

Introduction to Binomial Theorem, Pascal's Triangle

SUBJECT : MATHEMATICS CHAPTER NUMBER: 08 CHAPTER NAME : BINOMIAL THEOREM

CHANGING YOUR TOMORROW

Website: www.odmegroup.org Email: info@odmps.org Toll Free: 1800 120 2316

Sishu Vihar, Infocity Road, Patia, Bhubaneswar- 751024

Learning Objectives:

- Students will be able to learn about binomial and Pascal's triangle.
- Students will be able to learn about binomial theorem for any positive integral index.
- Students will be able to learn the general term from the beginning and end.
- Students will be able to learn about middle term(s) of a binomial expansion.
- Students will be able to learn the equidistant terms.
- Students will be able to implement application oriented skills in their day to day life.

Introduction

An algebraic expression consisting of two terms, connected by + or - sign is called a binomial

expression.

• The terms like
$$a + b$$
, $x - 3y^2$, $\frac{2}{x} - \frac{1}{x^2}$ etc are binomial expressions.

The binomial theorem refers to the expansion of integral power of such a binomial *i.e.*, of the

form $(x + y)^n$, $(a + b)^n$, $(3x + 4y)^n$ etc.

In earlier classes, we have already studied that

$$(i) (a+b)^0 = 1$$
 $(ii) (a+b)^1 = a+b$

 $(iii)(a+b)^2 = a^2 + 2ab + b^2$ $(iv) (a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$

 $(v)(a+b)^4 = a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4$

The coefficients in the above expansions follow a particular pattern as given below:

The above pattern or structure of numbers is known as Pascal's triangle. (Blaise Pascal (1623 – 1662))

The above coefficients can be written in a combinatorial form as

 ${}^{0}C_{0}$ $^{1}C_{0}$ $^{1}C_{1}$ $^{2}C_{2}$ ${}^{2}C_{0}$ ${}^{2}C_{1}$ ${}^{3}C_{0}$ ${}^{3}C_{2}$ ${}^{3}C_{3}$ ${}^{3}C_{1}$ ${}^{4}C_{4}$ ${}^{4}C_{1}$ ${}^{4}C_{2}$ ${}^{4}C_{3}$ ${}^{5}C_{0}$ ${}^{5}C_{1}$ ${}^{5}C_{2}$ ${}^{5}C_{3}$ ${}^{5}C_{4}$ ⁵C₅ ${}^{6}C_{0}$ ${}^{6}C_{1}$ ${}^{6}C_{2}$ ${}^{6}C_{3}$ ${}^{6}C_{4}$ ${}^{6}C_{5}$ ${}^{6}C_{6}$ ${}^{7}C_{1} \quad {}^{7}C_{2} \quad {}^{7}C_{3} \quad {}^{7}C_{4} \quad {}^{7}C_{5} \quad {}^{7}C_{6} \quad {}^{7}C_{7}$ ${}^{8}C_{2} \quad {}^{8}C_{3} \quad {}^{8}C_{4} \quad {}^{8}C_{5} \quad {}^{8}C_{6} \quad {}^{8}C_{7} \quad {}^{8}$ $^{7}C_{0}$ ⁸C₀ 8 C1 ${}^{8}C_{8}$ (Pascal triangle)

For
$$n = 7$$
, the row is $7_{C_0}, 7_{C_1}, 7_{C_2}, 7_{C_3}, 7_{C_4}, 7_{C_5}, 7_{C_6}, 7_{C_7}$.

We have

$$(a+b)^7 = 7_{C_0}a^7 + 7_{C_1}a^6b + 7_{C_2}a^5b^2 + 7_{C_3}a^4b^3 + 7_{C_4}a^3b^4 + 7_{C_5}a^2b^5 + 7_{C_6}ab^6 + 7_{C_7}b^7$$

THANKING YOU ODM EDUCATIONAL GROUP

Binomial Theorem for positive integral index

SUBJECT : MATHEMATICS CHAPTER NUMBER: 08 CHAPTER NAME : BINOMIAL THEOREM

CHANGING YOUR TOMORROW

Website: www.odmegroup.org Email: info@odmps.org Toll Free: 1800 120 2316

Sishu Vihar, Infocity Road, Patia, Bhubaneswar- 751024

Introduction

Binomial theorem is a mathematical formula which enables to determine the power or root of a

binomial is the form of a series.

