
[TUPLES] | COMPUTER SCIENCE| STUDY NOTES

CLASS – XI

Chapter- Tuples

STUDY NOTE

Period -01

Introduction:

The Python tuples are sequences that are used to store a tuple of values of any type. You have learnt

in earlier chapters that Python tuples are immutable i.e, you cannot change the elements of a tuple

in place; Python will create a fresh tuple when you make changes to an element of tuple. Tuple is a

type of sequence like strings and lists but it differs from them in the way that lists are mutable but

strings and tuples are immutable. This chapter is dedicated to basic tuple manipulation in Python.

We shall be taking about creating and accessing tuples, various tuple operations and tuple

manipulations through some built-in functions.

Creating and Accessing Tuples:-

A tuple is standard data type of Python that can store a sequence of values belonging to any type.

The Tuples are depicted through parentheses i.e round brackets e.g following are some typles in

Python:

() # tuple with no member, empty tuple

(1, 2, 3) # tuple of integers

(1, 2, 5, 3, 7, 9) # tuple of numbers (integers and floating point)

('a', 'b', 'c') # tuple of characters

('a', 1, 'b', 3.5, 'zero') # tuple of mixed value types

('One', 'Two', 'Three') # tuple of strings

Before we proceed and discuss how to create tuples, one thing that must be clear is that Tuples are

immutable (i.e, non-modifiable) i.e, you cannot change elements of a tuple in place.

Note:- Tuples are immutable sequences of Python i.e, you cannot change elements of a tuple in

place.

Creating Tuples:-

Creating a tuple is similar to list creation, but here you need to put a number of expressions in

parentheses. That is use round brackets to indicate the start and end of the tuple, and separate the

items by commas. For example:

(2, 4, 6)

('abc", 'def')

(1, 2.0, 3, 4.0)

()

Thus to create a tuple you can write in the form given below:

T = ()

ODM Educational Group Page 1

[TUPLES] | COMPUTER SCIENCE| STUDY NOTES

T = (value, ...)

This construct is known as a tuple display construct. Consider some more examples:

1. The Empty Tuple :- the empty tuple is (). It is the tuple equivalent of 0 or ". You can also create

an empty tuple as:

T = tuple ()

It will generate an empty tuple and name that tuple as T.

2. Single Element Tuple :- Making a tuple with a single element is tricky because if you just give a

single element in round brackets, Python considers it a value only, e.g.

>>> t = (1)

>>> t

1

To construct a tuple with one element just add a comma after the single element as shown

below:

>> >t = 3,

>>> t

(3,)

>>> t2 = (4,)

>>> t2

(4,)

3. Long Tuples:- If a tu;e contains many elements, then to enter such long tuples, you can split it

across several lines, as given below:

sqrs = (0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225, 256, 289, 324, 361, 400, 441,

484, 529, 576, 625)

Notice the opening parenthesis and closing parenthesis appear just in the beginning and end of

the tuple.

4. Nested Tuples:- If a tuple contains an element which is a tuple itself then it is called nested tuple

e.g, following is a nested tuple:

t1 = (1, 2, (3, 4)

The tuple t1 has three elements in it: 1, 2 and (3, 4). The third element of tuple t1 is a tuple itself;

hence, t1 is a nested tuple.

Note: - Tuples are formed by placing a comma-separated tuple of expressions in parentheses.

Quick Interesting Facts:

 Tuples are immutable sequences of Python i.e., you cannot change elements of

a tuple in place.

ODM Educational Group Page 2

[TUPLES] | COMPUTER SCIENCE| STUDY NOTES

PERIOD-02

Creating Tuples from Existing Sequences:-

You can also use the built-in tuple type object (tuple()) to create tuples from sequences as per the

syntax given below:

T = tuple (<sequence>)

where <sequence> can be any kind of sequence object including strings, lists and tuples.

Python creates the individual elements of the tuple from the individual elements of passed

sequence. If you pass in another tuple, the tuple function makes a copy.

Consider following examples:-

>>> t1 = tuple ('hello')

>>> t1

('h', 'e', '1', '1', 'o')

>>> L = ['w', 'e', 'r', 't', 'y']

>>> t2 = tuple (L)

>>> t2

('w', 'e', 'r', 't', 'y')

You can use this method of creating tuples of single characters or single digits via keyboard input.

Consider the code below:

t1 = tuple (input('Enter tuple elements:'.))

