

Distance of a Point from a Line

SUBJECT : MATHEMATICS CHAPTER NUMBER: 10 CHAPTER NAME : STRAIGHT LINES

CHANGING YOUR TOMORROW

Website: www.odmegroup.org Email: info@odmps.org

Toll Free: 1800 120 2316

Sishu Vihar, Infocity Road, Patia, Bhubaneswar- 751024

The distance of a Point from a Line

The distance of a point from a line is the length of the perpendicular drawn from the point to the line.

The distance of the point (x_1, y_1) from the line Ax + By + C = 0 is

$$d = \left| \frac{Ax_1 + By_1 + C}{\sqrt{A^2 + B^2}} \right|$$

The distance of origin from the line Ax + By + C = 0 is $d = \left| \frac{C}{\sqrt{A^2 + B^2}} \right|$

Example: Find the distance of the point (2, -3) from line 2x - 3y + 6 = 0.

Sol: Required distance of the point from the line

= The perpendicular distance from a point to the line = $\left|\frac{2 \times 2 - 3(-3) + 6}{\sqrt{2^2 + (-3)^2}}\right| = \frac{19}{\sqrt{13}}$

Example: Find the points on *the* x - axis whose perpendicular distance from the line 4x + 3y = 12 is 4.

Sol: Given points are on *the* x - axis. So, let its coordinates be $(\alpha, 0)$

Then, the length of the perpendicular from $(\alpha, 0)$ to the line 4x + 3y - 12 = 0 is 4.

So,
$$\left|\frac{4\alpha+3\times0-12}{\sqrt{4^2+(-3)^2}}\right| = 4$$

 $\Rightarrow \left|\frac{4\alpha-12}{5}\right| = 4$
 $\Rightarrow |4\alpha-12| = 20$
 $\Rightarrow 4\alpha - 12 = \pm 20$
 $\Rightarrow 4\alpha = 12 \pm 20 = -8, 32$
 $\Rightarrow \alpha = -2, 8$
Hence the required points are (8,0) and (-2,0)

Equations of lines passing through a given point and making a given angle with a line

The equations of the straight lines which pass through a given point (x_1, y_1) and make a given angle α with the given straight line y = mx + c are

$$y - y_1 = \frac{m \pm \tan \alpha}{1 \mp m \tan \alpha} (x - x_1)$$

Example: Find the equations of two straight lines through (7, 9) and making an angle of 60° with the line $x - \sqrt{3}y - 2\sqrt{3} = 0$.

Sol: We know that the equations of two straight lines which pass through a point (x_1, y_1) and make a given angle α with y = mx + c are

$$y - y_1 = \frac{m \pm \tan \alpha}{1 \mp m \tan \alpha} (x - x_1)$$

Here, $x_1 = 7$, $y_1 = 9$, $\alpha = 60^\circ$ and $m = (Slope \ of \ the \ line \ x - \sqrt{3}y - 2\sqrt{3} = 0) = \frac{1}{\sqrt{3}}$
So, equations of required lines are

$$y - 9 = \frac{\frac{1}{\sqrt{3}} + \tan 60^{\circ}}{1 - \frac{1}{\sqrt{3}} \tan 60^{\circ}} (x - 7) \text{ and } y - 9 = \frac{\frac{1}{\sqrt{3}} - \tan 60^{\circ}}{1 + \frac{1}{\sqrt{3}} \tan 60^{\circ}} (x - 7)$$

or,
$$(y-9)\left(1 - \frac{1}{\sqrt{3}}\tan 60^\circ\right) = \left(\frac{1}{\sqrt{3}} + \tan 60^\circ\right)(x-7)$$

and, $(y-9)\left(\frac{1}{\sqrt{3}} + \tan 60^\circ\right) = \left(1 - \frac{1}{\sqrt{3}}\tan 60^\circ\right)(x-7)$
or, $0 = \left(\frac{1}{\sqrt{3}} + \sqrt{3}\right)(x-7)$ and $(y-9)(2) = \left(\frac{1}{\sqrt{3}} - \sqrt{3}\right)(x-7)$
or, $x-7 = 0$ and, $x + \sqrt{3}y = 7 + 9\sqrt{3}$.

