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Chapter- 15 

WAVES 
Transverse and longitudinal waves 

We have seen that motion of mechanical waves involves oscillations of constituents of the 

medium. If the constituents of the medium oscillate perpendicular to the direction of wave 

propagation, we call the wave a transverse wave. If they oscillate along the direction of wave 

propagation, we call the wave a longitudinal wave. 

 

 

 

NCERTExample 15.1  

Given below are some examples of wave motion. State in each case if the wave motion is 

transverse, longitudinal or a combination of both: (a) Motion of a kink in a longitudinal spring 

produced by displacing one end of the spring sideways. (b) Waves produced in a cylinder 
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containing a liquid by moving its piston back and forth. (c) Waves produced by a motorboat 

sailing in water. (d) Ultrasonic waves in air produced by a vibrating quartz crystal. 

ANSWER 

(a) Transverse and longitudinal 

(b) Longitudinal 

(c) Transverse and longitudinal 

(d) Longitudinal 

THE SPEED OF A TRAVELLING WAVE 

To determine the speed of propagation of a travelling wave, we can fix our attention on any 

particular point on the wave (characterized by some value of the phase) and see how that point 

moves in time. It is convenient to look at the motion of the crest of the wave. Fig. 15.8 gives the 

shape of the wave at two instants of time which differ by a small time interval t . The entire 

wave pattern is seen to shift to the right(positive direction of x-axis) by a distance x . In 

particular, the crest shown by a dot    moves a 

distance x in time t . The speed of the wave is 

then /x t  .  
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The motion of a fixed phase point on the wave is given by  

kx t  constant 

Thus, as time t changes, the position x of the fixed phase point must change so that the phase 

remains constant. Thus, 

   kx t k x x t t         

Taking x , t vanishingly small, this gives  

dx
v

dt k


   

Relating   to T and k to  , we get 

2

2 /
v

T

 
 

    

Thus for all progressive waves, in the time required for one full oscillation by any constituent of 

the medium, the wave pattern travels a distance equal to the wavelength of the wave. 

It should be noted that the speed of a mechanical wave is determined by the inertial (linear 

mass density for strings, mass density in general) and elastic properties (Young’s modulus for 

linear media/ shear modulus, bulk modulus) of the medium. 

 

DISPLACEMENT RELATION IN A PROGRESSIVE WAVE 

If the position of the constituents of the medium is denoted by x, the displacement from the 

equilibrium position may be denoted by y. A sinusoidal travelling wave is then described by: 

   , siny x t a kx t    ---eq.(1) 

Let  



[WAVES] | SUBJECT NAME| STUDY NOTES 

 

ODM Educational Group Page 4 
 

     , sin cosy x t A kx t B kx t      

Then, 

2 2a A B  , 

1tan
B

A
     

 
 

In eq.(1), y(x,t) is displacement as a function of position x and time t, a is the amplitude of a 

wave,  is the angular frequency of the wave k is the angular wavenumber,  kx t    

 Is phase,   is the initial phase angle. 

On the other hand, a function 

   , siny x t a kx t    represents a wave travelling in the negative direction of the x-axis.  

Amplitude and Phase 

In equation 

   , siny x t a kx t    ,  

since the sine function varies between 1 and –1, the displacement y (x,t) varies between a and –

a. We can take a to be a positive constant, without any loss of generality. Then, a represents 

the maximum displacement of the constituents of the medium from their equilibrium position. 

Note that the displacement y may be positive or negative, but a is positive. It is called the 

amplitude of the wave. The quantity  kx t   appearing as the argument of the sine 

function in Eq. (15.2) is called the phase of the wave. 

Wavelength and Angular WaveNumber 
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The minimum distance between two points having the same phase is called the wavelength of 

the wave, usually denoted by  . The wavelength is the distance between two consecutive 

crests or troughs in a wave. Taking 0   in equation  

   , siny x t a kx t     

the displacement at t = 0 is given by 

y(x,0) = a sin kx  

Since the sine function repeats its value after every 2  change in angle, 

    2
sin sin 2 sin

n
kx kx n k x

k

      
 

 

That is the displacements at points x and at 2n

k

 are the same, where n=1,2,3,... The least 

distance between points with the same displacement (at any given instant of time) is 

obtained by taking n = 1.   is then given by 

2n

k

   

k is the angular wavenumber or propagation constant; its SI unit is radian per metre. 

