
 [STACK] | COMPUTER SCIENCE STUDY NOTE

ODM Educational Group Page 1

Chapter: 9

STACK

Introduction:

The term data structure refers to a data collection with well-defined operations and behaviour or

properties. A stack is a linear structure implemented in LIFO (Last In First Out) manner where

insertions and deletions are restricted to occur only at one end-stack’s top. LIFO means element

last inserted would be the first one to be deleted. The stack is also a dynamic data structure as it

can grow (with increase in number of elements) or shrink (with decrease in number of

elements).

A stack is a linear structure implemented in LIFO (Last In First Out) manner where insertions and

deletions are restricted to occur only at one end – Stack’s top. LIFO means element last inserted

would be the first one to be deleted. Thus, we can say that a stack is a list of data that follows

these rules :

 Data can only be removed from the top (prop), i.e., the element at the top of the stack.

The removal of element from a stack is technically called POP operation.

 A new data element can only be added to the top of the stack (push) . The insertion of

element in stack is technically called PUSH operation.

 [STACK] | COMPUTER SCIENCE STUDY NOTE

ODM Educational Group Page 2

The stack is a dynamic data structure as it can grow (with increase in number of elements) or

shrink (with decreases in number of elements). A static data structure, on the other hand, is the

one that has fixed size.

Other Stack Terms:

There are some other terms related to stacks, such as Peek, Overflow and Underflow.

Peek : Refers to inspecting the value at the stack’s top without removing it. It is also

sometimes referred as inspection.

Overflow : Refer to situation (ERROR) when one tries to push an item in stack that is full. This

situation occurs when the size of the stack is fixed and cannot grow further or there is

no memory left to accommodate new item.

Underflow : Refers to situation (ERROR) when one tries to pop/delete an item from an empty
stack. That is, stack is currently having no item and still one tries to pop an item.

Consider some examples illustrating stack:

Example:

Given a Bounded Stack of capacity 4 which is initially empty, draw pictures of the stack after each
of the following steps. Initially the Stack is empty.

(i) Stack is empty

(ii) Push ‘a’

(iii) Push ‘b’

(iv) Push ‘e’

(v) Pop

(vi) Push ‘d’

(vii) Pop

(viii) Push ‘e’

(ix) Push ‘r’

(x) Push

(xi) Pop

 [STACK] | COMPUTER SCIENCE STUDY NOTE

ODM Educational Group Page 3

(xii) Pop

(xiii) Pop

(xiv) Pop

(xv) Pop

Solution

(i) Stack is empty (top = None)

(ii) Push ‘a’ top = 0

(iii) Push ‘b’ top = 1

(iv) Push ‘c’ top =2

(v) Pop top = 1

(vi) Push ‘d’ top = 2

 [STACK] | COMPUTER SCIENCE STUDY NOTE

ODM Educational Group Page 4

(vii) Pop top = 1

(viii) Push ‘e’ top = 2

(ix) Push ‘f’ top = 3

(x) Push ‘g’ top = 3

(xi) Pop top = 2

(xii) Pop top = 1.

(xiii) Pop top = 0

 [STACK] | COMPUTER SCIENCE STUDY NOTE

ODM Educational Group Page 5

(xiv) Pop top = None

(xv) Pop top = None

 UNDERFLOW

Implementing Stack in Python:

In Python, you can use Lists to implement stacks. Python offers us a convenient set of method to

operate lists as stacks.

For various stack operations, we can use a list say Stack and use Python code as describe below :

Peek We can use : <Stack> [top]

 Where <Stack> is a list ; top is an integer having value equal to len (<Stack>) – 1

Push We can use : <Stack>. append(<item>)

 Where <item> is the item being pushed in the Stack.

Pop We can use : <Stack>. Pop()

 It removes the last value from the stack and returns it.

 [STACK] | COMPUTER SCIENCE STUDY NOTE

ODM Educational Group Page 6

STACK IMPLEMENTATION:

“””Stack : Implemented as a list

top : integer having position of topmost element in stack “””

def isEmpty (stk) :

  if stk :

return True

 else :

 return False

 def Push stk,item :

  stk.append item

  top len stk 1 

 def Pop stk :

  if isEmpty stk :

 return "Underflow"

 else :

  item stk.pop

  if len stk 0:

 top None

 else :

  top len stk 1 

 return item

 [STACK] | COMPUTER SCIENCE STUDY NOTE

ODM Educational Group Page 7

 def Peek stk :

  if is Empty stk :

 return "Undedrflow"

 else :

  top len stk 1 

  return stk top

 def Display stk :

 if isEmpty stk :

 print "Stack empty"

else :

 top len stk 1 

  print stk top ," top" 

 for a in range top 1, 1, 1 :  

   print stk a

#_main_

Stack = [] # initially stack is empty

top Non e

while True:

  print "STACK OPERATIONS"

  print "1. Push"

 [STACK] | COMPUTER SCIENCE STUDY NOTE

ODM Educational Group Page 8

  print "2. Pop"

 print (“3.Peek”)

  print "4.Display stack"

  print "5,Exit"

    ch int input "Enter your choice 1 5 :" 

 if ch 1: 

   item int input "Enter item: "

  push Stack,item

elif ch 2 : 

  item Pop Stack

 if item "Underflow": 

  print "Underflow! Stack is empty!"

 else :

  print "Popped item is",item

 elif ch 3: 

  item Peek Stack

 if item "Underflow": 

  print "Underflow!Stack is empty!"

 else :

  print "Topmost itemis",item

 [STACK] | COMPUTER SCIENCE STUDY NOTE

ODM Educational Group Page 9

 elif ch 4:

  Display Stack

 elif ch 5: 

 break

 else :

  print "Invalid choice!"

