[SYSTEM OF PARTICLES AND ROTATIONAL MOTION] BRZASSEVnA (01

Chapter- 7

System of Particles and Rotational Motion

Rigid Body :

Ideally, a rigid body is a body with a perfectly definite and unchanging shape. The distance
between all pairs of particles of such a body do not change.

Kinds of Motion of a rigid body :

e Pure Translation :

>

>

>

>

In pure translational motion, at any instant of
time, all particles of the body have the same
velocity.

E.g. : Sliding of a block

Pure translational motion of a rigid body or a

system of particles is considered as a L=

translation of a point called as the centre of mass of the system.
e Pure rotation :

In pure rotation, the body rotates about a fixed axis
called an axis of rotation.

At any instant; all particles of the body have same angular
velocity ( linear velocity may be different as v = rwand all
particles don’t have same ri.e. distance from the axis of
rotation )

E.g. : Rotation of a ceiling fan, rotation of a potter’s wheel
etc.

e Combination of translation and rotation :

» Rolling Motion: Body covers a linear distance on i
rotating around an axis. I L ‘“\“E"’
> Precession: Here one point of the body is fixed. - st
Axis of rotation passing through the point rotate 1 ,’L il
around a vertical line through the fixed point. e.g.: : ’F:‘}‘:%‘\ - J
A Spinning top. _J;;’_‘é;éff .
> Motion of planets around sun or Motion of £710 Yy
oscillating table fan
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e Vibratory Motion :
> A different particle of a system may vibrate about their mean position.
» In vibratory motion, a particle moves to and fro about a mean position along a
line.
> E.g.:Vibration of molecules in a substance.

Centre of mass :

e Mass of centre of mass (mcw) = total mass of the system =mj1 + mz + ms +....... + mn
e Translational motion of the system is equivalent to the translation of the centre of mass.

i.e. Linear momentum of CM. ( Py, ) = D+ Pyt Pyt t Py

o N My F 4 M, F + M F + A my Ty
e Position of C.M. is; 7, = —1—22 33 NN _ &l

N
m,+m, +m,;+...+my Zm
1

, M, X, + MyXy + Xy + e+ X
So co-ordinates of C.M.; x,, = ———>2 2323 A
M+ 1y, +my ...+ my,
2

_ m,y, +m2y2 +m3y3 AF caooo +mNyN -

=1

N
m,+m, +my;+...+my zm
1

Yeu

Mz, +MyzZy + MyzZy +o+Myzy

Zem
m, +m, +my+...+m, ﬁ:m

N
e If C.M. of a system is taken as origin, then mel =0
i=1

Centre of a mass of two-particle system :

Let two particles of masses mi and m; lie at a separation d.

Assume they lie on x-axis and m is at the origin

(0,0) . (d,0)
So position of m; = (d,0) tl _g
y 2

So the centre of mass must lie on the x-axis with co-ordinates ;
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_mx +myx,  m.0+myd  m,d

Xem
m1+m2 m1+m2 m1+m2

. . m,d . m,d
So C.M. is at a distance ——2—— from m; and hence at a distance ———— from m,
m, +m, m, +m,
So the ratio of distances of C.M. from m; and m; = m2: m;

If both the particles have equal masses then the position of C.M. is ( d/2) i.e. midpoint of the line joining
the two masses.

C.M. of a continuous or rigid body :

e For arigid body, such as a metre stick or a flywheel, is a system of closely packed
particles; the number of particles (atoms or molecules) in such a body is so large that it
is impossible to carry out the summations over individual particles to find C.M.

e Since the spacing of the particles is small, we can treat the body as a continuous
distribution of mass.

e For such cases divide the whole body into a large number of small elementary parts
each of mass dm and one such element is chosen at (x,y, z).

o Now coordinates of the centre of mass is given by ;

di
Xey = '[Lm
d
Yeu :J.mi
d
Zey = ijm
Or Teyy = J-;jm

Where M = mass of the rigid body.
Centre of a mass of a uniform thin rod :
Let M = mass of the rod
L = length of the rod.
As mass is distributed throughout the length of the rod uniformly so mass per unit length of the rod is

M
same throughout and equal to T

Now let’s divide the whole rod into elementary lengths.
Let one such element of length dx at a position x w.r.t. one end of the rod.
So the mass of the element is

dm zﬂdx
L
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As we are considering the rod along the x-axis, so the C.M. will lie on X-axis also. Hence we need to find
the x-co-ordinate of C.M. only.