Period, Angular Frequency and Frequency 

We may for, simplicity, take equation  

   , siny x t a kx t     

with 0  and monitor the motion of the element say at x = 0. We then get 

     0, sin siny t a t a t      

Now, the period of oscillation of the wave is the time it takes for an element to complete one 

full oscillation. That is  
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     sin sin sina t a t T a t T           

Since sine function repeats after every 2 , 2T   2
T




  

  is called the angular frequency of the wave. Its SI unit is rad/s. The frequency  is the 

number of oscillations per second. Therefore, 

1

2T




   

NCERT Example 15.2  

A wave travelling along a string is described by, y(x, t) = 0.005 sin (80.0 x – 3.0 t), 

in which the numerical constants are in SI units (0.005 m, 80.0 rad/m, and 3.0 rad/s). Calculate 

(a) the amplitude, (b) the wavelength, and (c) the period and frequency of the wave. Also, 

calculate the displacement y of the wave at a distance x = 30.0 cm and time t = 20 s? 

SOLUTION 

(a) the amplitude of the wave is 0.005 m = 5 mm. 

(b) the angular wavenumber k and angular frequency   are 

k = 80.0 1m   and  = 3.0 1s , so 

2
7.85 cm

k

    

(c) Now, we relate T to   by the relation 

2
2.09s




   

and frequency, 
1

T
   0.48 Hz 

The displacement y at x = 30.0 cm and time t = 20 s is given by 
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y = (0.005 m) sin (80.0 × 0.3 – 3.0 × 20) 

= (0.005 m) sin  36 12   

= (0.005 m) sin (1.699) 

= (0.005 m) sin  97 5mm  

Speed of a Transverse Wave on Stretched String 

The speed of a mechanical wave is determined by the restoring force set up in the medium 

when it is disturbed and the inertial properties (mass density) of the medium. The speed is 

expected to be directly related to the former and inversely to the latter. For waves on a string, 

the restoring force is provided by the tension T in the string. The inertial property will, in this 

case, be linear mass density μ, which is mass m of the string divided by its length L. The 

dimension of μ is 1ML    and that of T is like force, namely 2MLT    . We need to combine 

these dimensions to get the dimension of speed v 1LT    . Simple inspection shows that the 

the quantity /T  has the relevant dimension 
2

2 2

1

MLT
L T

ML






        
 

Thus 

T
v C


  

where C is the undetermined constant of dimensional analysis. In the exact formula, it turns 

out, C=1. The speed of transverse waves on a stretched string is given by 

T
v


  

Speed of a Longitudinal Wave(Speed of Sound) 
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In a longitudinal wave, the constituents of the medium oscillate forward and backwards in the 

direction of propagation of the wave. We have already seen that the sound waves travel in the 

form of compressions and rarefactions of small volume elements of air. The elastic property 

that determines the stress under compressional strain is the bulk modulus of the medium 

defined by 
/

P
B

V V


 


 Here, the change in pressure P produces a volumetric strain /V V . 

B has the dimension 1 2ML T    . The inertial property relevant for the propagation of the wave 

is the mass density  , with dimensions 3ML   . Simple inspection reveals that quantity B/   

has the relevant dimension: 
1 2

2 2

3

ML T
L L

ML

 




        
 

Thus, if B and   are considered to be the only relevant physical quantities, 

B
v C


  

where C is the undetermined constant from dimensional analysis. The exact derivation shows 

that C=1. Thus, the general formula for longitudinal waves in a medium is: 

B
v


 ---(1) 

The speed of longitudinal waves in a solid bar is given by 

Y
v


  

where Y is Young’s modulus of the material of the bar. 

We can estimate the speed of sound in a gas in the ideal gas approximation. For an ideal gas, 

the pressure P, volume V and temperature T are related by 
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BPV Nk T ---(2) 

where N is the number of molecules in volume V, Bk  is the Boltzmann constant and T the 

temperature of the gas (in Kelvin). Therefore, for an isothermal change, it follows from eq.(2) 

that  

0P V V P     

Hence,  

B = P 

Therefore, from eq. (1) the speed of a longitudinal wave in an ideal gas is given by,  

P
v


  

This relation was first given by Newton and is known as Newton’s formula. 

