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Chapter- 14 
Oscillation 
PERIODIC MOTION 

 A motion that repeats itself after a regular interval of time is called periodic motion. 
 Examples: 

(i) The motion of all planets, comets, etc. around the sun. 
(ii) The motion of an electron around the nucleus. 
(iii) Vibrations of a simple pendulum.  
(iv) Vibrations of the prongs of a tuning fork. etc. 

  The smallest interval of time after which the motion is repeated is called it's period. It is 
denoted as T . 

 The reciprocal of T gives the number of repetitions that occur per unit time. This 
quantity is called the frequency of the periodic motion. It is represented by the symbol ν 

 The relation between ν and T is 

T

1
  

 The unit of ν is thus s–1. It is called hertz (abbreviated as Hz). 
1 hertz = 1 Hz = 1 oscillation per second =1s–1 . 

 Displacement in periodic motion :  
 It refers to change with time of any physical property under consideration. 
  For example, in the case of the rectilinear motion of a steel ball on a surface, the 

distance from the starting point as a function of time is its position 
displacement. 

 Consider a block attached to a spring, the other 
end of the spring is fixed to a rigid wall. 
Generally, it is convenient to measure the 
displacement of the body from its equilibrium 
position.  

 For an oscillating simple pendulum, the angle 
from the vertical as a function of time may be 
regarded as a displacement variable.
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 Any displacement variable is said to be periodic if it is a function )(tf of time 
satisfying the condition ;  

)()( tfTtf   
Where T  the time period of the function 

 Any periodic function can be expressed as a superposition of sine and cosine 
functions of different time periods with suitable coefficients. This representation 
is given by the French mathematician, Jean Baptiste Joseph Fourier (1768–1830) 
and called a Fourier series. It is given by 

 
Oscillatory Motion (Vibratory motion) : 

The motion of a body is said to be oscillatory if it moves back & forth about a fixed point after 
regular intervals of time. 

The fixed point about which the body oscillates is called mean position or equilibrium position. 

Note: 

Every oscillatory motion is a periodic motion, but every periodic motion is not oscillatory. 

Oscillation (Vibration): 

 

Let ‘O’ be the equilibrium position & E1& E2 are the extreme position of the oscillatory motion. 
The motion of the body from O to E2& then to E1& back to ‘O’ form one oscillation or vibration. 

Simple Harmonic Motion (S.H.M.): 

 A particle is said to be in S.H.M. if it is oscillating back and forth about the origin of an 
x-axis between the limits +A and –A and its position displacement at any instant is 
given by ; )cos()( 0  tAtx  

where A, ω, and θ0 are constants. 

  
 Thus, simple harmonic motion (SHM) is not any periodic motion but one in which 

displacement is a sinusoidal function of time. 
 The terms in S.H.M. : 

x (t) = displacement x as a function of time t 
A = amplitude = magnitude of maximum displacement 
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ω = angular frequency 
ωt + θ0 = phase angle θ (time-dependent) 
 θ0 = phase constant or initial phase or phase 

 Time period ( T )and frequency (ν)  in S.H.M. : 
By definition of time period ; 

   
   00

00

coscos

)(coscos

)()(









TtAtA

TtAtA

Ttxtx

 

As cosine function repeats after every 2π, hence 





2

2





T

T
 

 So frequency ; 


2

1


T
 

The relation between S.H.M. & Uniform Circular Motion: 

Let a particle p moves with uniform angular velocity   in a circle of radius ‘A’. Then the particle 
‘p’ is called the reference point. The circle is called the circle of reference. 

Let XX’ be the diameter of the circle of reference & PM be the perpendicular on it. Then M is 
called the projection of P on XX’. 

As the particle moves from X to X’ through Y, its projection moves from X to X’ through O. As 
the particle moves from X’ to X through Y’ its projection moves from X’ to X through O. Thus, 
the projection M is said to execute S.H.M. along with XX’. 

Thus S.H.M. is regarded as the projection of uniform circular motion upon the diameter of the 
circle of reference. 

CHARACTERISTICS OF S.H.M.: 

Displacement: 

It is the distance of the particle executing S.H.M. from 
its mean position and is directed towards the point 
from the mean position.  

Let  OM = x = displacement of the particle at any 
instant. 

From the figure, in triangle OMP,  

 
A

x

OP

OM
cos  

cosAx   

Let t = time taken by the particle to reach the point P from P0. 
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Then  0  t  [where  0  = initial angular position i.e. angle corresponding to initial 

position P0] 

 0cos   tAx  …………(i)  

Amplitude : 

It is the maximum displacement of the particle from its mean position. 