1% 1 ¢ M 1 M §
Xey z—jxdmz—jx—dxz—— xdx
M My L M Ly drn
1L 1 x2 L | e = = = —/=—3 X-I¥I5
= Xy =— | Xdx=—| — 0 x
on L{ 5
0
L, 1L L
MorL2 2
So C.M. of the uniform rod lies at the mid-point of the rod.
Note :

The centre of mass of homogeneous bodies of regular shapes like rings, discs, spheres, rods etc.
(By a homogeneous body we mean a body with uniformly distributed mass.), by using
symmetry consideration, can easily be shown to lie at their geometric centres.

Question :

Find the centre of mass of three particles at the vertices of an equilateral triangle. The
masses of the particles are 100g, 150g, and 200g respectively. Each side of the equilateral
triangle is 0.5m long.

Ans:

Let co-ordinates of the particles 100 g, 150 g and 200 g be respectively as (0,0) , ( 0.5,0) and

(0.25,0.25+/3 ) respectively .

mx, +m,x, +nm;x,

X
M
m, +m2 +m3

~100(0) +150(0.5) +200(0.25)
- 100 + 150+ 200 200 g P0.25.0.25.3)
75+50 5

" 450 18

_my +m,y, +m;y,
m, +m, +m, E

_100(0) +150(0) + 200(0.25+/3) 00y \ 120 7

- 100+150+ 200 . s T L

_S03_ A3

450 9

Yeu

-

i

Question :

Find the centre of mass of a triangular lamina.

Ans:

The lamina (DLMN) may be subdivided into narrow strips each parallel to the base (MN).
By symmetry, each strip has its centre of mass at its midpoint.

If we join the midpoint of all the strips we get the median LP.

The centre of mass of the triangle as a whole, therefore, has to lie on the median LP.
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Similarly, we can argue that it lies on the median MQ and NR.
This means the centre of mass lies on the point of concurrence of the medians, i.e. on the
centroid G of the triangle.

Question :
Find the centre of mass of a uniform L-shaped lamina (a thin flat plate) with dimensions as
shown. The mass of the lamina is 3 kg.

Ans:
Let thickness of the lamina be “t” i.e. uniform and its density be p.
Now let’s consider the lamina as a combination of two Uy
rectangular plates with centres of mass C;and C.. - 2n T
Now due to symmetry ; ' \ Akl
Cl('xlﬂyl):(%’o;—zjz(%’l) : 4 D{1.1) B2, 1)
YoaPun g
Cz(x2,y2)=(ﬁ,ﬂ]=(i,ll £ X . +C, |lm
2 2 22 \ .L
Now let the areas be A; and A; respectively. o10.0 2200 e
So;
L =X, +m,x,  pAdiix;+ pdyix,  Ax, + A,x,
M mm,  pAt+pdt A+ A,
_2(1/2)+1(3/2) —ém
- 2+1 6
Yy = my, tmy, _ PALy, + pAyty, _ Ay +4,,
m, +m, PA L+ pA,t A+ A4,
_2()+1(1/2) _im
241 6
Question :
From a uniform disk of radius R, a circular hole of radius R/2 is cut out.
The centre of the hole is at R/2 from the centre of the original disc. Locate
the centre of gravity of the resulting flat body. A

Ans:
Let the centre of mass of the whole disc be origin O. w

So the co-ordinate of the centre of mass of the cut portion = P(R/2,0)
Thickness is uniform equal to t.
Let the density of the material be p.
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Now the co-ordinates of the C.M. of the remaining portion be ;
mx, —m,x, pAitx, —pAtx, Ax, —A4,x,
Xem = = =

m, —m, PAt — pA,t A, -4,
_ aR*(0)—(7R*/4)(R/2) -R
R -(R*14) 6
Yoy = my —m,y, _ PAty, — pAyty, _ Ay, =4,
m, —m, PAt — pA,t A, -4,

_ aR*(0)— (#R* / 4)(0) o
R -(R? 4

So C.M. becomes ( -R/6, 0) i.e. shifts by R/6 towards the material side of the disc.

motion of the centre of mass :

e Velocity and acceleration of C.M.: As

mp +myr, +myry + .t myry 4

—

Teum

=1

N
my+m, +my; +...+my Zm
1

e Taking derivatives w.r.t. t in both the sides we have a velocity of C.M. as;

MV, +M,V, + MV, + .+ myvy S
Vem =

N
m +m,+m;+...+my Z
mi

_ A, A mydy Ay Ay ay S

—

Aey

=1

N
m+m, +m; +...+my zm
1

e Netforce on C.M. :

As the momentum of C.M. is ;
Doy = Di¥ Do¥ Dytecenen. +Dy

Taking derivatives w.r.t. t and using Newton’s 2" law we have
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Thus, the total mass of a system of particles times the acceleration of its centre of mass
is the vector sum of all the forces acting on the system of particles.

Here the force Fi1on the first particle means the vector sum of all the forces on the first
particle; likewise for the second particle etc.

