

value you enter through input() function is treated as a String. The input() function always

returns a value of String type.

Now what are its consequences, especially when you are entering a number? In order to

understand this, consider the following code.

See, Python raised an error when you tried to add 1 to age whose value you entered as 16. The

reason is obvious and clear - Python cannot add on integer to a string. Since variable age received

value 16 through input(), it actually had '16' in it i.e., string value '16'; thus you cannot add an

integer to it.

You can check yourselves the type of variable age whose value you entered through input()

Function:

When you try to perform an operation on a data type not suitable for it (e.g., dividing or

multiplying a string), Python raises an error called TypeError.

 [PYTHON FUNDAMENTALS] | COMPUTER SC.| STUDY NOTES

ODM Educational Group Page 52

Reading Numbers:

String values cannot be used for arithmetic or other numeric operations. For these operations,

you need to have values of numeric types (integer or float).

But what you would do if you have to read numbers (int or float)? The function input() returns the

entered value in string type only.

Python offers two functions int() and float() to be used with input() to convert the values

received through input() into int and float types.

 => Read in the value using input() function.

 => And then use int() or float() function with the read value to change the type of input

 value to int or float respectively.

You can also combine these two steps in a single step too, i.e., as

 <Variable name> = int(input (<prompt string>))

Or

 [PYTHON FUNDAMENTALS] | COMPUTER SC.| STUDY NOTES

ODM Educational Group Page 53

 <Variable name> = float (input (<prompt string>))

Possible Errors When Reading Numeric Values:

 If you are planning to input an integer or floating-point number using input()

inside int() or float() such as shown below :

 age = int (input ('Enter Your age : '))

or

 percentage= float (input ('Enter your percentage : '))

Then you must ensure that the value you are entering must be in a form that is easily

convertible to the target type.

In other words:

. (i) While inputting integer values using int() with input(), make sure that the value being

entered must be int type compatible. Carefully have a look at example code given below to

understand it.

 [PYTHON FUNDAMENTALS] | COMPUTER SC.| STUDY NOTES

ODM Educational Group Page 54

(ii) while inputting floating point values using float() with input(), make sure that the

value being entered must be float type compatible. Carefully have a look at example code

given below to understand it.

Period- 08

 [PYTHON FUNDAMENTALS] | COMPUTER SC.| STUDY NOTES

ODM Educational Group Page 55

Introduction:

Discussion of Output Questions

Find out the output for the following code:

Name = 'Enthusiast‘ output

print("Hello", end = ' ') Hello Enthusiast

print(Name) How do you find Python ?

print("How do you find Python ?")

In Python you can break any statement by putting a \ is the end and pressing Enter key, then

completing the statement in next line. For example, following statement is perfectly right.

The backslash at the end means
 Print ("Hello",\ that the statement is still
 end = ' ') continuing in next line