At  the extreme position, 

    
Ax

t


 1)cos( 0

 

Where ‘A’ is called the amplitude of vibration. 

Velocity : 

It is defined as the time rate of change of displacement. 

   

  

 
   

22

0
222

0
2

0

0

coscos1

sin

cos

xAv

tAAtAv

tAv

tA
dt

d

dt

dx
v

















 

 When 0v ends extremeat  i.e.   Ax =minimum velocity 
 When Avposition mean at  i.e.   0 x =maximum velocity 
 Thus, the velocity is maximum at the mean position & zero at extreme positions. 

Acceleration: 

It is defined as the time rate of change of velocity. 

  

  

 
xa

tAa

tA
dt

d

dt

dv
a

2

0
2

0

cos

sin













  

 When Aa ends extremeat  i.e.   Ax =maximum velocity 
 When 0aposition mean at  i.e.   0 x =minimum velocity 

Thus, acceleration is zero at mean position & maximum at extreme positions. 

Graphical Representation of displacement, velocity, and acceleration in S.H.M: 

1. Particle starting from extreme position : 
i.e. at 0t , 0cos 00   AAAx  

So the equations representing displacement, velocity and acceleration are ;  
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tAa

tAv

tAx






cos

sin

cos

2




 

So graphs tatvtx ~ and  ~,~ are as shown below. 

 
2. Particle starting from the mean  position in a positive direction : 

i.e. at 0t , 
2

3
1sin and 0cos and 0 000

  vevx  

So the equations representing displacement, velocity and acceleration are ;  

tAa

tAv

tAx






sin

cos

sin

2




 

So graphs tatvtx ~ and  ~,~ are as shown below. 
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3. Graphs showing the variation of velocity and acceleration with displacement : 
(a) graph ~ xv : 

As 22 xAv    

1
2

2

22

2

22222

22222







A

x

A

v

Axv

xAv







 

Hence graph ~ xv is an ellipse. 
(b) graph ~ xa : 

As xa 2   
line hence graph ~ xa is a straight 

 passing through origin with  
slope = 2  

Note: 

(i) The phase difference between displacement - time curve & velocity-time curve is π/2 rad. 

(ii) The phase difference between the displacement-time curve & acceleration - time curve is π 
rad.  

(iii) The phase difference between the velocity-time curve & acceleration - time curve is π/2 rad.     

Force law for the simple harmonic motion : 

By Newton’s 2nd law, resultant of all forces acting on a particle is given by maF    

For S.H.M., we have  xa 2  

   
kxF

xmmaF


 2  

Where, S.H.M.in constant  springor constant  force  2  mk  

-ve sign indicates that force is directed opposite to the displacement i.e. always directed 
towards the mean position. So this force is also called as restoring force. 

Graphically; 
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The expression for angular frequency, time period, and frequency in S.H.M. : 

As the force constant is defined as,  2mk   

 

factor Inertia

constant force

2





m

k

m

k




 

Again xxa 22 a magnitudein or  ,    

 
tdisplcemen

onaccelerati


x

a
  

These are the two expressions for angular frequency. 

Now time period ;  

 
a

x

k

m
T 




22
2

  

The frequency ; 

 
x

a

m

k

T 


2

1

2

1

2

1
  

The energy in simple harmonic motion : 

 A particle executing simple harmonic motion possesses two types of energies.  
(i) Potential Energy (Ep) : 

The restoring force  in simple harmonic motion is defined as; kxF    
Also, the restoring force is conservative. 
So potential energy of the system for any displacement  x is ; 

 2
.

2
2

2

1

2
.

...

ref

x

x

p

x

x

x

x

x

x

p

xxk
kx

E

kxdxkxdxFdxE

ref

refrefref











 
 

Where .refx = displacement for reference point i.e. a point where the particle has 0 potential 

energy.  
Usually mean position ( i.e. x = 0 ) is taken as zero potential energy position .  
So potential energy is  ; 

2

2

1
kxE p   
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(ii) Kinetic Energy (Ek) : 

 The K.E. is due to the motion of the particle. 

 It is given by; 

  
   

 22

222
2

222

2

1
2

1

2

1

2

1

xAkE

xAmxAmmvE

k

k



 
 

 Here we have used the relations; 22 xAv     and 2mk   

Total mechanical energy (E) : 

 The total mechanical energy of the particle at any instant is given by 

    
 

2

222

2

1
2

1

2

1

kAE

xAkkxEEE kp




 

This shows that the total mechanical energy is independent of position or time, i.e. total 
mechanical energy is conserved in simple harmonic motion. 