Among these forces on each particle, there will be external forces exerted by bodies
outside the system and also internal forces exerted by the particles on one another.

We know from Newton’s third law that these internal forces occur in equal and opposite
pairs and the sum of forces, their contribution is zero.

So only the external forces contribute to the acceleration of the C.M.

Hence
mCMaCM = zFext
= F:CM = Zﬁext
= P S,

dt
This is Newton’s 2" law for a system of particles.
Conclusion: The centre of mass of a system of particles moves as if all the mass of the
system was concentrated at the centre of mass and all the external forces were
applied at that point.

° |f z[_ﬁext:6

Then the momentum of the C.M. will be conserved.

e If during motion of a system any interaction occurs among particles, still C.M. will
move as of its original path.
e.g.:

Parabolic path
of the projectile Explosian
~—.ih

M. Path of the CM
Nof fragments

L%
.

X

[ The centre of mass of the fragments

af the prajectile continues alomng e
same parabolic path which (t world
have followed [ there were no

exploston. ]

ODM Educational Group Page 7




[SYSTEM OF PARTICLES AND ROTATIONAL MOTION]

(hi

() Trojectories of tua stors, 5, (dattend
Itne) and Fib {snltd line) rhl'mi.'".-g i
binary system with their centre of
mass O i uniform moticn.

(B} The same binoary sysiem. with the
renire of nmass U ar resr,

3.
H
5 He
CM
| - - --> Ra
. Hn
e \};\
a1 fi=]]

(! A heavy nucteus raditim (Ra) splits ine
o lighier rcte s racon (R and conalpha
particle (nuclews of hellum atom). The CM
of the systam Is in unfform morfon.

Bl The same spliting of the heavy nucleus
raclivm [Ra) with the centre of mass at
rest. The hiea product particles fliy back
I beack.

Relation between Angular velocity and linear velocity in pure rotation :

If a rigid body or system of a particle is rotating about an axis then all particle have the same
angular velocity w directed long axis of rotation.

The linear velocity of a particle at a perpendicular distance r from the axis of rotation is v
directed along a tangent.

So vectorially,

V=wxF
In magnitude ;
V=wr
Angular acceleration: At any instant ;
do
o=—
dt
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Linear acceleration :

. dv d,. .\ do . _ dr _ _ _ _ .
d=—=—(OXF)=——XF+DX—=AXTF+HXV =d, +d,
dt dt dt dt
= d, = a x ¥ =tangential component of acceleration
and a, = @x v =Radial component of acceleration or centripetal acceleration

In magnitude ; ar=ar

ar= wv =v2/r = wr
a=+a; +a’

Moment of a force ( Torque ) :
e The rotational analogue of force is the moment of force. It is also referred to as torque.
e [f aforce acts on a single particle at a point P whose position with respect to the origin O
is given by the position vector r, the moment of the Z4
force acting on the particle with respect to the origin O
is defined as the vector product
T=FxF

¢ In magnitude ;t=rFsin@=(rsin@)F=1F

Where 1, = perpendicular distance of the line of force
from axis of rotation called a moment arm.
e Also;t=rFsin@=r(FsinB)=rF

Where F, = Perpendicular component of force tor.

e |Ifline of action of the force is in such direction that if
produced it can meet the axis of rotation then torque of
the force =0
Because in this case, 8 = 0° or 180°

e [fline of action is parallel to the axis of rotation then also torque of the force is 0.

e S.l. unitof torqueisNm.

e Dimensional formula for torque is [MleT‘2

Question :

Find the torque of a force 7i” + 3j * — 5k " about the origin. The force acts on a particle whose
position vectorisi"—j " +k "

Answer :

EZI_;XF_::;()}FZ_ZFy)+j(ZFx_sz)+l€(xFy_ny)

= 7=i(5-3)+j(7+5)+k(B+7)
=7 =2{+12]+10k
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Angular Momentum ( Moment of momentum ) of a particle :
e If a particle of mass m and linear momentum p at a position 7 relative to the origin O,

then the angular momentum [ of the particle with respect to the origin O is defined to
be
Z=Fxﬁ
e Inmagnitude; /=rpsin@=(rsinB)p=rp
Where 1, = perpendicular distance of direction of motion of the particle from the axis of
rotation .
e Also; [/ =rpsin@=r(psinB)=rp,
Where p, =Perpendicular component of force tor.
e [fline of motion of a particle is in such direction that if produced it can meet the axis of
rotation then its angular momentum =0
Because in this case, 8 = 0° or 180°
e [f aline of motion is parallel to the axis of rotation then also angular momentum of the
particle is 0.
e S.I. unit of torque is kg m?s?t .
e Dimensional formula for torque is [MILZT‘1
Question :
Show that the angular momentum about any point of a single particle moving with constant
velocity remains constant throughout the motion.
Answer :
Let the particle with velocity v be at point P at some instant t.

