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  Introduction: 

The equations of the form 𝑥2 + 1 = 0, 𝑥2 + 4 = 0 etc. are not solvable in 𝑅 

 𝑖. 𝑒. There is no real number whose square is a negative real number.  

Need for Complex Numbers 

Quadratic equations of the form 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0, where 𝑎, 𝑏, 𝑐 ∈ 𝑅, 𝑎 ≠ 0 and 𝑏2 − 4𝑎𝑐 < 0 

 whose solution is not possible in the set of real numbers. 

 

 It was in the 16th century that the Italian Mathematicians Cardano and Bombelli started a 
serious discussion on extending the number system to include square roots of negative numbers.  



 
   Contd….. 

Consider the equation 

 𝑥2 + 1 = 0  

 𝑥2 = −1 

  𝑥 = −1 = 𝑖 

In 1977, the Swiss Mathematician Euler was the first mathematician to introduce the symbol 
𝑖(𝑖𝑜𝑡𝑎) for the square root of −1 

 𝑖. 𝑒. a solution of 𝑥2 + 1 = 0  is 𝑖 with the property 𝑖2 = −1.  

 He also called this symbol as the imaginary unit. 



Integral powers of IOTA (𝒊) 

We have 𝑖 = −1  

𝑖2 = −1, 𝑖3 = 𝑖2. 𝑖 = −1 𝑖 = −𝑖,  𝑖4 = (𝑖2)2 = −1 2 = 1  

To compute 𝑖𝑛 for 𝑛 > 4, we divide 𝑛 by 4 and obtain the remainder 𝑟.  

Let 𝑚 be the quotient when 𝑛 is divided by 4. Then, 𝑛 = 4𝑚 + 𝑟 where 0 ≤ 𝑟 < 4 

 𝑖𝑛 = 𝑖4𝑚:𝑟 = (𝑖4)𝑚𝑖𝑟 = 𝑖𝑟 

Now, 𝑖4𝑛 = (𝑖4)𝑛 = 1𝑛 = 1 

𝑖4𝑛:1 = 𝑖4𝑛. 𝑖 = 1. 𝑖 = 𝑖 

𝑖4𝑛:2 = 𝑖4𝑛. 𝑖2 = 1 × −1 = −1 

𝑖4𝑛:3 = 𝑖4𝑛. 𝑖3 = 1 × −𝑖 = −𝑖  where 𝑛 ∈ 𝑁. 

Note: 𝑖0 = 1. 



 
    

Example: Evaluate the following: 

𝑖  𝑖135 = ? 

𝑖𝑖  𝑖457 =? 

𝑖𝑖𝑖  𝑖;998 = ? 

Example: Show that  

(𝑖) 𝑖19 +
1

𝑖

25 2

= −4 

𝑖𝑖   𝑖𝑛 + 𝑖𝑛:1 + 𝑖𝑛:2 + 𝑖𝑛:3 = 0, for all 𝑛 ∈ 𝑁. 

 

 

 



 
    

Example: Evaluate the following. 

𝑖  1 + 𝑖10 + 𝑖100 + 𝑖1000 

 

𝑖𝑖  𝑖. 𝑖2. 𝑖3. 𝑖4. … . 𝑖1000 

 

𝑖𝑖𝑖  
𝑖582 + 𝑖584 + 𝑖586 + 𝑖588 + 𝑖590

𝑖592 + 𝑖594 + 𝑖596 + 𝑖598 + 𝑖600
 

𝑖𝑣  (𝑖𝑛 + 𝑖𝑛:1)

13

𝑛<1

 

(v) If 𝑛 is an odd positive integer, then prove that 𝑖𝑛 + 𝑖2𝑛 + 𝑖3𝑛 + 𝑖4𝑛 = 0. 

 



 

  Imaginary Quantities 

If 𝑥2 + 4 = 0  𝑥 = −4 = 4 × (−1) = 4 −1 = ±2𝑖 

The product of a real number and an imaginary unit is called an imaginary number. 

Ex: 2𝑖, −3𝑖,
7

4
𝑖, 2𝑖 are imaginary numbers. 

The square of a real number is always non-negative, but the square of an imaginary number is 
always negative.  

Ex: (2𝑖)2= 4𝑖2 = −4 

(− 7𝑖)2= 7𝑖2 = −7  



 
    

Note:  

 For any positive real number 𝑎, we have −𝑎 =  (−1) × 𝑎 = 𝑖 𝑎 

 𝑎𝑏 = 𝑎 𝑏 is not true when both 𝑎 and 𝑏 negative real numbers. 
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Introduction 

Consider an equation: 𝑥2 − 4𝑥 + 13 = 0 

 𝑥 =  
4± 16;52

2
= 
4±6𝑖

2
= 2 ± 3𝑖 = 2 + 3𝑖, 2 + −3 𝑖 

Definition:  

Any number which can be expressed as in the form 𝑥 + 𝑖𝑦, where 𝑥, 𝑦 ∈ 𝑅 is called a complex 
number. 