Hence, the required lines are x = 7 and $x + \sqrt{3}y = 7 + 9\sqrt{3}$.

THANKING YOU ODM EDUCATIONAL GROUP

Distance between Two Parallel Lines

SUBJECT : MATHEMATICS CHAPTER NUMBER: 10 CHAPTER NAME : STRAIGHT LINES

CHANGING YOUR TOMORROW

Website: www.odmegroup.org Email: info@odmps.org

Toll Free: 1800 120 2316

Sishu Vihar, Infocity Road, Patia, Bhubaneswar- 751024

Distance between Two Parallel Lines

The distance between two parallel lines $y = mx + c_1$ and $y = mx + c_2$ is given by

$$d = \left| \frac{c_1 - c_2}{\sqrt{1 + m^2}} \right|.$$

If the lines are given in general form

i. e. Given lines are $Ax + By + C_1 = 0$ and $Ax + By + C_2 = 0$,

then distance between these lines is $d = \left| \frac{c_1 - c_2}{\sqrt{A^2 + B^2}} \right|$

Example: Find the distance between the parallel lines 3x - 4y + 9 = 0 and 6x - 8y - 15 = 0. **Sol:** Given lines are 3x - 4y + 9 = 0 and $6x - 8y - 15 = 0 \Rightarrow 3x - 4y - \frac{15}{2} = 0$ So, the required distance $= \left|\frac{c_1 - c_2}{\sqrt{A^2 + B^2}}\right| = \left|\frac{9 + \frac{15}{2}}{\sqrt{3^2 + (-4)^2}}\right| = \frac{33}{10}$ units.

Example: Find the equations of lines parallel to 3x - 4y - 5 = 0 at a unit distance from it. **Sol:** Equation of any line parallel to 3x - 4y - 5 = 0 is 3x - 4v + l = 0(i) Putting x = -1 in 3x - 4y - 5 = 0, we get y = -2. Therefore, (-1, -2) is a point on 3x - 4y - 5 = 0. Since the distance between the two lines is one unit. Therefore, the length of perpendicular from (-1, -2) to 3x - 4y + l = 0 is one unit. *i.e.* $\frac{|3\times -1-4\times -2+}{\sqrt{3^2+(-4)^2}} = 0$ $\frac{|5+}{\lambda|_5} = 1 \Rightarrow$ $|5 + \lambda| = 5 \implies 5 + \lambda = \pm 5 \implies \lambda = 0 \square or - 10.$ Substituting the values of λ in (i), we get 3x - 4y = 0 and, 3x - 4y - 10 = 0 as the equations of the required lines.

THANKING YOU ODM EDUCATIONAL GROUP

Family of Lines passing through the intersection of Two Lines

SUBJECT : MATHEMATICS CHAPTER NUMBER: 10 CHAPTER NAME : STRAIGHT LINES

CHANGING YOUR TOMORROW

Website: www.odmegroup.org Email: info@odmps.org

Toll Free: 1800 120 2316

Sishu Vihar, Infocity Road, Patia, Bhubaneswar- 751024

Family of Lines passing through the intersection of Two Lines

The equation of the family of lines passing through the intersection of the lines

 $a_1x + b_1y + c_1 = 0$ and $a_2x + b_2y + c_2 = 0$ is

 $(a_1x + b_1y + c_1) + \lambda(a_2x + b_2y + c_2) = 0$, where λ is a parameter.

Example: Find the equation of the straight line which passes through the point (2, -3) and the point of intersection of the lines x + y + 4 = 0 and 3x - y - 8 = 0.

Sol: Any line through the intersection of the lines x + y + 4 = 0 and 3x - y - 8 = 0 has the equation

 $(x + y + 4) + (3x - y - 8) = 0 \qquad \dots (1)$ This will pass through (2, -3), if (2 - 3 + 4) + (6 + 3 - 8) = 0 $3 + l = 0 \quad P \, l = -3.$

Putting the value of λ in (1), the equation of the required line is 2x - y - 7 = 0.

Example: Find the equation of the straight line which passes through the point of intersection of the straight lines x + 2y = 5 and 3x + 7y = 17 and is perpendicular to the straight line 3x + 4y = 10.