We want to calculate the angular momentum of the particle about arbitrary point O.
The angular momentum is

I=rxmv.
Its magnitude is / = mvr sin®, i
where 08 is the angle between r and v. T
Although the particle changes position with time, the s, N >

line of direction of v remains the same and hence OM =

rsin 0. is a constant.

Further, the direction of I is perpendicular to the plane rsing
of rand v.

This direction does not change with time.

Thus, I remains the same in magnitude and direction

and is therefore conserved. o

Relation for angular momentum and torque for particle :

[ =Fxp
dl d,. . d; . . dg.
—=—\rxp)=—IF)xp+rx—
= o FxP)=—(F)x prFx—(p)

3£=\7xf)+?xﬁ’net [ As d—r=\7 and by Newton’s 2™ law @:ﬁnef]
dt dt d
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Since p=mV =>VXp=vxXmy= 0 and F = Net torque on the particle.
dl -
Tnet
dt
Thus, the time rate of change of the angular momentum of a particle is equal to the net torque
acting onit.

This is the rotational analogue of the equation F = dp/dt, which expresses Newton’s second law
for the translational motion of a single particle.
Torque and angular momentum for a system of particle or rigid body :

e Angular momentum of a system of particles is

Jj=1 Jj=1
e Nowt aklng the time derlvatlve of both sides we have ;
d -
=YY= ;= r X
L=2 ; (7, % p;)
v Bea U W W
= —L— — @) rxp, +r, x—(p,;
0 ;_{dt(,)} P, +F, dt(p,)}

= LS, x5, +7x(F). ]

41 Sl )]

LSl ) Sl )
di i[ IR {( )extemal }]: i[’? % {(ﬁ/ )extemal }]

J=1 Jj=1

_L = Z z-external

Here We shall assume not only Newton’s third law, i.e. the forces between any two
particles of the system are equal and opposite, but also that these forces are directed
along the line joining the two particles. In this case, the contribution of the internal
forces to the total torque on the system is zero, since the torque resulting from

each action-reaction pair of forces is zero.

e Thus, the time rate of the total angular momentum of a system of particles about a
point (taken as the origin of our frame of reference) is equal to the sum of the external
torques (i.e. the torques due to external forces) acting on the system taken about the
same point.

Law of conservation of angular momentum :

e Statement: if the total external torque on a system of particles is zero, then the total

angular momentum of the system is conserved, i.e. remains constant.

=

hl
Il
i[=
=

h
Il
(el
+

=
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e Proof:
Since for a particle or a system; total torque acting is equal to time derivatives of its
angular momentum i.e.
d - -
EL = Textemal
So if z;cxtcmal =0
d - -
=—L=0
dt

= [ = conserved
Equilibrium of a rigid body :
1. Translational equilibrium: If the resultant of all external forces acting on the systemis 0
then it is in translational equilibrium.

i.e. ZF =0
Y F,=0
Y F, =0
DN, Sl
2. Rotational equilibrium: If the resultant of all external torques acting on the system is 0
then it is in rotational equilibrium.

ie. Zf =0

Z 7, =0

ZTY =0

ZTZ 0
Question :
A metal bar 70 cm long and 4.00 kg in mass supported on two knife-edges placed 10 cm from
each end. A 6.00 kg load is suspended at 30 cm from one end. Find the reactions at the knife-
edges. (Assume the bar to be of uniform cross-section and homogeneous.)

Ans:
The weight of the rod W acts at its centre of /,-— R R "\

. & .I
gravity G. Al

| B

As the rod is uniform in cross-section and K, .!‘H-.;
homogeneous; hence G is at the centre of the
rod. fy e
AB =70 cm. N
AG=35cm

AP =30cm

PG=5cm

AKi1=BK> =10 cm and

KiG = KoG = 25 cm.

Also, W= weight of the rod = 4.00 kg and W= suspended load = 6.00 kg;

R1 and R; are the normal reactions of the support at the knife edges.

‘—-—-r.:‘]

4+— |
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For translational equilibrium of the rod,
R1+R2 —W1 -W=0
= Ri+R2=Wi1+W =60 N +40 N =100 N ...(i) ( Taking g = 10 ms™)

For considering rotational equilibrium, we take moments of the forces. A convenient point
to take moments about is G. The moments of R, and Wi are anticlockwise (+ve), whereas the
moment of Ri is clockwise (-ve).