Graphical representation of energy in S.H.M. : 

1. Variation with displacement : 

  
2. Variation with time when starting from an extreme end : 

In this case; tAx cos  and tAv  sin  

tkAkxE p 222 cos
2

1

2

1
  

tkAtAmmvEk  222222 sin
2

1
sin

2

1

2

1


 ][ 2mk   

  2222

2

1
sincos

2

1
kAttkAE    
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3. Variation with time when starting from mean position : 
In this case; tAx sin  and tAv  cos  

tkAkxEp 222 sin
2

1

2

1
  

tkAtAmmvEk  222222 cos
2

1
cos

2

1

2

1


 ][ 2mk   

  2222

2

1
sincos

2

1
kAttkAE    

Some examples of S.H.M:  

Spring-Block system oscillating horizontally on a frictionless surface : 

  

In this case, the net force on the block for any displacement x  is  

kxF   

Hence it satisfies the condition for S.H.M. and hence the block is in S.H.M. 

As  2mk   

m

k

m

k







 2

 
Now time period ;  

 
k

m
T 




2
2

  

The frequency ; 

 
m

k

T 


2

1

2

1
  
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Spring-Block system oscillating vertically from a rigid 
surface : 

Let, O: The unstretched free end of the spring. 

M: Equilibrium position as the block is connected to the 
free end. 

So the force equation is; mgkl   ........(i) 

For further displacement x , the net force on the block  is  

kxklmgxlkmgF  )(  

kxF    ] (i)equation  Using[  

Hence it satisfies the condition for S.H.M. and hence the 
block is in S.H.M. 

As  2mk   

m

k

m

k







 2

 

Now time period ;  

 
k

m
T 




2
2

  

The frequency ; 

 
m

k

T 


2

1

2

1


 
Multiple Spring-Block systems: 

(a) Springs in series :  
Force on each spring is the same . 
Total elongation is ; ...21  xxx  

.....
21


k

F

k

F

k

F

s

 

.....
111

21


kkks

 

  Now time period ;  

  
sk

m
T 2  
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(b) Springs in parallel: 

The deformation of each spring is the same . 
The total force is ; ...21  FFF  

.....21  xkxkxkP  
.....21  kkkP  

Now time period ;  

Pk

m
T 2  

 
(c)  Two masses connected to the two ends of a 

spring : 
In this case, the system can be reduced to one 
mass system of reduced mass given as; 

21

21

mm

mm


  

Now time period ;  

k
T

2  

The expression for spring constant of a spring : 

Let a spring of length L, area of cross-section A, and Young’s modulus Y  be stretched by a 
length x. 

Let the restoring force be F. 

By definition ; 
Lx

AF
Y

/

/
  

L

YAx
F   

This is in form ; kxF   

So the spring constant is; 

L

YA
k   

L
kAk

1
 and     

Angular S.H.M. : 

In this oscillation net torque on the system is directly proportional to the angular displacement 
and directed opposite to the angular displacement. This is called as restoring torque. 
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So restoring torque is given by;  k  

Where k = torque constant. 

Here at any instant;  

angular displacement is  00 cos   t  

angular velocity is  00 sin   t  

angular acceleration is  00 cos   t  

Where; 
factor inertia

constant torque

I

k
 frequency Angular    

So time period of oscillation is; 
k

I
T 




2
2

  

Frequency of oscillation is; 
I

k

T 


2

1

2

1
  

Simple Pendulum: 

 A simple pendulum is a point mass suspended by weightless & inextensible flexible 
string fixed rigidly to support. 

 Since the point mass is a theoretical concept, in actual practice a heavy metallic bob 
suspended with a strong thread from rigid support is taken as the simple pendulum. 

 The string is fixed rigidly at one end ‘S’ called the point of suspension. When the bob is 
displaced from the mean position ‘O’ to the extreme point ‘E1’ & released, it starts, 

oscillating about ‘O’ & the motion is S.H.M. as explained below. 
 As the bob gets displaced through ‘O’ to the point E1, the various forces acting on the 

pendulum are – 
(a) Weight ‘mg’ of the bob in the vertically downward 
direction. 
(b) Tension ( TF ) along the length of the string & towards 
the point of suspension. 