Or, the sum of a real number and an imaginary number is called a complex number. 

The set of all complex numbers is denoted by 𝒞. 

𝑖. 𝑒. 𝐶 = *𝑧 = 𝑥 + 𝑖𝑦 ∶ 𝑥, 𝑦 ∈ 𝑅+ 



Contd…. 

Let 𝑧 = 𝑥 + 𝑖𝑦 ∈ 𝐶 

Here ‘𝑥 ‘ is called the real part and ‘𝑦’is called the imaginary part of 𝑧 

𝑖. 𝑒. 𝑅𝑒 𝑧 = 𝑥 and 𝐼𝑚 𝑧 = 𝑦 

If 𝑦 = 0, then 𝑧 = 𝑥, which is purely real. 

If 𝑥 = 0, then 𝑧 = 𝑖𝑦, which is purely imaginary. 

Since a real number ‘𝑥 ′ can be written as 𝑥 + 𝑖0,  

so every real number is a complex number.  

Hence 𝑅  𝐶.  

Also, every imaginary number is a complex number. 



 

Equality of Complex Numbers: 

Two complex numbers 𝑧1 = 𝑎 + 𝑖𝑏 and  𝑧2= 𝑐 + 𝑖𝑑 are equal if 𝑎 = 𝑐 and 𝑏 = 𝑑 

𝑖. 𝑒. 𝑅𝑒 𝑧1 = 𝑅𝑒 (𝑧2) and 𝐼𝑚 𝑧1 = 𝐼𝑚(𝑧2) 

Example: If 𝑧1 = 2 − 𝑖𝑦 and 𝑧2 = 𝑥 + 3𝑖 are equal, find 𝑥 and 𝑦. 

 

Example: Find 𝑥 and 𝑦 if 𝑥 + 𝑦 + 3𝑖 = −7 + 𝑥 − 𝑦 𝑖 

Example: Which is greater: 3+2i or 2+3i ? 

Note: 

 Complex numbers are neither positive nor negative. 

 Complex numbers cannot be compared. 



Examples 

Example:  

1.Find the values of 𝑥 and 𝑦  if  𝑥 + 𝑖𝑦  2 − 3𝑖 = 4 + 𝑖    

 

2. 
𝑥;1

3:𝑖
+
𝑦;1

3;𝑖
= 𝑖 

 

3. If 𝑎 + 𝑖𝑏 =  
𝑐:𝑖

𝑐;𝑖
, where 𝑐 is real, prove that 𝑎2 + 𝑏2 = 1 and   

𝑏

𝑎
= 
2𝑐

𝑐2;1
  

4.  Find the smallest positive integer value of 𝑛 for which 
(1:𝑖)𝑛

(1;𝑖)𝑛−2
 is a real number. 

 

 

 



Assignments 

1. What is the smallest positive integer 𝑛 for which (1 + 𝑖)2𝑛= (1 − 𝑖)2𝑛 ? 

 

2. Find the real value of ‘𝑎’ for which 3𝑖3 − 2𝑎𝑖2 + 1− 𝑎 𝑖 + 5 is real. 

 

3. (iv) If (𝑥 + 𝑖𝑦)
1

3= 𝑎 + 𝑖𝑏, 𝑥, 𝑦, 𝑎, 𝑏 ∈ 𝑅, then show that 
𝑥

𝑎
+
𝑦

𝑏
= 4(𝑎2 − 𝑏2) 
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Algebra of Complex Numbers 

1. Closure Law: Let 𝑧1, 𝑧2 ∈ 𝐶 such that 𝑧1 = 𝑎 + 𝑖𝑏 and 𝑧2 = 𝑐 + 𝑖𝑑 

Addition: 𝑧1 + 𝑧2 = 𝑎 + 𝑖𝑏 + 𝑐 + 𝑖𝑑 = 𝑎 + 𝑐 + 𝑖(𝑏 + 𝑑) ∈ 𝐶 

Subtraction:  𝑧1 − 𝑧2 = 𝑎 + 𝑖𝑏 − 𝑐 + 𝑖𝑑 = 𝑎 − 𝑐 + 𝑖(𝑏 − 𝑑) ∈ 𝐶 

Multiplication: 𝑧1. 𝑧2 = 𝑎 + 𝑖𝑏 . 𝑐 + 𝑖𝑑 = 𝑎𝑐 + 𝑖𝑎𝑑 + 𝑖𝑏𝑐 − 𝑏𝑑 

= 𝑎𝑐 − 𝑏𝑑 + 𝑖(𝑎𝑑 + 𝑏𝑐) ∈ 𝐶 

Division: 
𝑧1

𝑧2
= 
𝑎:𝑖𝑏

𝑐:𝑖𝑑
= 
(𝑎:𝑖𝑏)(𝑐;𝑖𝑑)