For rotational equilibrium,

—R1 (K1G) + W1 (PG) + R2 (K2G) =0

=—R1 (25 cm) + 60N (5cm) + Rz (25cm) =0
=25 (R1—R2)= 300N

= R1—-Ry=12 ........ (ii)

Solving equations (i) and (ii) we get ;

R1=56N

R) =44 N

Question :

A 3m long ladder weighing 20 kg leans on a frictionless wall. Its feet rest on the floor 1 m
from the wall as shown in the figure. Find the reaction forces of the wall and the floor.
Answer :

The ladder AB is 3 m long, its foot A is at distance AC =1 m from the wall.

From Pythagoras theorem, BC = 2\/5 m.
The forces acting on the ladder t different points are shown in the figure. /!

F+ i |

For translational equilibrium, taking the forces in the vertical direction, 4

N-W=0 i T
= N=W=200N ....(i) ( Taking g = 10 m s2) }
Taking the forces in the horizontal direction, 3 rr'a.f »
F—F1=0 T
= F=Flun, (ii) i

For rotational equilibrium, taking the moments of the forces about A,
(2 V2 m)F: - (1/2m) W=0
= (22 m)F=(1/2m) W = (1/2m) ( 200N)

100N

Fi= = 252N
242

.. F=F,=25/2N

Now net contact force on the ladder due to the ground has magnitude F2 making angle a with
horizontal.

- F, =N + F* =\/(200) +(25v2) = 203.IN

a=tan" (N/F)=tan"(200/25v2 )= tan" (442 )
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Couple :
e A pair of equal and opposite forces with different lines

of action is known as a couple.

e A couple produces rotation without translation.
Because net force due to a couple is 0 and it produces g
torque only.

e E.g.:Forces applied to open the lid of a bottle, forces applied to open a water tap,
forces on the steering of a car while driving etc.

e Torque due to a couple :

The moment of the couple = sum of the moments of the two forces making the couple
=t=r1x(-F)+r2xF
=>Tt=r2xF-ri1xF
=1=(r—r1i) xF
Butri + AB=rz, and hence AB=r;—ri.
The moment of the couple, therefore, is
t= ABxF.
This is independent of the origin, the point about which we took the moments of the
forces.
Now in magnitude ;
T=(AB)Fsin6=(ABsin® ) F=r F
i.e. Torque due to a couple = ( Either force magnitude ) (Perpendicular distance between
their lines of action )
Principle of moments :

R

e s} i,

& r.)
The figure shows a simple lever AB in equilibrium.
O =its fulcrum

F1 =load to be lifted

F, = effort applied to lift .

OA =di =load Arm

OB =d, = effort arm
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Now by considering rotational equilibrium about the axis through O we have ;
lel - d2F2 = O

= diF1 = d2F

= (load arm )(load ) = (effort arm ) (effect)

load(F}) _ effortarm

Now mechanical advantages ( M.A.) of the lever = =
effort(F,) load arm

Centre of gravity :
e The CG of a body is defined as that point where the total
gravitational torque on the body is zero. $
ie. 7, =2 7 =2 Fxmg=0 ...

Here positions 7, of different particles are taken w.r.t. CG

i.e. CG is taken as origin.
Now as g = acceleration due to gravity which is non —
zero, hence

Zmi’_{' =0

This defines C.M. 8

So C.M. coincides with CG Mg
e If acceleration due to gravity varies from point to point on

the body then equation (i) can’t give Zmlfi =0, hence
C.M. differs from CG.
Moment of Inertia:
e Moment of inertia of a system about an axis is defined as

N

2

(= Zmiri
i-1

Where r; = the radius of it particle about an axis of rotation or perpendicular distance of
the ith particle from the axis of rotation .

e M.l is the rotational analogue mass in translational motion.

e S.l. unit of M.I. = kg m?

e Dimensional formula of M.l. = M L?

e Radius of gyration ( k) :
Radius of gyration of a system about an axis is defined as a distance k given by ;

1
k=.—
M
Where I = M.I. of the system of mass M about the axis
e Moment of inertia and radius of gyration of some homogeneous bodies about some

fixed axes are given below in a table.

ODM Educational Group Page 15




[SYSTEM OF PARTICLES AND ROTATIONAL MOTION] BRZASSEVnA (01

Shape Axis I k
Thin uniform 1. Perpendicular 1. ML%/12 1. L/243
rod blsector_ 2. ML?/3 2. L3
2. Perpendicular
through an end
Rectangular 1. Normal to the 1. M(a’+b?)/12 ) (@ +bzy
lamina of plane passing 2. Ma%/12 ' 12
length a and through the 3. Mb%/12 ) 7
breadth b centre N
2. Bisector of length 3. 7
3. Bisector of 243
breadth
Uniform thin 1. Perpendicular to 1. MR? 1. R
ring the plane passing 2. (MR?)/2 2. y
through the V2
centre
2. Any diametre
Uniform solid 1. Perpendicular to 1. (MR?)/2 1. y
disc the plane passing 2. (MR?)/4 V2
through the 2. %
centre
2. Any diametre
Annular disc Perpendicular to the M(r?+R2)/2 W
plane passing through 2
the centre
Solid sphere Any diametre (2/5)MR? R y
5
Solid Cylinder | Its axis MR2/5

Theorem of perpendicular axis :

The moment of inertia of a planar body (lamina)
about an axis perpendicular to its plane is equal to
the sum of its moments of inertia about two
perpendicular axes concurrent with

perpendicular axis and lying in the plane of the

body.
i.e.lz=lx+1y

Where Iy, ly = M.I. of the lamina w.r.t. x and y axes

respectively.
Question :

What is the moment of inertia of a uniform disc

about one of its diameters?