If we examine the basic assumption made by Newton that the pressure variations in a medium 

during propagation of sound are isothermal, we find that this is not correct. It was pointed out 

by Laplace that the pressure variations in the propagation of sound waves are so fast that there 

is little time for the heat flow to maintain a constant temperature. These variations, therefore, 

are adiabatic and not isothermal. For adiabatic processes, the ideal gas satisfies the relation  

PV   constant 

  0PV    

1 0V P P V V        

where  is the ratio of two specific heats, /P VC C . 

Thus, for an ideal gas, the adiabatic bulk modulus is given by, 
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ad /

P
B P

V V


  


 

The speed of sound is, therefore 

P
v




 ---(3) 

This modification of Newton’s formula is referred to as the Laplace correction. For air   = 7/5. 

Now using eq. (3) to estimate the speed of sound in air at STP, we get a value 331.3 m/s, which 

agrees with the measured speed. 

NCERT Example 15.3 

A steel wire 0.72 m long has a mass of 5.0 ×10–3 kg. If the wire is under a tension of 60 N, what 

is the speed of transverse waves on the wire? 

SOLUTION 

3
3

3

5.0 10
6.9 10 /

0.72

60
93 /

6.9 10 /

kg
kg m

m

T N
v m s

kg m











  

  


 

NCERT Example 15.4  

Estimate the speed of sound by Newton’s formula in the air at standard temperature and 

pressure. The mass of 1 mole of air is 329.0 10 kg . 

SOLUTION 

3
329.0 10

1.29 /
22.4

kg
kg m

l



   

5 2

3

1.01 10 /
280 /

1.29 /

P N m
v m s

kg m


    
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THE PRINCIPLE OF SUPERPOSITION OF WAVES 

When the pulses overlap, the resultant displacement is the algebraic sum of the displacement 

due to each pulse. This is known as the principle of superposition of waves.  

To put the principle of superposition mathematically, let  1 ,y x t and  2 ,y x t  be the 

displacements due to two wave disturbances in the medium. If the waves arrive in a region 

simultaneously, and therefore, overlap, the net displacement y (x,t) is given by 

     1 2, , ,y x t y x t y x t   

For simplicity, consider two harmonic travelling waves on a stretched string, both with the 

same   (angular frequency) and k (wavenumber), and, therefore, the same wavelength  . 

Their wave speed will be identical. Let us further assume that their amplitudes are equal and 

they are both travelling in the positive direction of the x-axis. The waves only differ in their 

initial phase. 

   1 , siny x t a kx t  ---eq. (1) 

   2 , siny x t a kx t    ---eq. (2) 

The net displacement is then, by the principle of superposition, given by 

     , sin siny x t a kx t kx t         

         
, 2sin cos

2 2

kx t kx t kx t kx t
y x t a

              
  

 
 

  , 2sin cos
2 2

y x t a kx t
         

---eq. (3) 
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Eq. (3) is also a harmonic travelling wave in the positive direction of the x-axis, with the same 

frequency and wavelength. However, its initial phase angle is 
2

 . The significant thing is that its 

amplitude is a function of the phase difference   between the constituent two waves: 

  cos
2

A a
  ---(4) 

For  = 0, when the waves are in phase, 

   , 2 siny x t a kx t  ---(5) 

i.e., the resultant wave has amplitude 2a, the largest 

possible value for A. For    , the waves are completely, 

out of phase and the resultant wave has zero displacements 

everywhere at all times 

 , 0y x t  ---(6) 

Eq. (5) refers to the so-called constructive interference of the two waves where the amplitudes 

add up in the resultant wave. Eq. (6) is the case of destructive interference where the 

amplitudes subtract out in the resultant wave.  

 

 

REFLECTION OF WAVES 

Fig. 15.11 shows a pulse travelling along a stretched string and being reflected by the boundary. 

Assuming there is no absorption of energy by the boundary, the reflected wave has the same 

shape as the incident pulse but it suffers a phase change of   or 180  on reflection. This is 
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because the boundary is rigid and the disturbance must have zero displacements at all times at 

the boundary. By the principle of 

superposition, this is possible only if the 

reflected and incident waves differ by a 

phase of  so that the resultant 

displacement is zero. This reasoning is 

based on boundary condition on a rigid 

wall. We can arrive at the same 

conclusion dynamically also. As the pulse 

arrives at the wall, it exerts a force on 

the wall. By Newton’s Third Law, the wall exerts an equal and opposite force on the string 

generating a reflected pulse that differs by a phase of  . 