(𝑐:𝑖𝑑)(𝑐;𝑖𝑑)
=
𝑎𝑐;𝑖𝑎𝑑:𝑖𝑏𝑐:𝑏𝑑

𝑐2:𝑑2
 

= 
𝑎𝑐 + 𝑏𝑑 + 𝑖(𝑏𝑐 − 𝑎𝑑)

𝑐2 + 𝑑2
= 
𝑎𝑐 + 𝑏𝑑

𝑐2 + 𝑑2
+ 𝑖
𝑏𝑐 − 𝑎𝑑

𝑐2 + 𝑑2
∈ 𝐶 

Since the sum, difference, product, and quotient of any two complex numbers is a complex 
number , 

Hence the set of complex numbers is closed under addition, subtraction, multiplication, and 
division. 



CONTD…. 

2. Commutative Laws:  

 If 𝑧1, 𝑧2 ∈ 𝐶 then 𝑧1 + 𝑧2 = 𝑧2 + 𝑧1 and 𝑧1. 𝑧2 = 𝑧2. 𝑧1 

3. Associative Laws:  

If 𝑧1, 𝑧2, 𝑧3 ∈ 𝐶 then 𝑧1 + 𝑧2 + 𝑧3 = 𝑧1 + 𝑧2 + 𝑧3 and 𝑧1. 𝑧2. 𝑧3 = 𝑧1. 𝑧2 . 𝑧3 

4. Distributive Laws: 

If 𝑧1, 𝑧2, 𝑧3 ∈ 𝐶 then 𝑧1 𝑧2 + 𝑧3 = 𝑧1𝑧2 + 𝑧1𝑧3  

5. Existence of Additive Identity: 

If 𝑧 ∈ 𝐶, then there exists 0 = 0 + 𝑖0 ∈ 𝐶 such that 𝑧 + 0 = 𝑧 = 0 + 𝑧 

So 0 + 𝑖0 is called the additive inverse. 



CONTD… 

6. Existence of Additive Inverse: 

If 𝑧 ∈ 𝐶, then there exists −𝑧 ∈ 𝐶 such that 𝑧 + −𝑧 = 0 = −𝑧 + 𝑧 

So, −𝑧 is called the additive inverse of 𝑧. 

7. Existence of Multiplicative Identity: 

If 𝑧 ∈ 𝐶, then there exists 1 = 1 + 𝑖0 ∈ 𝐶 such that 𝑧 .1 = 𝑧 = 1. 𝑧. 

So, 1 + 𝑖0 is called the multiplicative identity. 

8. Existence of Multiplicative Inverse: 

If 𝑧 ≠ 0 ∈ 𝐶 , then there exists 
1

𝑧
∈ 𝐶  such that 𝑧.

1

𝑧
= 1 =

1

𝑧
. 𝑧. So 

1

𝑧
= 𝑧;1  is called the 

multiplicative inverse or reciprocal of 𝑧.  



Examples 

Example: 

1. Express the  complex numbers in the form 𝑥 + 𝑖𝑦 ∶     −3𝑖
1

9
𝑖 + 2  

 

2. Find the additive and multiplicative inverse of the complex number 𝑧 =  (2 + 3𝑖)2 

 

3.  If 𝑥 = −5 + 2 −4, then find the value of 𝑥4 − 9𝑥3 + 35𝑥2 − 𝑥 + 4. 

 



Assignments 

1. Express in the standard form of  (1 + 𝑖)4 

2. Find the least positive integral value of 𝑛 for which 
1:𝑖

1;𝑖

𝑛
 is real. 

3. Show that (3 + 𝑖);2+ (3 − 𝑖);2=
4

25
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Conjugate of a Complex Number: 

If 𝑧 = 𝑥 + 𝑖𝑦, then the conjugate of 𝑧 denoted by 𝑧  and is defined by 𝑧 = 𝑥 − 𝑖𝑦. 

It follows from the definition that the conjugate of a complex number is obtained by replacing 𝑖 
by −𝑖. 

For example, if 𝑥 = 3 + 4𝑖, then 𝑧 = 3 − 4𝑖. 

Example: Find the conjugate of the following complex numbers. 

𝑖 𝑧 = −3 + 4𝑖  𝑧 = −3 − 4𝑖 

𝑖𝑖  𝑧 = − 7 − 3𝑖  𝑧 = − 7 + 3𝑖 

𝑖𝑖𝑖  𝑧 = −
1

2
𝑖 + 5  𝑧 = 5 +

1

2
𝑖 



 

Properties: 

𝑖  The conjugate of a real number is the number itself. 

Let 𝑧 = 𝑥 = 𝑥 + 𝑖0  𝑧 = 𝑥 − 𝑖0 = 𝑥. So 𝑧 = 𝑧.  

(𝑖𝑖) The double conjugate of a complex number is the number itself. 

Let 𝑧 = 𝑥 + 𝑖𝑦  𝑧 = 𝑥 − 𝑖𝑦  𝑧 = 𝑥 + 𝑖𝑦 . So, 𝑧 = 𝑧. 