Sol: The equation of any line through the intersection of the lines

$$x + 2y - 5 = 0 \text{ and } 3x + 7y - 17 = 0 \text{ is} (x + 2y - 5) + (3x + 7y - 17) = 0 or, x(3λ + 1) + y(7λ + 2) - (17λ + 5) = 0(1) This is perpendicular to the line 3x + 4y = 10.∴ Product of their slopes = -1 ▷ $-\left(\frac{3l+1}{7l+2}\right)\left(-\frac{3}{4}\right) = -1\frac{11}{37}$
Putting this value of λ in (1), the equation of the required line is 4x - 3y + 2 = 0.$$

Distance Form of a Line

The equation of the straight line passing through (x_1, y_1) and making an angle θ with the positive direction of the x-axis is $\frac{x-x_1}{\cos \theta} = \frac{y-y_1}{\sin \theta} = r$, where r is the distance of the point (x, y) on the line from the point (x_1, y_1) .

NOTE 1 The equation of line is

$$\frac{x - x_1}{\cos \theta} = \frac{y - y_1}{\sin \theta} = \eta$$

 $\Rightarrow x - x_1 = r \cos \theta \text{ and } y - y_1 = r \sin \theta \quad \Rightarrow x = x_1 + r \cos \theta \text{ and } y = y_1 + r \sin \theta.$

Thus, the coordinates of any point on the line at a distance r from the given point (x_1, y_1) are $(x_1 + r \cos \theta, y_1 + r \sin \theta)$. If P is on the right side of (x_1, y_1) , then r is positive and if P is on the left side of (x_1, y_1) , then r is negative.

Since different values of r determine different points on the line, therefore the above form of the line is also called parametric form or symmetric form of a line.

NOTE 2 In the above form one can determine the coordinates of any point on the line at a given distance from the given point through which it passes. At a given distance r from the point (x_1, y_1) on the line $\frac{x-x_1}{\cos \theta} = \frac{y-y_1}{\sin \theta}$ there are two points viz. $(x_1 + r \cos \theta, y_1 + r \sin \theta)$ and $(x_1 - r \cos \theta, y_1 - r \sin \theta)$.

Example: In what direction a line be drawn through the point (1,2) that its point of intersection with the line x + y = 4 is at a distance $\frac{\sqrt{6}}{3}$ from the given point.

Sol: Let the line drawn through A(1,2) makes an angle θ with the positive direction of the x-axis and intersects the line x + y = 4 at P such that $AP = \frac{\sqrt{6}}{3}$. Then, the coordinates of P are given

by
$$\frac{x-1}{\cos\theta} = \frac{y-2}{\sin\theta} = \frac{\sqrt{6}}{3} \Rightarrow x = 1 + \sqrt{\frac{2}{3}}\cos\theta$$
, $y = 2 + \sqrt{\frac{2}{3}}\sin\theta$
So, the coordinates of *P* are $\left(1 + \sqrt{\frac{2}{3}}\cos\theta, 2 + \sqrt{\frac{2}{3}}\sin\theta\right)$.

Clearly, point *P* lies on the line x + y = 4.

$$\therefore 1 + \sqrt{\frac{2}{3}}\cos\theta + 2 + \sqrt{\frac{2}{3}}\sin\theta = 4$$
$$\Rightarrow \cos\theta + \sin\theta = \sqrt{\frac{3}{2}}$$

$\Rightarrow (\cos \theta + \sin \theta)^2 = \frac{3}{2}$ $\Rightarrow 1 + \sin 2\theta = \frac{3}{2}$ $\Rightarrow \sin 2\theta = \frac{1}{2}$ $\Rightarrow 2\theta = \frac{\pi}{6} \text{ or, } 2\theta = \frac{5\pi}{6}$ $\Rightarrow \theta = \frac{\pi}{12}, \frac{5\pi}{12}$

Hence, the line drawn makes an angle whose measure is either $\frac{\pi}{12}$ or $\frac{5\pi}{12}$ with the x-axis.

THANKING YOU ODM EDUCATIONAL GROUP