Planar By
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Ans:
We know that M.I. of a disc about an axis passing through its centre and perpendicular to its
planeis;
1
I =—MR? z
2

Now if two perpendicular diameters D1 and D; are
imagined then by perpendicular axis theorem ;
I1=1,+1,,

Since the disc is symmetrical to all diameters, hence
Ip =1p, =1, (say)

=1, +1,,=21,

I _(1/2)MR® MR’

2 2 4

Question :

What is the moment of inertia of a uniform thin ring about one of its diameters?
Ans:

We know that M.I. of a ring about an axis passing through its centre

and perpendicular to its plane is ;

I =MR?

Now if two perpendicular diameters D1 and D; are imagined then,

by perpendicular axis theorem ; /-7;.“
e \/0 ﬁz/
Since the ring is symmetrical to all diameters, hence

Iy =1,,=1,(say)
A=1y+1,,=21,
MR®> MR®

2 2
Theorem of parallel axis :
The moment of inertia of a body about any axis is equal to the sum of the moment of inertia
of the body about a parallel axis passing through its centre of mass and the product of its
mass and the square of the distance between the two parallel axes.

ie. 1,=1., +Ma’
Where [ ,,=M.l. of the body about an axis AB .

=1,=

1
:ID 252

1.,, = M.1. of the body about an axis passing

through the C.M. and parallel to AB .
a = distance between the two parallel axes.
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Question :
What is the moment of inertia of a rod of mass M, length I about an axis perpendicular to it
through one end?

Ans: A

We know that M.I. of a rod about an axis passing :

through |t$2centre and perpendicular to its length is ; L2 I L2

Iey = MLK2 ic ™ =

- ' I = -

a=1L/2 |
ML? MLP ML 8 !

ol gy =1ey +Ma® =——+——=

AB C.M. 12 4 3

Question: What is the moment of inertia of a ring about a tangent to the circle of the ring?

AnS H Tangent

We know that M.I. of a ring about a diametre is ;

I.,, =MR*/2

a=R B B B B EE AN e O ETRERITET g TTEES g
MR? 3MR*®

cdy=1.,, +Ma> =——+ MR’ =

Question: What is the moment of inertia of a disc about a tangent to the circle of the disc?
Ans:

Tangent
We know that M.I. of a ring about a diametre is ; A - B
I.,, =MR*/4
a=R Diametre

MR® _ 5SMR?
1
Kinematics of rotational motion about a fixed axis :
e As, in case of rotational motion about a fixed axis, angular variables like angular
displacement ( 8), angular velocity (w) and angular acceleration (a) are same for all
particles at an instant therefore kinematic equation in rotational motion is the relations

among them with time.

Ay =1, +Ma’ = + MR?
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e For uniform rotation :

w = constant

In any time t, angular displacement is ; 6 = wt
e For uniformly accelerated rotation ;

a = constant
(i) Angular velocity at any instant :
do
- =
dt
=dw=adt

= J.da) = afdt
[on 0
= w-0,=a(t-0)
> 0=0,+at
(ii) Angular displacement ina time t:
do
w=—
dt
= d0 = wdt = (0, + at)dt

= zdé? = a)oj;dtvtaj;tdt

t*0°
= 0-0=w,(t-0)+a| ———
0 (= 0) (2 2j

=0= a)ot+%at2

(iii) Angular displacement in term of angular velocity :
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g=d0_dodd _dodd do
dt dt d0 do dt do
= adbf =aodo

= aid9= Ta)da)
0 wO

2 2
W —w,

30((9—0)=T

= 0’ —w! =2a6

e Number of revolutions in a timetis; n = 2—
V4

Questions :

The angular speed of a motor wheel is increased from 1200 rpm to 3120 rpm in 16 seconds.
(i) What is its angular acceleration, assuming the acceleration to be uniform?

(ii) How many revolutions does the engine make during this time?