𝑖𝑖𝑖  z + 𝑧 = 2 𝑅𝑒(𝑧) 

𝑖𝑣  𝑧 − 𝑧 = 2 𝑖 𝐼𝑚(𝑧) 

𝑣  If 𝑧 + 𝑧 = 0, then 𝑧 is purely imaginary. 

(𝑣𝑖) If 𝑧 − 𝑧 = 0, then 𝑧 is purely real. 

(𝑣𝑖𝑖) 𝑧 . 𝑧 =  (𝑅𝑒𝑧)2+(𝐼𝑚𝑧)2 



(𝑣𝑖𝑖𝑖) If 𝑧1, 𝑧2 are two complex numbers, then  

𝑎  𝑧1 + 𝑧2 = 𝑧1 + 𝑧2 

(𝑏) 𝑧1 − 𝑧2 = 𝑧1 − 𝑧2 

𝑐  𝑧1. 𝑧2 = 𝑧1  .  𝑧2 

𝑑
𝑧1

𝑧2
= 
𝑧1

𝑧2 
, 𝑧2 ≠ 0. 

Example: Express the following complex numbers in the form 𝑥 + 𝑖𝑦. 

𝑖
1

3;4𝑖
  

Sol: 𝑧 =
1

3;4𝑖
= 

(3:4𝑖)

3;4𝑖 3:4𝑖
= 
3:4𝑖

9:16
=
3:4𝑖

25
=
3

25
+
4

25
 𝑖 

 



𝑖𝑖
1:2𝑖

2:𝑖
  

Sol: 𝑧 =
1:2𝑖

2:𝑖
= 
(1:2𝑖)(2;𝑖)

(2:𝑖)(2;𝑖)
=
2;𝑖:4𝑖:2

4:1
=
4:3𝑖

5
=
4

5
+
3

5
𝑖 

𝑖𝑖𝑖
(3;2𝑖)(2:3𝑖)

(2:5𝑖)(5;2𝑖)
  

Sol: 𝑧 =
(3;2𝑖)(2:3𝑖)

(2:5𝑖)(5;2𝑖)
= 
6:9𝑖;4𝑖:6

10;4𝑖:25𝑖:10
=
12:5𝑖

20:21𝑖
= 
(12:5𝑖)(20;21𝑖)

(20:21𝑖)(20;21𝑖)
 

= 
240;252𝑖:100𝑖:105

400:441
=
345;152𝑖

841
=
345

841
−
152

841
𝑖  



𝑖𝑣   
1

1;2𝑖
+
3

1:𝑖

3:4𝑖

2;4𝑖
  

Sol: 𝑧 =  
1

1;2𝑖
+
3

1:𝑖

3:4𝑖

2;4𝑖
 

= 
1:𝑖:3;6𝑖

1:𝑖;2𝑖:2

3:4𝑖

2;4𝑖
=
4;5𝑖

3;𝑖

3:4𝑖

2;4𝑖
  

= 
12:16𝑖;15𝑖:20

6;12𝑖;2𝑖;4
  

= 
32:𝑖

2;14𝑖
= 
(32:𝑖)(2:14𝑖)

(2;14𝑖)(2:14𝑖)
  

=
64:448𝑖:2𝑖;14

4:196
= 
50:450𝑖

200
  

=
50

200
+
450

200
𝑖 =
1

4
+
9

4
 𝑖  



Example: Express the following complex numbers in the standard form. Also find their conjugate. 

𝑖   z =
1;i

1:i
=
(1;i)2

(1:𝑖)(1;𝑖)
= 
1;1;2𝑖

1:1
= −

2𝑖

2
= −𝑖  

 𝑧 = 𝑖 

 𝑖𝑖  𝑧 =  
(2:3𝑖)2

2;𝑖
= 
4;9:12𝑖

2;𝑖
= 
;5:12𝑖

2;𝑖
= 
(;5:12𝑖)(2:𝑖)

(2;𝑖)(2:𝑖)
= 
;10;5𝑖:24𝑖;12

4:1
 

= 
;22:19𝑖

5
= −

22

5
+
19

5
𝑖  

 𝑧 = −
22

5
 −
19

5
𝑖 

𝑖𝑖𝑖  𝑧 =  ( 7 + 5𝑖)2= 7 − 25 + 10 7𝑖 = −18 + 10 7𝑖  

 𝑧 = −18 − 10 7𝑖 =  ( 7 − 5𝑖)2 



Example: Find the values of 𝑥 and 𝑦 for which the complex numbers −3 + 𝑖𝑥2𝑦 and 𝑥2 + 𝑦 + 4𝑖 
are conjugates of each other.  