Enter tuple elements : 234567

>>> t1

('2', '3', '4', '5', '6', '7')

See, with tuple () around input (), even if you not put parenthesis, it will create a tuple using

individual characters as elements. But most commonly used method to input tuples is eval (input())

as shown below:

tuple = eval (input ("Enter tuple to be added:"))

print ("Tuple you entered:", tuple)

When you execute it, it will work somewhat like:

Enter tuple to be added : (2, 4, "a', "hjkjl", [3, 4])

Tuple you entered : (2, 4, "a", "hjkjl",[3, 4])

If you are inputting a tuple with eval (), then make sure to enclose the tuple elements in parenthesis.

Please note sometimes (not always) eval () does not work in Python shell. At that time, you can run it

through a script too.

Accessing Tuples:-

Tuples are immutable (non-editable) sequences having a progression of elements. Thus, like lists, you

can access its individual elements. Before we talk about that, let us learn about how elements are

indexed in tuples.

ODM Educational Group Page 3

[TUPLES] | COMPUTER SCIENCE| STUDY NOTES

Similarity with Lists:-

Tuples are very much similar to lists except for the mutability. In other words, Tuples are immutable

counter parts of lists. Thus, like lists, tuple elements are also indexed, i.e, forward indexing as 0, 1, 2,

3, ... and backward indexing as -1, -2, -3, ... see the figure.

Thus, you can access the tuple elements just like you access a list's or a string's elements e.g, Tuple [i]

will give you elements at ith index; Tuple [a:b] will give you elements between indexes a to b -1 and

so on. Put in other words, tuples are similar to lists in following ways:

 Length. Function len (T) returns the number of items (count) in the tuple T.

 Indexing and Slicing: - T[i] returns the item at index i (the first item has index 0).

T[i : j] returns a new tuple, containing the objects between i and j excluding index j,

T [i : j : n] returns a new tuple containing every nth item from index i to j, excluding index j. Just

like lists.

 Membership operators: - Both 'in' and 'not in' operators work on Tuples just like they work for

other sequences. That is, in tells if an element is present in the tuple or not and not in does the

opposite.

 Concatenation and Replication operations + and *. The + operator adds one tuple to the end of

another. The * operator repeats a tuple. We shall be taking about these two operations in a later

section 12.3 - Tuple Operations.

Accessing Individual Elements:-

As mentioned, the individual elements of a tuple are accessed through their indexes given in square

brackets. Consider the following examples:

>>> vowels = ('a', 'e', 'i', 'o', 'u')

>>> vowels [0]

'a'

>>> vowels [4]

'u'

>>> vowels [-1]

'u'

ODM Educational Group Page 4

[TUPLES] | COMPUTER SCIENCE| STUDY NOTES

>>> vowels [-5]

'a'

Recall that like strings, if you pass in a negative index, Python adds the length of the tuple to the

index to get its forward index. That is, for a 6-element tuple T, T[-5] will be internally computed as:

T[-5 + 6] = T[1], and so on.

Note:- While accessing tuple elements, if you pass in a negative index, Python adds the length of the

tuple to the index to get element's forward index.

Difference from Lists:-

Although tuples are similar to lists in many ways, yet there is an important difference in mutability of

the two. Tuples are not mutable, while lists are. You cannot change individual elements of a tuple in

place, but lists allow you to do so. That is, following statement is fully valid for lists (BUT not for

tuples). That is, if we have a list L and a tuple T, then

L [i] = element

is VALID for Lists. BUT

T [i] = element

is INVALID as you cannot perform item-assignment in immutable types.

Examples:

01. Find the output generated by following code fragments:

(a) plane = ("passengers", "Luggage")

plane [1] = "Snakes"

(b) (a, b, c) = (1, 2, 3)

(c) (a, b, c, d) = (1, 2, 3)

(d) a, b, c, d = (1, 2, 3)

(e) a, b, c, d, e = (p, q, r, s, t) = t1

(f) What will be the values and types of variables a, b, c, d, e, f, q, q, r, s, t after ex ecuting part e

above if t1 contains (1, 20, 3, 4.0, 5) ?

(g) t2 = ('a')

type (T5)

(h) t3 = ('a',)

type (t3)

(i) T4 = (17)

type (T4)

(j) T5 = (17,)

type (T5)

ODM Educational Group Page 5

[TUPLES] | COMPUTER SCIENCE| STUDY NOTES

(k) tuple = ('a', 'b', 'c', 'd', 'e')

tuple = ('A',) + tuple [1 :]

print (tuple)

(l) t2 = (4, 5, 6)

t3 = (6, 7)

t4 = (t3 + t2

t5 = t2 + t3

print (t4)

print (t5)

(m) t3 = (6, 7)

t4 = t3 * 3

t5 = (t3 * (3)

print (t4)

print (t5)

(n) t1 = (3, 4)

t2 = ('3', '4')

print (t1 + t2)