Ans:

1200 1200 27
rps =

60

3120 3120x 27
ps =——

@, =1200rpm = rad/s =40x rad | s

w =3120rpm = rad/s =104rx rad /s

o—-w, 104z —407z
t 16
(ii) 0=a)0t+%at2 =407zx16+%x47z><162 =11527 rad

rad /s’ =4 rad/s®

(i) a=

n—i— 11527
2 ¢
Dynamics of rotation about a fixed axis :

e In this case, only the components of torque along the axis are considered. So-net torque
is along the axis of rotation.

e In this case the component of position along the perpendicular to the axis i.e. the radius
of the circular path of the particle is taken as its position.

e In this case components of forces that lie in planes perpendicular to the axis are
considered. Components of forces which are parallel to the axis will give torques
perpendicular to the axis and need not be taken into account.

e Work done by a torque : s,
During rotation about an axis, any
elementary displacement ds is along the
tangent i.e. perpendicular to the radius (r).
ds=rdo

= 576 revolutions
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Let force F, at this instant, makes angle ¢ with ds and a withr.

So, ¢ + o =90°

So torque of the force is ;

T=rFsina

Torque is along the axis of rotation along which all angular variables are directed.
Now work done for this elementary displacement is;

dW = Fdscos ¢

= dW = F(rd6)cos(90° — )

= dW = F(rsina)dé

=dW =w6b

So work done by a torque in rotating from 61 to 8; is

0,
W= j w0
6

e Instantaneous power delivered by a torque :
As work done by a torque for an elementary displacement is ;

dW =6
Hence power delivered by the torque at any instant is
p_ aw ! A7
dt dt
do
=>P=71—
dt
= P=tw
e Kinetic energy of a system rotating about an axis :
ul | Y1
K= ngi"f E z;m,«(ﬁa’)z
i=1 i=1

N
= K= Z:%miriza)2
i=1

1 > 2 2
=>K=— m.r’” |
[

i=1

K =1

e Expression for net torque on a system rotating about an axis :
By work-energy theorem; for an elementary displacement ;

dW:dK:>d—W=d—K
do do
:@=i(11mzj=ll.2w=1m
do do\2 2
=l =I1owdo

Dividing dt in both sides we have ;
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do do
T—=Ilo—= 1w =1oa
dt d
=7=1a

e Expression for the angular momentum of a system rotating about an axis :
N N
L= Zmirivi sin90° = Zmirivi
i=1 i=1
( Since viis along the tangent and riis along the radius, so the angle between them is
90°)

N N
_ _ 2
= L= mr(ro)=Y mr'o
i=1 i=1

=>L=Iw
L is directed along the axis of rotation . So vectorially ;
L=1d
e Angular impulse :
I, = AL = A(lo) = IAo
e Conservation of angular momentum for a system rotating about an axis :
Statement :
If net torque acting on a system rotating about an axis is 0, then total angular
momentum is conserved.
Proof :

= [w =constant

=1 05l
w
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Comparison of Translational and Rotational Motion

Linear Motion Rotational Motion about a Fixed Axis

1 Displacement x Angular displacement 8

2 Veloelty n = dx/dt Angular veloclty m= d/dr

3 Acceleration a= dw/dt Angular acceleration @ = dw/dl

4 Mass M Moment of inertia I

5 Force F'=Ma Torque 7= I

6 Work dW=Fds Work W=1df}

7 HKinelic snergy K= M2 /2 Kinelin encergy K= luf/2

& Power#=Fu FPower =

9 Linear momentum p = My | Angular momentum L = [@
Question :

A cord of negligible mass is wound around the rim of a flywheel of mass 20 kg and radius 20
cm. A steady pull of 25 N is applied on the cord as shown in Fig. The flywheel is mounted on a
horizontal axle with frictionless bearings.

(a) Compute the angular acceleration of the wheel.

(b) Find the work done by the pull, when 2m of the cord is unwound.

(c) Find also the kinetic energy of the wheel at this point. Assume that the wheel starts from
rest.

(d) Compare answers to parts (b) and (c).

Ans :

MR>  20x(0.2)”

M.I. of the flywheel ; I = = 0.4kgm’®

(a) Torque on the flywheel is ; 7 = FR = 25N x (0.2m) = 5Nm
Again as; t=la

:>0{=£=i=12.5rad/s2
I 04

M=k
(b) Work is done by the pull unwinding 2m of the cord = 25 N x 2m =50 R=20cm
J

(c) Let w be the final angular velocity.
The initial angular velocity (wo) =0

The angular displacement during 2m rope being uncovered is ; TSN
2
0="="" _10rad
R 02m

As; @ —w] =2a6
= 0’ —0=2(12.5)(10)(rad / 5)*
= w* =250(rad | 5)*
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So K.E. achieved by the flywheel = %[wz = %(O.4kgm2)(250md2 /s%)=50J

(d) The answers are the same,

i.e. the kinetic energy gained by the wheel = work done by the force.