Sol: Since the given complex numbers are conjugate of each other, so 

−3 + 𝑖𝑥2𝑦 =  𝑥2 + 𝑦 + 4𝑖     −3 + 𝑖𝑥2𝑦 =  𝑥2 + 𝑦 − 4𝑖 

Equating real and imaginary parts  

𝑥2 + 𝑦 = −3   ------ (1) 

and  𝑥2𝑦 = −4 ------ (2) 

From (2), we get 𝑦 = −
4

𝑥2
 



Then from (1), we get 𝑥2 −
4

𝑥2
= −3  𝑥4 − 4 = −3𝑥2  𝑥4 + 3𝑥2 − 4 = 0 

 𝑥2 − 1 𝑥2 + 4 = 0  𝑥2 − 1 = 0  or  𝑥2 + 4 = 0. 

Since 𝑥 is real so 𝑥2 + 4 ≠ 0.        Thus 𝑥2 − 1 = 0  𝑥 =  ±1 

When 𝑥 = ±1, 𝑦 = −
4

1
= −4 

Example: If 𝑧1 = 2 + 3𝑖,   𝑧2= 3 − 4𝑖, then prove the following 

𝑖   𝑧1 + 𝑧2 = 𝑧1 + 𝑧2 

Sol: L.H.S. = 𝑧1 + 𝑧2 = 2 + 3𝑖 + (3 − 4𝑖) =  5 − 𝑖 = 5 + 𝑖 

R.H.S.= 𝑧1 + 𝑧2 = 2 + 3𝑖 + 3 − 4𝑖 = 2 − 3𝑖 + 3 + 4𝑖 = 5 + 𝑖 

∴ L.H.S. = R.H.S. 

 



(𝑖𝑖) 𝑧1. 𝑧2 = 𝑧1  .  𝑧2 

Sol: L.H.S. = 𝑧1. 𝑧2 = (2 + 3𝑖)(3 − 4𝑖) =  6 − 8𝑖 + 9𝑖 + 12  

= 18 + 𝑖 = 18 − 𝑖 

R.H.S. = 𝑧1  .  𝑧2 = 2 + 3𝑖 3 − 4𝑖 = (2 − 3𝑖)(3 + 4𝑖) 

= 6 + 8𝑖 − 9𝑖 + 12 = 18 − 𝑖 

∴ L.H.S. = R.H.S. 



𝑖𝑖𝑖  
𝑧1

𝑧2
= 
𝑧1

𝑧2 
 

Sol: L.H.S. = 
𝑧1

𝑧2
= 
2:3𝑖

3;4𝑖
=
(2:3𝑖)(3:4𝑖)

9:16
=
6:8𝑖:9𝑖;12

25
=
;6:17𝑖

25
 

= −
6

25
+
17

25
𝑖 = −

6

25
 −
17

25
𝑖    

R.H.S. = 
𝑧1

𝑧2 
= 
2:3𝑖

3;4𝑖
= 
2;3𝑖

3:4𝑖
= 
(2;3𝑖)(3;4𝑖)

(3:4𝑖)(3;4𝑖)
= 
6;8𝑖;9𝑖;12

9:16
=
;6;17𝑖

25
= −

6

25
 −
17

25
𝑖 

∴ L.H.S. = R.H.S. 



 

Modulus of a Complex Number 

The modulus of a complex number 𝑧 = 𝑥 + 𝑖𝑦 is denoted by 𝑧  and is defined as  

𝑧 =  𝑧 =  𝑥2 + 𝑦2 = (𝑅𝑒 𝑧)2+ (𝐼𝑚 𝑧)2 

For example, if 𝑧 = 3 − 4𝑖, then 𝑧 =  32 + (−4)2= 5 



 

Properties of Modulus 

Let 𝑧, 𝑧1, 𝑧2 are complex numbers. Then 

𝑖  𝑧 = 0  𝑅𝑒𝑧 = 0, 𝐼𝑚 𝑧 = 0. 

𝑖𝑖  𝑧 = 𝑧 = −𝑧  

𝑖𝑖𝑖  z. 𝑧 = 𝑧 2  

𝑖𝑣 𝑧1. 𝑧2 = 𝑧1 𝑧2  

𝑣  
𝑧1

𝑧2
=
𝑧1

𝑧2
, 𝑧2 ≠ 0. 

𝑣𝑖 𝑧1 + 𝑧2 ≤ 𝑧1 + 𝑧2  ( Triangle Inequality) 

𝑣𝑖𝑖 𝑧1 + 𝑧2
2 = 𝑧1

2 + 𝑧2
2 + 2 𝑅𝑒 𝑧1. 𝑧2  



𝑣𝑖𝑖𝑖  𝑧1 − 𝑧2
2 = 𝑧1

2 + 𝑧2
2 − 2 𝑅𝑒 𝑧1. 𝑧2  

𝑖𝑥   𝑧1 + 𝑧2
2 + 𝑧1 − 𝑧2

2 = 2( 𝑧1
2 + 𝑧2

2) 

𝑥 𝑎𝑧1 − 𝑏𝑧2
2 + 𝑏𝑧1 + 𝑎𝑧2

2 = 𝑎2 + 𝑏2  𝑧1
2 + 𝑧2

2  

Note:  

(𝑖) 𝑧1 − 𝑧2 ≤ 𝑧1 + 𝑧2  

𝑖𝑖  𝑧1 − 𝑧2  ≥  𝑧1 − 𝑧2  

(𝑖𝑖𝑖) 𝑧1 − 𝑧2 ≥ 𝑧1 − 𝑧2  



Example: If 𝑧 = 𝑥 + 𝑖𝑦, show that 𝑥 + 𝑦 ≤ 2 𝑧 . 