 As tension is along the string and hence always intersects 
the axis of rotation, its torque is 0. 
So the net torque on the pendulum is; 

   sin. mglrmg    
For very small angular displacement; 0  
      sin  
So the net torque on the pendulum is; 

 mgl  
Vectorially;  mgl  [    toopposite directed is   ] 
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Hence motion is angular S.H.M. with; mglk   

So time period of oscillation is; 
k

I
T 2  

Here 2  bob  theof inertia ofmoment mlI   

So the time period is; 
2

2
ml

mgl
T   

g

l
T 2  

Discussion : 

(a) The time period does not depend upon the mass of the bob i.e. pendulum of equal 
length but different masses will have the same period ‘T’. 

(b) By moving up from earth surface : 
increases Tdecreases g  

(c) By moving down into earth surface : 
increases Tdecreases g  

(d) At the center of the earth;  Tg 0  
(e) By moving from equator to pole ; decreases Tincreases g   
(f) Pendulum in an elevator : 

(i) The elevator at rest or uniform motion : 
Effective weight; mgFT   

gg eff   

g

l

g

l
T

eff

 22    i.e. no change 

(ii) Elevator accelerating up : 
Effective weight; )( agmFT   

agg eff   

ag

l

g

l
T

eff 
  22   i.e. less than the actual time period 

(iii) Elevator accelerating down : 
Effective weight; )( agmFT   

agg eff   

ag

l

g

l
T

eff 
  22   i.e. more than the actual time period 

 
(iv) Elevator falling freely : 

Effective weight; 0)(  ggmFT  
0 effg  
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
0

22
l

g

l
T

eff

    

(v) Elevator accelerating horizontally : 
In this case, the equilibrium position makes angle θ with vertical in the opposite 
direction of motion. 
So; mgFT cos   
And maFT sin  

So the effective weight is;    22 sincos  TTT FFF   

    2222 agmmamgFT   
22 agm

Fg T
eff   

2/1

2222
222





















ag

l

ag

l

g

l
T

eff

  

(vi) Elevator moving in a uniform circular motion: 
In this case, the equilibrium position makes angle θ with vertical in the radially 
outward direction. 
So; mgFT cos   

And 
r

mv
FT

2

sin   

So the effective weight is;    22 sincos  TTT FFF   

 
22

2

22
2




















r

v
gm

r

mv
mgFT  

22
2











r

v
gm

Fg T
eff  

 

2/1

22222 /
2

/
22





















rvg

l

rvg

l

g

l
T

eff

  

(g) By the rise in temperature; the length of string increases. Hence time period also 
increases.  

(h) By fall in temperature; the length of string decreases. Hence time period also 
decreases. 

(i) When the time period of the pendulum increases the clock becomes slower and when 
the time period of the pendulum decreases the clock becomes faster. 

Second, ’s pendulum : 

A pendulum is said to be second’s pendulum if its time period is 2 s. 
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As 
g

l
T 2  

m
gT

l

g

l
T

1
4

48.9

4

4

22

2

22











 

So the second’s pendulum is also called as meter’s pendulum. 

A.  Free Vibrations : 

 When a body vibrates with its natural frequency, It is said to execute free vibrations. 
 In this case, the resultant force is; 

0

0

0

2
2

2

2

2

2

2










x
dt

xd

x
m

k

dt

xd

kx
dt

xd
m

kxma

kxF



  

This is the differential equation of free vibration 

 Example 

 (a) When a tuning fork is struck against a rubber pad, the prongs begin to execute free 
vibrations. 

 (b) When a stretched string is plucked, it executes free vibrations. 

 (c) When the bob of a simple pendulum is displaced from its mean position and released, it 
executes free oscillations. 

Note: 

 Free oscillations are also called undamped oscillations. The amplitude and energy remain 
constant with time because of the absence of a resistive medium. 
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B. Damped Oscillations: 

 In actual practice, most of the oscillations occur in resistive media like air, water, etc. 
Thus a fraction of energy of the oscillating system is dissipated in the form of heat 
overcoming resistive forces. Thus, the amplitude of oscillation gradually decreases with 
time, and finally, the oscillating system stops. 

 Such oscillations in which amplitude decreases continuously are called damped 
oscillations. 

 In this case, a damping force is proportional to the speed and directed opposite to the 
direction of motion. 
This force is given by; bvFd   

Where b = damping constant which depends upon the medium only 
 So resulting force in damped oscillation is; 

 

0

0

0

2
2

2










x
dt

dx

m

b

dt

xd

x
m

k
v

m

b
a

kxbvma

kxbvma

kxbvF



 

This is the differential equation of the damped oscillation 

Here noscillatio undamped offrequency Angular 
m

k  

 The solution of the differential equation represents the displacement. 