If on the other hand, the boundary point is not rigid but completely free to move (such as in the 

case of a string tied to a freely moving ring on a rod), the reflected pulse has the same phase 

and amplitude (assuming no energy dissipation) as the incident pulse. The net maximum 

displacement at the boundary is then twice the amplitude of each pulse. An example of a non- 

rigid boundary is the open end of an organ pipe. 

To summarise, a travelling wave or pulse suffers a phase change of   on reflection at a rigid 

boundary and no phase change on reflection at an open boundary. To put this mathematically, 

let the incident travelling wave be 

   2 , siny x t a kx t   

At a rigid boundary, the reflected wave is given by 
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     , sin sinry x t a kx t a kx t         

At an open boundary, the reflected wave is given by 

     , sin 0 sinry x t a kx t a kx t       

Clearly, at the rigid boundary, r ry y y   at all times. 

Standing Waves and Normal Modes 

In a string, a wave travelling in one direction will get reflected at one end, which in turn will 

travel and get reflected from the other end. This will go on until there is a steady wave pattern 

set up on the string. Such wave patterns are called standing waves or stationary waves. To see 

this mathematically, consider a wave travelling along the positive direction of the x-axis and a 

reflected wave of the same amplitude and wavelength in the negative direction of the x-axis. 

   1 , siny x t a kx t  ---eq. (1) 

   2 , siny x t a kx t  ---eq. (2) 

The resultant wave on the string is, according to the principle of superposition: 

     , sin siny x t a kx t kx t        

2 sin cosa kx t ---eq. (1) 

The amplitude of this wave is 2a sin kx. Thus, in this wave pattern, the amplitude varies from 

point-to-point, but each element of the string oscillates with the same angular frequency w or 

time period. There is no phase difference between the oscillations of different elements of the 

wave. The string as a whole vibrates in phase with differing amplitudes at different points. The 

wave pattern is neither moving to the right nor the left. Hence, they are called standing or 

stationary waves. The amplitude is fixed at a given location but, as remarked earlier, it is 
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different at different locations. The points at which the amplitude is zero (i.e., where there is no 

motion at all) are nodes; the points at which the amplitude is the largest are called antinodes. 

Fig. 15.12 shows a stationary wave pattern resulting from the superposition of two travelling 

waves in opposite directions. 

 

 

 

 

 

 

 

 

 

 

 

The most significant feature of stationary waves is that the boundary conditions constrain the 

possible wavelengths or frequencies of vibration of the system. The system can not oscillate 

with any arbitrary frequency (contrast this with a harmonic travelling wave) but is characterised 

by a set of natural frequencies or normal modes of oscillation. Let us determine these normal 

modes for a stretched string fixed at both ends. 

First, from Eq. (1), the positions of nodes (where the amplitude is zero) are given by sin kx = 0, 

which implies 
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, 0,1, 2,3,...kx n n   

Since 2
k




  

, 0,1, 2,3,...
2

x n n


  ---eq. (2) 

Clearly, the distance between any two successive nodes is 
2

 . In the same way, the positions of 

antinodes (where the amplitude is the largest) are given by the largest value of sin kx : 

sin 1kx  which implies 

1
, 0,1,2,3,...

2
kx n n    

 
 

with 2
k




  

1
, 0,1,2,3,...

2 2
x n n

    
 

---eq. (3) 

Again, the distance between any two consecutive antinodes is 
2

 . The above equations can be 

applied to the case of a stretched string of length L fixed at both ends. Taking one end to be at x 

= 0, the boundary conditions are that x = 0 and x = Lare positions of nodes. The x = 0 condition 

is already satisfied. The x = L node condition requires that the length L is related to   by 

, 0,1, 2,3,...
2

L n n


   

Thus, the possible wavelengths of stationary waves are constrained by the relation 

2
, 0,1, 2,3,...

L
n

n
   ---eq. (4) 

with corresponding frequencies 
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, 0,1, 2,3,...
2

v
n n

L
   ---eq. (5) 

We have thus obtained the natural frequencies - the normal modes of oscillation of the system. 

The lowest possible natural frequency of a system is called its fundamental mode or the first 

harmonic. For the stretched string fixed at either end, it is given by 
2

v

L
  , corresponding to n 

= 1 of Eq. (5). Here v  is the speed of wave determined by the properties of the medium. The n = 

2 frequency is called the second 

harmonic; n = 3 is the third harmonic 

and so on. 
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standing waves in organ pipes, fundamental mode and harmonics 

Consider normal modes of oscillation of an air column with one end closed and the other open. 