Sol: We have 𝑧 = 𝑥 + 𝑖𝑦  𝑧 = 𝑥2 + 𝑦2 

Now 𝑥 − 𝑦 2 ≥ 0 

 𝑥 2 + 𝑦 2 − 2 𝑥 𝑦 ≥ 0 

  𝑥 2 + 𝑦 2 ≥ 2 𝑥 𝑦  

  𝑥2 + 𝑦2 ≥ 2 𝑥 𝑦  

  2(𝑥2 + 𝑦2) ≥ 𝑥2 + 𝑦2 + 2 𝑥 𝑦  

  2 𝑧 2 ≥ ( 𝑥 + 𝑦 )2  

  𝑥 + 𝑦 ≤ 2 𝑧 . 



Example: If 𝑧 = 𝑥 + 𝑖𝑦 and 2𝑧 − 1 = 𝑧 + 1 , show that 𝑥2 + 𝑦2 = 2𝑥 

Sol: We have 𝑧 + 1 = 𝑥 + 𝑖𝑦 + 1 = 𝑥 + 1 + 𝑖𝑦 

Also 2𝑧 − 1 = 2 𝑥 + 𝑖𝑦 − 1 = 2𝑥 − 1 + 𝑖(2𝑦) 

∴  2𝑧 − 1 = 𝑧 + 1  

 (2𝑥 − 1)2 + 2𝑦 2 = (𝑥 + 1)2+𝑦2 

 (2𝑥 − 1)2+4𝑦2 = (𝑥 + 1)2+𝑦2 

  (2𝑥 − 1)2− 𝑥 + 1 2 = 𝑦2 − 4𝑦2 

  3𝑥2 − 6𝑥 + 3𝑦2 = 0  𝑥2 − 2𝑥 + 𝑦2 = 0   𝑥2 + 𝑦2 = 2𝑥 



Example: Find 𝑥 if (1 − 𝑖)𝑥= 2𝑥. 

Sol: We have (1 − 𝑖)𝑥= 2𝑥 

Taking modulus of both sides we get (1 − 𝑖)𝑥 = 2𝑥  

 1 − 𝑖 𝑥 = 2 𝑥  

  12 + (−1)2
𝑥
= 2𝑥  2

𝑥
= 2𝑥 

   2
𝑥

2 − 2𝑥 = 0  2
𝑥

2 1 − 2
𝑥

2 = 0  1 − 2
𝑥

2 = 0 , 𝑠𝑖𝑛𝑐𝑒 2
𝑥

2 ≠ 0- 

  2
𝑥

2 = 1  
𝑥

2
= 0  𝑥 = 0. 
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Geometrical Representation of a Complex Number 

We know that a real number can be represented geometrically on the number line. 

A complex number 𝑧 = 𝑥 + 𝑖𝑦 can be represented by a point (𝑥, 𝑦) on the plane which is known 
as the Argand plane.  

To represent 𝑧 = 𝑥 + 𝑖𝑦 geometrically , plot a point whose 𝑥 and 𝑦 coordinates are respectively 
real and imaginary parts of 𝑧.  

This point 𝑃(𝑥, 𝑦) represents the complex number 𝑧 = 𝑥 + 𝑖𝑦. 

 𝑥 − 𝑎𝑥𝑖𝑠 is known as the real axis  

𝑦 − 𝑎𝑥𝑖𝑠 is known as the imaginary axis. 

 



CONTD…. 

Conversely, if 𝑃(𝑥, 𝑦) is a point in the plane, then the point 𝑃(𝑥, 𝑦) represents a complex 
number 𝑧 = 𝑥 + 𝑖𝑦. The complex number 𝑧 = 𝑥 + 𝑖𝑦 is known as the affix of the point 𝑃.   

 

For every complex number 𝑧 = 𝑥 + 𝑖𝑦 there exists uniquely a point (𝑥, 𝑦) on the plane and for 
every point (𝑥, 𝑦) of the plane there exists uniquely a complex number 𝑧 = 𝑥 + 𝑖𝑦. 

 

The plane in which we represent a complex number geometrically is known as the complex 
plane or Argand plane or Gaussian plane. The point 𝑃, plotted on the Argand plane is called the 
Argand diagram.  