02. Carefully read the given code fragments and figure out the errors that the code may produce.

(a) t = ('a', 'b', 'c', 'd', 'e')

print (t[5])

(b) t = ('a', 'b', 'c', 'd', 'e')

t [0] = 'A'

(c) t1 = (3)

t2 = (4, 5, 6)

t3 = t1 + t2

print (t3)

(d) t1 = (3,)

t2 = (4, 5, 6)

t3 = t1 + t2

print (t3)

(e) t2 = (4, 5, 6)

t3 = (6, 7)

ODM Educational Group Page 6

[TUPLES] | COMPUTER SCIENCE| STUDY NOTES

print (t3 - t2)

Quick Interesting Facts:

 To create a tuple, put a number of comma-separated expressions in round

brackets.

 The empty round brackets i.e () indicate an empty tuple.

PERIOD-03

Tuples operations

Traversing a Tuple:-

Recall that traversal of a sequence means accessing and processing each element of it. Thus

traversing a tuple also means the same and same is the tool for it, i.e, the Python loops. The for loop

makes it easy to traverse or loop over the items in a tuple, as per following syntax:

for <item> in <Tuple> :

process each item here

For example, following loop shows each item of a tuple T in separate lines:

T = ('p', 'y', 't', 'h', 'o', 'n')

for a in T :

print (T[a])

The above loop will produce result as :

p

y

t

h

o

n

How it Works:-

The loop variable a in above loop will be assigned the Tuple elements, one at a time. So, loop-

variable a will be assigned 'P' in first iteration and hence 'P' will be printed; in second iteration, a will

get element 'Y' will be printed; and so on.

It you only need to use the indexes of elements to access them, you can use functions range () and

len () as per following syntax:

for index in range (len (T))

process Tuple [index] here

ODM Educational Group Page 7

[TUPLES] | COMPUTER SCIENCE| STUDY NOTES

Consider program below that traverses through a tuple using above format and prints each item of a

tuple L in separate lines along with its index.

Program:

Program to print elements of a tuple ('Hello', "Isn't", 'Python', 'fun', '?') in separate lines along with

element's both indexes (positive and negative)

T = ('Hello', 'Isn't', 'Python', 'fun', '?')

length = len (T)

for a in range (length) :

print ('At indexes', a, 'and ', (a - length), 'element :', T[a])

At indexes 0 and -5 element: Hello

At indexes 1 and -4 element: Isn't

At indexes 2 and -3 element: Python

At indexes 3 and -2 element: fun

At indexes 4 and -1 element: ?

Tuple Operations:-

The most common operations that you perform with tuple include joining tuples and slicing tuples. In

this section, we are going to talk about the same.

Joining Tuples:-

Joining two tuples is very easy just like you perform addition, literally ;). the + operator, the

concatenation operator, when used with two tuples, joins two tuples.

Consider the example given below:

>>> tpl1 = (1, 3, 5)

>>> tpl2 = (6, 7, 8)

>>> tpl1 + tpl2

(1, 3, 5, 6, 7, 8)

As you can see that the resultant tuple has firstly elements of first tuple lst1 and followed by

elements of second tuple lst2. You can also join two or more tuples to form a new tuple, e.g,

>>> tpl1 = (10, 12, 14)

>>> tpl2 = (20, 22, 24)

>>> tpl3 = (30, 32, 34)

>>> tpl = tpl1 + tpl2 + tpl3

>>> tpl

(10, 12. 14, 20, 22, 24, 30, 32, 34)

The + operator when used with tuples requires that both the operands must be of tuple types. You

cannot add a number or any other value to a tuple. For example, following expressions will result

into error:

ODM Educational Group Page 8

[TUPLES] | COMPUTER SCIENCE| STUDY NOTES

tuple + number

tuple + complex - number

tuple + string

tuple + list

Consider the following examples:

>>> tpl1 = (10, 12, 14)

>>> tpl1 + 2

:

TypeError : can only concatenate tuple (not "int") to ltuple

>>> tpl1 + "abc"

:

TypeError: can only concatenate tuple (not "str") to tuple

Important:-

Sometimes you need to concatenate a tuple (say tpl) with another tuple containing only one

element. In that case, if you write statement like:

>>> tpl + (3)

Python will return an error like :

:

TypeError : can only concatenate tuple (not "int") to tuple

The reason for above error is that a number enclosed in () is considered number only. To make it a

tuple with just one element, just add a comma after the only element, i.e, make it (3,). Now Python

won't return any error and successfully concatenate the two tuples.