A glass tube partially filled with water illustrates this system. The end in contact with water is a 

node, while the open end is an antinode. At the node, the pressure changes are the largest, 

while the displacement is minimum (zero). At the open end - the antinode, it is just the other 

way - least pressure change and maximum amplitude of displacement. Taking the end in 

contact with water to be x = 0, the node condition (Eq. 2) is already satisfied. If the other end x 

= L is an antinode, Eq. (3) gives 

1
, 0,1,2,3,...

2 2
L n n

    
 

 

The possible wavelengths are then restricted by the relation : 

2
, 0,1, 2,3,...

1
2

L
n

n
  


 

The normal modes – the natural frequencies – of the system are 

1
, 0,1, 2,3,...

2 2

v
n n

L
     

 
 

 

 

The fundamental frequency corresponds to n = 0 and is given by
4

v

L
. The higher frequencies 

are odd harmonics, i.e., odd multiples of the fundamental frequency: 3
4

v

L
,5

4

v

L
, 7

4

v

L
,…, etc. 
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The systems above, strings and air columns, can also undergo forced oscillations. If the external 

frequency is close to one of the natural frequencies, the system shows resonance. 

NCERT Example 15.5  

A pipe, 30.0 cm long, is open at both ends. Which harmonic mode of the pipe resonates a 1.1 

kHz source? Will resonance with the same source be observed if one end of the pipe is closed? 

Take the speed of sound in air as 330 m/s. 

SOLUTION 

For L = 30.0 cm, v = 330 m/s, 

1550
2n

v
n n s

L
    

Clearly, a source of frequency 1.1 kHz will resonate at 2 , i.e., the second harmonic. Now if one 

end of the pipe is closed, then 

1275 , 1,3,5,7,...
4n
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n n s n

L
     

So, no resonance will be observed with the source, the moment one end is closed. 
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BEATS 

‘Beats’ is an interesting phenomenon arising from the interference of waves. When two 

harmonic sound waves of close (but not equal) frequencies are heard at the same time, we 

hear a sound of similar frequency (the average of two close frequencies), but we hear 

something else also. We hear audibly distinct waxing and waning of the intensity of the sound, 

with a frequency equal to the difference in the two close frequencies. Artists use this 

phenomenon often while tuning their instruments with each other. They go on tuning until 

their sensitive ears do not detect any beats. 

To see this mathematically, let us consider two harmonic sound waves of nearly equal angular 

frequency 1  and 2  fix the location to be x = 0 for convenience and, assuming equal 

amplitudes and 1  slightly greater than 2  

 1 1, coss x t a t  

 2 2, coss x t a t  

The resultant displacement is, by the principle of superposition, is 

 1 2 1 2 1 2cos cos cos coss s s a t a t a t t          

   1 2 1 22 cos cos
2 2

a t t
    

  2 cos cosb aa t t   

where, 
 1 2

2a

 



 , 

 1 2

2b

 



  

The resultant wave is oscillating with the average angular frequency a ; however, its amplitude 

is not constant in time, unlike a pure harmonic wave. The amplitude is the largest when the 

term cos bt  takes its limit +1 or –1. In other words, the intensity of the resultant wave waxes 
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and wanes with a frequency which is 1 22 b    . The beat frequency is given by beat 1 2   

. 

Example 15.6 Two sitar strings A and B playing the note ‘Dha’ are slightly out of tune and 

produce beats of frequency 5 Hz. The tension of the string B is slightly increased and the beat 

frequency is found to decrease to 3 Hz. What is the original frequency of B if the frequency of A 

is 427 Hz? 

SOLUTION 

5A B Hz   427A Hz  422B Hz   

DOPPLER EFFECT 

It is an everyday experience that the pitch (or frequency) of the whistle of a fast-moving train 

decreases as it recedes away. When we approach a stationary source of sound with high speed, 

the pitch of the sound heard appears to be higher than that of the source. As the observer 

recedes away from the source, the observed pitch (or frequency) becomes lower than that of 

the source. This motion-related frequency change is called the Doppler effect. We shall analyse 

changes in frequency under three different situations: (1) observer is stationary but the source 

is moving, (2) observer is moving but the source is stationary, and (3) both the observer and the 

source are moving. 