Modulus and Argument 

Let 𝑧 = 𝑥 + 𝑖𝑦 be a complex number 

The length of the line segment 𝑂𝑃 is called the modulus of 𝑧 i.e  𝑧  

Here, 𝑂𝑀 = 𝑥,𝑀𝑃 = 𝑦 

In the right-angled triangle 𝑂𝑀𝑃,  

 𝑂𝑃 = 𝑂𝑀2 +𝑀𝑃2 = 𝑥2 + 𝑦2 = 𝑟(𝑠𝑎𝑦) 

Thus, if = 𝑥 + 𝑖𝑦 , then 𝑧 = 𝑟 = (𝑅𝑒𝑧)2+(𝐼𝑚𝑧)2 

Geometrically, 𝑧  is the distance of 𝑧 from the origin.  
The angle 𝜃 which 𝑂𝑃 makes with the positive direction of 𝑥 − 𝑎𝑥𝑖𝑠 in an anticlockwise sense is 
called the argument or amplitude of 𝑧 and is denoted by arg(𝑧) or 𝑎𝑚𝑝(𝑧). 
 

 In the right-angled triangle 𝑂𝑀𝑃, 𝑡𝑎𝑛𝜃 =
𝑦

𝑥
.   So arg 𝑧 = 𝜃. 

 



Continued…. 

The unique value of 𝜃 such that −𝜋 < 𝜃 ≤ 𝜋 is called the principal value of the amplitude or 
principal argument.  

The argument of 𝑧 depends upon the quadrant in which the point 𝑃 lies.  

Techniques to determine the principal argument 

Let 𝑧 = 𝑥 + 𝑖𝑦  

Step I: Find the acute angle 𝛼 given by tan 𝛼 =
𝑦

𝑥
 

Step II: If 

𝑖  𝑥 > 0, 𝑦 = 0, then 𝜃 = 0. 

𝑖𝑖 𝑥 > 0, 𝑦 > 0, then 𝜃 = 𝛼 



Continued…… 

𝑖𝑖𝑖  𝑥 = 0, 𝑦 > 0, then 𝜃 =
𝜋

2
 

𝑖𝑣 𝑥 < 0, 𝑦 > 0, then 𝜃 =  𝜋 − 𝛼 

𝑣  𝑥 < 0, 𝑦 = 0, then 𝜃 = 𝜋 

𝑣𝑖 𝑥 < 0, 𝑦 < 0, then 𝜃 = −(𝜋 − 𝛼) 

𝑣𝑖𝑖  𝑥 = 0, 𝑦 < 0,  then 𝜃 = −
𝜋

2
 

𝑣𝑖𝑖𝑖 𝑥 > 0, 𝑦 < 0, then 𝜃 = −𝛼 



Example 

Find the modulus and argument of  the following complex number : 

1 + 𝑖 3 

 

 



 

Polar Form of a Complex Number 

Let 𝑧 = 𝑥 + 𝑖𝑦 be a complex number represented by a 
point 𝑃(𝑥, 𝑦) in the Argand plane.  

In ∆ 𝑃𝑂𝑀, we have 𝑜𝑠𝜃 =
𝑂𝑀

𝑂𝑃
=
𝑥

𝑟
 , 𝑠𝑖𝑛𝜃 =

𝑃𝑀

𝑂𝑃
=
𝑦

𝑟
 

∴ 𝑧 = 𝑥 + 𝑖𝑦  𝑧 = 𝑟 𝑐𝑜𝑠𝜃 + 𝑖 𝑟 𝑠𝑖𝑛𝜃 

= 𝑟 (𝑐𝑜𝑠𝜃 + 𝑖 𝑠𝑖𝑛𝜃), where 𝑟 =  𝑧  and 𝜃 = arg (𝑧) 

This form of 𝑧 is called a polar form of 𝑧. 

Note: 𝑧 = 𝑟 𝑒𝑖𝜃  is called exponential form,  

where 𝑒𝑖𝜃 = cos 𝜃 + 𝑖 𝑠𝑖𝑛𝜃 



 

Multiplication of a Complex Number by IOTA 

Let 𝑧 = 𝑥 + 𝑖𝑦 = 𝑟(𝑐𝑜𝑠𝜃 + 𝑖 𝑠𝑖𝑛𝜃) 

Then 𝑟 = 𝑧  and arg 𝑧 = 𝜃 

Now 𝑖𝑧 = 𝑖 𝑟 𝑐𝑜𝑠𝜃 + 𝑖 𝑠𝑖𝑛𝜃 = 𝑟(−𝑠𝑖𝑛𝜃 + 𝑖 𝑐𝑜𝑠𝜃) 

               = 𝑟 cos
𝜋

2
+  𝜃 + 𝑖 sin

𝜋

2
+ 𝜃  

Thus 𝑖𝑧 is a complex number such that 

 𝑖𝑧 = 𝑟 = 𝑧  and arg 𝑖𝑧 =
𝜋

2
+  𝜃 =

𝜋

2
+ arg (𝑧) 

So, the multiplication of a complex number by 𝑖 results in rotating the vector joining the origin to 
point representing 𝑧 through a right angle.  