If a and b are any two real numbers, then for any positive integer n, we have

$$(a+b)^n = {}^{n}C_0 a^n b^0 + {}^{n}C_1 a^{n-1}b + {}^{n}C_2 a^{n-2}b^2 + \dots + {}^{n}C_n a^0 b^n$$

$$\Rightarrow (a+b)^{n} = {}^{\mathsf{n}}\mathsf{C}_{0} a^{n} + {}^{\mathsf{n}}\mathsf{C}_{1} a^{n-1}b + {}^{\mathsf{n}}\mathsf{C}_{2} a^{n-2}b^{2} + \dots + {}^{\mathsf{n}}\mathsf{C}_{n} b^{n} = \sum_{r=0}^{n} n_{\mathcal{C}_{r}} a^{n-r}b^{r}$$

where ${}^{n}C_{0}$, ${}^{n}C_{1}$, ${}^{n}C_{2}$, ..., ${}^{n}C_{n}$ are called binomial coefficients.

Some Observations

- > The total number of terms in the expansion of $(a + b)^n$ is n + 1.
- In each term of the expansion, the sum of the indices of a and b is the same and is equal to the index of a + b i.e., n.
- In the successive terms of the expansion, powers of the first quantity a go on decreasing by 1

whereas the powers of the second quantity *b* increase by 1.

> The binomial coefficients of terms equidistant from the beginning and end are equal.

Particular Cases

Expansion of $(a - b)^n$:

We have

$$(a-b)^{n} = n_{C_{0}}a^{n} - n_{C_{1}}a^{n-1}b + n_{C_{2}}a^{n-2}b^{2} - \dots + (-1)^{r}n_{C_{r}}a^{n-r}b^{r} + \dots + (-1)^{n}n_{C_{n}}b^{n}$$

> Expansion of $(1 + x)^n$:

Replacing a by 1 and b by x, we have

$$(1+x)^n = n_{C_0} + n_{C_1}x + n_{C_2}x^2 + \dots + n_{C_r}x^r + \dots + n_{C_n}x^n$$

> Expansion of $(1 - x)^n$:

Replacing x by -x, we get

$$(1-x)^n = n_{C_0} - n_{C_1}x + n_{C_2}x^2 + \dots + (-1)^r n_{C_r}x^r + \dots + (-1)^n n_{C_n}x^n$$

Remember:

1. If *n* is odd, then
$$(a + b)^n + (a - b)^n$$
 and $(a + b)^n - (a - b)^n$, both have $\left(\frac{n+1}{2}\right)$ terms.

2. If *n* is even, then
$$(a + b)^n + (a - b)^n$$
 has $\left(\frac{n}{2} + 1\right)$ terms and $(a + b)^n - (a - b)^n$ has $\frac{n}{2}$ terms.

Example: Find the number of terms in the expansion of the following:

i) $(2x - 3y)^9$ (ii) $(1 + z)^4$ (iii) $(1 + 5\sqrt{2}x)^9 + (1 - 5\sqrt{2}x)^9$ (iv) $(1 + 2x + x^2)^{20}$

Example: Expand $(x^2 + 2y)^5$ by binomial theorem.

Example: Using the binomial theorem, expand $\left(\frac{2x}{3} - \frac{3}{2x}\right)^4$.

Example: Using the binomial theorem, expand $\{(x + y)^5 + (x - y)^5\}$ and hence find the value of

$$\left\{ (\sqrt{2}+1)^5 + (\sqrt{2}-1)^5 \right\}.$$

THANKING YOU ODM EDUCATIONAL GROUP

General and Middle Term(s) in Binomial Expansion

SUBJECT : MATHEMATICS CHAPTER NUMBER: 08 CHAPTER NAME : BINOMIAL THEOREM

CHANGING YOUR TOMORROW

Website: www.odmegroup.org Email: info@odmps.org

Toll Free: 1800 120 2316

Sishu Vihar, Infocity Road, Patia, Bhubaneswar- 751024

General Term

In the expansion $(a + b)^n$, the (r + 1)th term is called the general term and is denoted by T_{r+1} .

Thus $T_{r+1} = n_{C_r} a^{n-r} b^r$

Example: Find the 9th term in the expansion of
$$\left(\frac{x}{a} + \frac{3a}{x^2}\right)^{12}$$
.

Example: Find the 6th term in the expansion of $\left(\frac{4x}{5} - \frac{5}{2x}\right)^9$.

Example: Find the coefficient of 5th term in the expansion of $\left(\frac{x}{3} - 3y\right)^7$.

Example: Find *a*, if 17th and 18th terms in the expansion of $(2 + a)^{50}$ are equal.

Middle Term(s)

There are two cases:

Case – 1: If *n* is even, then the total number of terms (i.e., n + 1) is odd. In this case, there is only one middle term which is the $\left(\frac{n}{2} + 1\right)th$ term.

Case – 2: If *n* is odd, then the total number of terms (i.e., n + 1) is even. In this case, there are two middle terms, which are $\left(\frac{n+1}{2}\right) th$ term and $\left(\frac{n+3}{2}\right) th$ term.