>>> tpl = (10, 12, 14, 20, 22, 24, 30, 32, 34)

>>> tpl + (3,)

(10, 12, 14, 20, 22, 24, 30, 32, 34, 3)

Repeating or Replicating Tuples

Like strings and lists, you can use * operator to replicate a tuple specified number of times, e.g, if

tpl1 is (1, 3, 5), then

>>> tpl1 * 3

(1, 3, 5, 1, 3, 5, 1, 3, 5)

Example:

01. Carefully read the given code fragments and figure out the errors that the code may produce.

(a) t = ('a', 'b', 'c', 'd', 'e')

print (t[5])

(b) t = ('a', 'b', 'c', 'd', 'e')

t [0] = 'A'

(c) t1 = (3)

ODM Educational Group Page 9

[TUPLES] | COMPUTER SCIENCE| STUDY NOTES

t2 = (4, 5, 6)

t3 = t1 + t2

print (t3)

(d) t1 = (3,)

t2 = (4, 5, 6)

t3 = t1 + t2

print (t3)

(e) t2 = (4, 5, 6)

t3 = (6, 7)

print (t3 - t2)

Quick Interesting Facts:

PERIOD-04

Slicing the Tuples

 Tuples index their elements just like strings or lists, i.e two way

indexing.

 Tuples are stored in memory exactly like strings, except that because

some of their objects are larger than others, they store a reference at

each index instead of single character as in strings.

Tuple slices, like list-slices or string slices are the sub parts of the tuple extracted out. You can use

indexes of tuple elements to create tuple slices as per following format:

seq = T [start : stop]

The above statement will create a tuple slice namely seq having elements of tuple T on indexes start,

start +1, start +2, , stop - 1. Recall that index on last limit is not included in the tuple slice. The

tuple slice is a tuple in itself that is you can perform all operations on it just like you perform on

tuples. Consider the following example:

>>> tpl = (10, 12, 14, 20, 22, 24, 30, 32, 34)

>>> seq = tpl [3 : -3]

>>> seq

(20, 22, 24)

For normal indexing, if the resulting index is outside the tuple, Python raises an IndexError exception.

Slices are treated as boundaries instead, and the result will simply contain all items between the

boundaries. For the start and stop given beyond tuple limits in a tuple slice, Python simply returns

the elements that fall between specified boundaries, if any.

For example, consider the following:

>>> tpl = (10, 12, 14, 20, 22, 24, 30, 32, 34)

ODM Educational Group Page 10

[TUPLES] | COMPUTER SCIENCE| STUDY NOTES

>>> tpl = [3 : 30]

(20, 22, 24, 30, 32, 34)

>>> tpl [-15 : 7]

(10, 12, 14, 20, 22, 24, 30)

Tuples also support slice steps too. That is, if you want to extract, not consecutive but every other

element of the tuple, there is a way out - the slice steps. The slice steps are used as per following

format:

seq = T[start : stop : step]

Consider some examples to understand this.

>>> tpl

(10, 12, 14, 20, 22, 24, 30, 32, 34)

>>> tpl [0 : 2]

(10, 14, 22, 30, 32)

>>> tpl [2 : 10 : 3]

(14, 24, 34)

>>> tpl [: : 3]

(10, 20, 30)

Consider some more examples:

seq = T [: : 2] # get every other item, starting with the first

seq = T [5 : : 2] # get every other item, starting with the

sixth element, i.e, index 5

You can use the + and * operators with tuple slices too. For example, if a tuple namely TP has values

as (2, 4, 5, 7, 8, 9, 11, 12, 34), then.

>>> Tp [2 : 5] * 3

(5, 7, 8, 5, 7, 8, 5, 7, 8)

>>> Tp [2 : 5] + (3, 4)

(5, 7, 8, 3, 4)

Example:

(1) What will be stored in variables a, b, c, d, e, f, g, h after following statements?

perc = (88, 85, 80, 88, 83, 86)

i. a = perc [2:2]

ii. b = perc [2:]

iii. c = perc [:2]

iv. d = perc[:-2]

v. e = perc [-2 :]

vi. f = perc [2 : -2]

vii. g = perc [-2 : 2]

viii. h = perc [:]

ODM Educational Group Page 11

[TUPLES] | COMPUTER SCIENCE| STUDY NOTES

02. What does each of the following expressions evaluate to? Suppose that T is the tuple

containing:

("These", ["are", "a", "few", "words"], "that", "we", "will", "use")

(a) T[1] [0 : :2]

(b) "a" in T [1] [0]

(c) T [:1] + t[1]

(d) T [2 : 2]

(e) T[2] [2] in T [1]

Quick Interesting Facts:

 Tuples are similar to strings in many ways like indexing, slicing and

accessing individual elements and they are immutable just like strings

are