Examples.. 

 

 Write the following complex numbers in the polar form: 

𝑖  𝟑 + 𝒊  (ii)   −𝟐𝒊 

 

 

 



 

Properties of Modulus  

𝑖  If 𝑧 = 𝑥 + 𝑖𝑦, 𝑡𝑕𝑒𝑛 𝑧 = 𝑥2 + 𝑦2 

ii) z 𝑧 = 𝑧 2 

iii) 𝑧1. 𝑧2 = 𝑧1 𝑧2  

iv) 
𝑧1

𝑧2
 = 
𝑧1

𝑧2
 

 



 

Properties of Argument 

𝑖 arg 𝑧1. 𝑧2 = arg 𝑧1 + arg 𝑧2 

𝑖𝑖 arg
𝑧1
𝑧2
= arg 𝑧1 − arg 𝑧2  , 𝑧2 ≠ 0 

𝑖𝑖𝑖 arg 𝑧𝑛 = 𝑛 arg 𝑧 

𝑖𝑣 arg
𝑧

𝑧
= 2 arg 𝑧 

𝑣 arg 𝑧 = −arg 𝑧 

𝑣𝑖 arg −𝑧 = arg −1 𝑧 = arg −1 + 𝑎𝑟𝑔𝑧 =  𝜋 + 𝑎𝑟𝑔𝑧 

𝑣𝑖𝑖 arg 𝑖𝑧 = arg 𝑖 + 𝑎𝑟𝑔𝑧 =
𝜋

2
+ 𝑎𝑟𝑔𝑧 



Assignments 

1. Write the complex numbers in the polar form:  𝟏 − 𝒊 

2. Write the complex number    
1:𝑖

1;𝑖
 

3.  If 𝑧1, 𝑧2 are two complex numbers, then prove the following. 

 𝑧1. 𝑧2 = 𝑧1 𝑧2  
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Solutions of Quadratic Equation in the set of Complex Numbers 

The equation 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0, where 𝑎, 𝑏 and 𝑐 are numbers (real or complex, 𝑎 ≠ 0) is called 
the general quadratic equation in variable 𝑥.  

If 𝑏2 − 4𝑎𝑐 < 0, then the solution is given in the set of complex numbers.  

Complex roots of an equation with real coefficients always occur in conjugate pairs. However, 
this may not be true in the case of equations with complex coefficients. 

 

Fundamental Theorem of Algebra 

We know that every polynomial equation 𝑓 𝑥 = 0  has at least one root, real or 
imaginary(complex). 

 The theorem states that “ A polynomial equation of degree 𝑛 has 𝑛 roots. 



Quadratic Equations with real Coefficients 

Complex roots of an equation with real coefficients always occur in conjugate pairs like 2 + 3𝑖 
and 2 − 3𝑖. 

However, this may not be true in the case of equations with complex coefficients.  

For example, 𝑥2  − 2𝑖𝑥 − 1 = 0 has both roots equal to 𝑖  . 

Example: Solve each of the following equations. 

𝑖  𝟒𝒙𝟐 + 𝟗 = 𝟎 

𝑖𝑖  𝒙𝟐 − 𝟒𝒙 + 𝟏𝟑 = 𝟎 

 



 

Quadratic Equations with Complex Coefficients 

Consider the quadratic equation 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0 … (1) 

where 𝑎, 𝑏, 𝑐 are complex numbers and 𝑎 ≠ 0. 

So the roots are complex numbers. 

Since the order relation is not defined in case of complex numbers, therefore, we cannot assign 
positive or negative sign to the discriminant 𝐷 =  𝑏2 − 4𝑎𝑐. 

However,  equation (1) has complex roots which are equal, if 𝐷 = 𝑏2 − 4𝑎𝑐 = 0 and unequal 
roots if 𝐷 = 𝑏2 − 4𝑎𝑐 ≠ 0. 



Examples 

 

1  Solve the following equation:  𝒙𝟐 − 𝟓𝒊𝒙 − 𝟔 = 𝟎 

 

(2) One root of the equation 𝒂𝒙𝟐 − 𝟑𝒙 + 𝟏 = 𝟎 is 2+i, find the value of a . 

 

(3)  Solve  𝑖𝑥2 − 4𝑥 − 4𝑖 = 0 

 

 

 



Assignments 

Solve each of the following equations. 

(1) 𝟓 𝒙𝟐 + 𝒙 + 𝟓 = 𝟎 

2   𝒊𝒙𝟐 − 𝟒𝒙 − 𝟐𝒊 = 𝟎 

𝟑   𝒙𝟐  − 𝟕 − 𝒊 𝒙 + 𝟏𝟖 − 𝒊 = 𝟎 

(4) Find the quadratic equation with real coefficients whose one 

root is (1-i). 
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