There is no loss of energy due to friction.

Question :

If earth shrinks and its radius becomes half of its initial value, keeping mass unchanged, then
what will be the duration of a day?

Ans:
As R =R/2
2 2 1(2 1
=1'==“MR') ==M(R/2)* = —[—Msz ==
5 5 4\ 5 4
By the law of conservation of angular momentum ;
Io=10
= .27 ee”
T T
i T 24h
=T/ = T=2 2= 26} "
1 4 4 e N —
Pure Rolling Motion i.e. rolling without slipping : :
Jnc ; v,
f2 "

e The point of contact of the body with the / pzéj ’ Ps
platform is momentarily at rest w.r.t. the L i 1*c e TJ"'
platform. \ ! /
i.e. Veo= 0 \ : /w

= Rw 1IPo =
e Rolling Motion is the combination of translation o ‘ of

C.M. and rotation about an axis through C.M.
Let v = velocity of translation of C.M.
Every other particle rotates about the axis through the C.M. with an angular velocity w.
So the velocity of any particle P, w.r.t. C.M. Cis;
Vpe =rae,
Where r = distance of the point P, from C
€, = unit vector along a tangent to the circle along which P is rotating about C.
As Vo =V, =V
Vp, =Vpe tVe =Twe, +V
e As for the lowermost point i.e. point of contact Py ;
r = R = radius of the body
¢, is opposite to Vv i.e. velocity of C.M.
As; \7,,0 =0

=>Ro-v=0
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v
DW= e (i)
R
Differentiating both sides with time we have
a "
O ="— wueereen. (ii)
R

Equations (i) and (ii) represent the conditions for pure rolling.
e For topmost point (P1) or point exactly opposite to the point of contact; ¢, isin the

direction of vi.e. velocity of C.M.
Hence v, = Ro+v

e For horizontal point (P3) or point in a position parallel to contact platform; ¢, isin the
direction perpendicular to vi.e. velocity of C.M.

Hence v, = \/iRza)z +? )

e Kinetic energy in pure rolling motion :
K, = K.E. of the body due to its rotation about an axis through C.M.

2
=K, = %1(02 = %(Mkz)(%j [ k = radius of gyration ]

2
=>K; = lez k—2
2 R
K, =K.E. of the body due to its translation along with C.M.
=K, = lez
2
So total K.E. of the body in pure rolling motion is ;
K=K, +K,
2
S k=2l X | L
2 R 2
2
=K-= lez k—2+1
2 R

Impure Rolling Motion i.e. rolling wit slipping :
In this case, the point of contact of the body with the platform is not at rest w.r.t. the platform.
i.e. Vp # 0

Question :

Three bodies, a ring, a solid cylinder and a solid sphere roll down the same inclined plane
without slipping. They start from rest. The radii of the bodies are identical. (i) Which of the
bodies reaches the ground with maximum velocity? (ii) Which one reaches earliest?
Answer :

As this is the case of pure rolling i.e. rolling without slipping, hence no work is done against
friction or no energy is lost due to friction.

Hence; Mechanical energy at the starting point A = Mechanical energy at the ground.
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1 k?
Mgh=—Mv?|1+—
2gh

k2
(1+sz

For a ring ; k? =R?
For a solid cylinder ; k? =R?/2
For a solid sphere; k? =2R?/5

2gh
vRing = i _@

1+1

) _\/ 2gh _\/4gh
Cylinder 1 + 1/ 2 3

) _\/ 2gh _\/IOgh
Sphere = \[142/5 7

Thls ShOWS VSphere > valinder > VRing

=v=

i.e. Sphere will reach with maximum velocity.

So the sphere will reach the earliest, then the cylinder and finally ring.

Question :

A body rolls down an inclined plane without slipping from rest. Find the expression for the

acceleration of the body and expression for static friction.

Answer :

Force equation along the axis parallel to the incline;
Mg sinB - Fs = Ma ....... (i)

Force equation along the axis perpendicular to

the incline

N-MgcosB6=0
= N =MgcosB ......... (ii)
Torque equation ;

FsR =la ......... (iii)

For purerolling;a=aR = a= % ...... (iv)

Using equation (iv) in (iii);

:FTRzl—a
‘ R

Ia  Mk’a k? . _
s = e = B =Ma| — | ....... (v) [ k = Radius of gyration ]

Using equation ( v) in equation (i) we get
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k2
MgsinH—Ma( J=Ma

R
2

= Ma(l +%} = Mgsin@

> a="—< ... (vi) [Expression for acceleration]

Using equation (vi) in equation (v) we get ;

e _M(ﬁj gsin@

s R2 k2
Ay
Mgsin 6
= F, Ifzsm weeneeen(Vil) [ Expression for static friction in Pure rolling ]
—+1
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