 0
2 'cos  


tAex m

bt

 

Where 
2

2

4
'

m

b

m

k Angular frequency of the damped oscillation 

Here amplitude of the damped oscillation; 

m

bt

AeA 2'


  
This shows that the amplitude decreases exponentially with time. 
The mechanical energy of damped oscillation is; 

m

bt

m

bt

EeekAkAE














2

222

2

1
'

2

1
'  

Where noscillatio undamped ofenergy  mechanicalor  0)(tat Energy )2/1( 2  kAE  

Examples:(a) The oscillations of a pendulum in air. 

(b)oscillations of a mass attached to a spring and placed on the table.   
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C. Forced Vibrations: 

 When a body is maintained in a state of vibration by a strong periodic force of frequency 
other than the natural frequency of the body, the vibrations are called forced vibrations. 

 In this oscillation; after some time of starting the particle oscillates with the frequency 
of the periodic force. 

 Let the periodic force acting be tFF dcos0  
So the net force on the particle; tFbvkxF dnet cos0  
By Newton’s 2nd  law ; maFnet   

t
m

F
x

dt

dx

m

b

dt

xd

t
m

F
x

m

k

dt

dx

m

b

dt

xd

tFkx
dt

dx
b

dt

xd
m

tFkxbvma

tFkxbvma

d

d

d

d

d










cos

cos

cos

cos

cos

02
2

2

0
2

2

02

2

0

0










 

This is the differential equation of forced vibration. 
Let the solution be; 

 0cos   tAx d  

 

 0
2

2

2

0

cos

sin









tA
dt

xd

tA
dt

dx

dd

dd

 

Substituting these in the differential equation we get; 

       00
0

0
2

00
2 coscossincos   t

m

F
tAt

m

b
AtA dddddd  

         00
0

00
0

00
22 sinsincoscossincos   t

m

F
t

m

F
t

m

b
AtA dddddd
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Comparing the coefficients we have; 

 

0
0

0
022

sin

cos





m

F

m

b
A

m

F
A

d

d




 

Squaring and adding both  

 

  222222
0

2

22
2220

bmAF

m

b
A

m

F

dd

d
d









 

  222222

0

bm

F
A

dd  
 .......... (i)  [ Expression for amplitude ] 

Again dividing both 

 

 





















22

1
0

22220

tan

/
tan

d

d

d

d

d

d

m

b

m

bmb














 ............(ii).  

  [ Phase difference between displacement and force ] 

Examples: 

 (a) When the stem of a vibrating tuning fork is pressed against the top of a table, the table 
starts vibrating with the frequency of the tuning fork which is different from the natural 
frequency of vibration of the table. 

 (b) The soundboards of all stringed musical instruments like sitar, violin, etc. execute forced 
oscillations and the frequency of oscillations is equal to the natural frequency of vibrating 
string. 

D. Resonant Vibrations: 

 When a body is maintained in a state of vibration by periodic force having the same 
natural frequency as that of the body, the 
vibrations are called resonant vibrations. 

 In this stage;  d  

i.e. frequency of applied periodic force = 
natural frequency of vibration  

 As in forced vibration; 

  222222

0

bm

F
A

dd  

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At resonance amplitude is maximum and is given by; 

b

F

b

F
A

dd


0

22

0
max   

 The resonant amplitude depends upon damping constant b as; 
b

A
1

max  . 

Greater damping less is the resonant amplitude and vice-versa. 
 When the applied frequency is far away from the natural frequency and damping is less, 

then;  

   22
0

2222

0

d
d

m

F

m

F
A

 



  

 The resonance curve is shown in the figure.   
   

Examples 

 (a) Resonance can cause disasters during earthquakes. If the natural frequency of a building 
becomes equal to the frequency of periodic oscillations present within the earth, then the 
building will start oscillating with a large amplitude thereby damaging itself. 

 (b) Soldiers while crossing a suspension bridge are always asked to break their steps. If they 
march in steps while crossing the bridge, the frequency of their steps may match the natural 
frequency of the bridge. In that case, due to resonance the bridge may start oscillating violently 
and may collapse ultimately 

E. Maintained Oscillations : 

 It the energy fed to the oscillating system continuously in such a way that the rate of 
feeding back the energy is equal to the rate of dissipation energy due to friction, then the 
system will go on oscillating with constant amplitude. such oscillations are called maintained 
oscillations.  

 