Source Moving; Observer stationery 

Let us choose the convention to take the direction from the observer to the source as the 

positive direction of velocity. Consider a source S moving with velocity sv  and an observer who 

is stationary in a frame in which the medium is also at rest. Let the speed of a wave of angular 

frequency   and period 0T , both measured by an observer at rest with respect to the medium, 
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be v. We assume that the observer has a detector that counts every time a wave crest reaches 

it. As shown in Fig. 15.17, at time t = 0 the source is at the point 1S , located at a distance L from 

the observer, and emits a crest. This reaches the observer at the time 1 /t L v . At time t = 0T  

the source has moved a distance 0sv T  and is at the point 2S , located at a distance (L + 0sv T ) 

from the observer. At 2S , the 

source emits a second crest. This reaches the observer at  

0
2 0

sl v T
t T

v


   

At the time 0nT , the source emits its (n+1)th crest and this reaches the observer at the time 

0
1 0

s
n

L nv T
t nT

v


   

Hence, in a time interval 

0
0

sL nv T L
nT

v v


   

the observer’s detector counts n crests and the 

observer records the period of the wave as T 

given by 

 

0
0

0 1

s

s
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nT vv vT T

n v


      

 
 


1

0 1 sv

v
 


   
 
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If sv is small compared with the wave speed v, taking binomial expansion to terms in first order 

in sv

v
and neglecting higher power, 

0 1 sv

v
     

 
 

For a source approaching the observer, we replace sv by – sv to get  

0 1 sv

v
     

 
 

The observer thus measures a lower frequency when the source recedes from him than he does 

when it is at rest. He measures a higher frequency when the source approaches him. 

Observer Moving; SourceStationary 

Now to derive the Doppler shift when the observer is moving with velocity ov towards the 

source and the source is at rest. We work in the reference frame of the moving observer. In this 

reference frame, the source and medium are approaching at speed ov and the speed with which 

the wave approaches is ov v . Following a similar procedure as in the previous case, we find 

that the time interval between the arrival of 

the first and the (n+1) th crests is  

0
1 1 0

o
n

o

nv T
t t nT

v v   


 

The observer thus measures the period of the 

wave to be 

1

0 01 1o o

o

v v
T T

v v v

           
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0 1 ov

v
      

 
 

If ov

v
is small, the Doppler shift is almost the same whether it is the observer or the source 

moving. 

Both Source and Observer Moving 

We will now derive a general expression for Doppler shift when both the source and the 

observer are moving. Let us take the direction from the observer to the source as the positive 

direction. Let the source and the observer be moving with velocities sv and ov respectively as 

shown in Fig.15.18. Suppose at time t = 0, the observer is at 1O  and the source is at 1S , 1O  

being to the left of 1S . The source emits a wave of velocity v , of frequency  and period 0T  all 

measured by an observer at rest with respect to the medium. Let L be the distance between 1O  

and 1S  at t = 0 when the source emits the first crest. Now, since the observer is moving, the 

velocity of the wave relative to the observer is ov v . Therefore, the first crest reaches the 

observer at the time 1
o

L
t

v v



. At time t = 0T , both the observer and the source have moved to 

their new positions 2O  and 2S  respectively. The new distance between the observer and the 

source, 2 2O S , would be   0s oL v v T  . At 2S , the source emits a second crest. This reaches the 

observer at the time. 

  0
2 0

s o

o

L v v T
t T

v v

 
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
 

At time n 0T the source emits its (n+1) th crest and this reaches the observer at the time 
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  0
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Hence, in a time interval 1 1nt t  , i.e., 

  0
0

s o

o o

L n v v T L
nT

v v v v

 
 

 
 

the observer counts n crests and the observer records the period of the wave as equal to T 

given by 

0
s

o

v v
T T

v v





 

The frequency v observed by the observer is given by 

0
o

s

v v

v v
  



 

NCERT Example 15.7  

A rocket is moving at a speed of 200 m/ s towards a stationary target. While moving, it emits a 

wave of frequency 1000 Hz. Some of the sound reaching the target gets reflected back to the 

rocket as an echo. Calculate (1) the frequency of the sound as detected by the target and (2) 

the frequency of the echo as detected by the rocket. 

SOLUTION 

(i) 
1

0 1 2540sv Hz
v

 


    
 

 

(ii) 4080ov v
Hz

v
      

 
 

 