Example: Find the middle term in the expansion of
$$\left(\frac{2x^2}{3} - \frac{3}{2x}\right)^{20}$$
.

Example: Find the middle terms in the expansion of $\left(3x - \frac{x^3}{6}\right)^7$.

Example: If the middle term of $\left(\frac{1}{x} + x \sin x\right)^{10}$ is equal to $7\frac{7}{8}$, then find the value of x.

Example: Show that the middle term in the expansion of $(1 + x)^{2n}$ is $\frac{1 \cdot 3 \cdot 5 \dots (2n-1)}{n!} 2^n x^n$, where n is a positive integer.

Example: Prove that the coefficient of the middle term in the expansion of $(1 + x)^{2n}$ is equal to the sum of the coefficients of the middle terms in the expansion of $(1 + x)^{2n-1}$.

Example: Find the value of k for which the coefficients of the middle terms in the expansion of $(1 + kx)^4$ and $(1 - kx)^6$ are equal.

THANKING YOU ODM EDUCATIONAL GROUP

Equidistant Terms and problems on term independent of *x*

SUBJECT : MATHEMATICS CHAPTER NUMBER: 08 CHAPTER NAME : BINOMIAL THEOREM

CHANGING YOUR TOMORROW

Website: www.odmegroup.org Email: info@odmps.org

Toll Free: 1800 120 2316

Sishu Vihar, Infocity Road, Patia, Bhubaneswar-751024

Equidistant Terms

In the binomial expansion of $(a + b)^n$, the (r + 1)th term from the end is $\{(n + 1) - r\} = (n - r + 1)th$ term from the beginning.

The (r + 1)th term from the end in the expansion of $(a + b)^n$ is same as the (r + 1)th term from the beginning in the expansion of $(b + a)^n$.

Example: Find the 11th term from the end in the expansion of $\left(2x - \frac{1}{x^2}\right)^{25}$.

Example: Find *n*, if the ratio of the fifth term from the beginning to the fifth term from the end in

the expansion of $\left(\sqrt[4]{2} + \frac{1}{\sqrt[4]{3}}\right)^n$ is $\sqrt{6}$: 1.

Example: Find the term independent of x in the expansion of
$$\left(3x^2 - \frac{1}{2x^3}\right)^{10}$$
.

Example: Find the value of *a* so that the term independent of *x* in $\left(\sqrt{x} + \frac{a}{x^2}\right)^{10}$ is 405.

THANKING YOU ODM EDUCATIONAL GROUP

Simple Applications of Binomial Theorem

SUBJECT : MATHEMATICS CHAPTER NUMBER: 08 CHAPTER NAME : BINOMIAL THEOREM

CHANGING YOUR TOMORROW

Website: www.odmegroup.org Email: info@odmps.org Toll Free: 1800 120 2316

Sishu Vihar, Infocity Road, Patia, Bhubaneswar- 751024

Example: Find an approximation of $(0.99)^5$ using the first three terms of its expansion.

Example: Which is larger $(1.01)^{1000000}$ or, 10,000?

Example: Using, binomial theorem, prove that $6^n - 5n$ always leaves the remainder 1 when divided by 25.

Example: Using, binomial theorem, prove that $8^n - 7n - 1$ is divisible by 49.

Example: Find the coefficient of x^{10} in the binomial expansion of $\left(2x^2 - \frac{3}{x}\right)^{11}$, when $x \neq 0$.

Example: Find the coefficient of x^6y^3 in the expansion of $(x + 2y)^9$.

Example: Find the coefficient of x^{40} in the expansion off $(1 + 2x + x^2)^{27}$.

Example: Prove that there is no term involving x^6 in the expansion of $\left(2x^2 - \frac{3}{x}\right)^{11}$, where $x \neq 0$.

Example: The coefficients of three consecutive terms in the expansion of $(1 + x)^n$ are in the ratio 1: 7 : 42. Find *n*.

Example: If the coefficients of a^{r-1} , a^r , a^{r+1} in the binomial expansion of $(1 + a)^n$ are in *A*. *P*., prove that $n^2 - n(4r + 1) + 4r^2 - 2 = 0$.

Example: If *O* be the sum of odd terms and *E* that of even terms in the expansion of $(x + a)^n$, prove that

(i)
$$0^2 - E^2 = (x^2 - a^2)^n$$

(ii) $40E = (x + a)^{2n} - (x - a)^{2n}$
(iii) $2(0^2 + E^2) = (x + a)^{2n} + (x - a)^{2n}$

THANKING YOU ODM EDUCATIONAL GROUP