Sample run of the above program is as shown below:

STACK OPERATIONS STACK OPERATIONS STACK OPERATIONS

1. Push 1. Push 1. Push

2. Pop 2. Pop 2.Pop

3. Peek 3.Peek 3.Peek

4. Display stack 4. Display stack 4. Display stack

5. Exit 5. Exit 5. Exit

Enter your choice (1 – 5) : 1 Enter your choice (1 – 5) : 1 Enter your choice (1 – 5) : 1

Enter item : 6 Enter item : 4 4 < - top

-- --- 2

STACK OPERATIONS STACK OPERATIONS 8

1. Push 1. Push 6

2. Pop 2. Pop ---------------------------------

3. Peek 3. Peek

4. Display stack 4. Display stack STACK OPERATIONS

5. Exit 5. Exit 1. Push

Ener your choice (1-5) : 1 Enter your choice (1-5) : 4 2. Pop

 [STACK] | COMPUTER SCIENCE STUDY NOTE

ODM Educational Group Page 10

Enter item : 8 4 < - top 3. Peek --
-- 2 4. Display stack

STACK OPERATIONS 8 5. Exist

1. Push 6 Enter your choice (1-5) :5

2. Pop ________________

3. Peek STACK OPERATIONS

4. Display stack 1. Push

5. Exit 2. Pop

Enter your choice (1-5) : 1 3. Peek

Enter item : 2 4. Display Stack

------------------------------------ 5. Exit

 Enter your choice (1-5) : 3

 Topmost item is 4

Types of Stacks:

An item stored in a stack is also called item-node sometimes. In the above implemented stack,

the stack contained item-nodes containing just integers. If you want to create stack that may

contain logically group information such as member details like member no, member name, age

etc. For such a stack the item-node will be a list containing the member details and then this list

will be entered as an item to the stack.

(a) (b) (c)

 [STACK] | COMPUTER SCIENCE STUDY NOTE

ODM Educational Group Page 11

 For stack of figure(a) the stack will be implemented as Stack of integers as item-node is of

integer type.

 For stack of figure(b) the stack will be implemented as stack of strings as item-node is of

string type.

 For stack of figure the stack will be implemented as Stack of lists as item-node is of list

type. Solved problem 20 implements such a stack.

Stack Applications:

There are several applications and uses of stacks. The stacks are basically applied where LIFO

(Last In First Out) scheme is required.

Reversing a Line:

A simple example of stack application is reversal of a given line. We can accomplish this task by

pushing each character on to a stack as it is read. When the line is finished. Characters are then

popped off the stack and they will come off in the reverse order as shown in figure. The given

line is edcba

Polish String:

Another application of stacks is in the conversion of arithmetic expressions in high-level

programming languages into machine readable form. As our computer system can only

understand and work on a binary language, it assumes that an arithmetic operation can take

 [STACK] | COMPUTER SCIENCE STUDY NOTE

ODM Educational Group Page 12

place in two operands only e.g. A + B, C x D, D/A etc. But in our usual from an arithmetic

expression may consist of more than one operator and two operands e.g.,    A B C D / J D    

. These complex arithmetic operations can be converted into polish strings using stacks which

then can be executed in two operands and an operator form.

Polish string, named after a polish mathematician, Jan Lukasiewicz, refers to the notation in
which the operator symbol is placed either before its operands (prefix notation) or after its
operands (postfix notation) in contrast to usual form where operator is placed in between the
operands (infix notation).

Following table shows the three types of notations:

Expressions in infix, prefix, postfix notations:

Conversion of infix Expression to Postfix (Suffix) Expression:

While evaluating an infix expression, there is an evaluation order according to which

I. Brackets or Parenthesis,

II. Exponentiation,

III. Multiplication or Division

IV. Addition or Subtraction

 [STACK] | COMPUTER SCIENCE STUDY NOTE

ODM Educational Group Page 13

Take place in the above specified order. The operators with the same priority (e.g., x and /) are

evaluated from left to right.

To convert an infix expression into a postfix expression, this evaluation order is taken into

consideration.

An infix expression may be converted into postfix from either manually or using a stack. The

manual conversion requires two passes : One for inserting braces and another for conversion.

However, the conversion through stack requires single pass only.

The steps to convert an infix expression into a postfix expression manually are given below:

(i) Determine the actual evaluation order by inserting braces.

(ii) Convert the expression in the innermost braces into postfix notation by putting the

operator after the operands.

(iii) Repeat step (ii) until entire expression is converted into postfix notation.

Example: Convert (A + B) x C/D into postfix notation.

Solution:

Step I: Determine the actual evaluation order by putting braces

  A B xC /D 

Step II: Converting expressions into innermost braces

    AB xC /D AB Cx /D AB C D/      

Example: Convert   A B *C /D E^F / G  into postfix notation.

Solution : The evaluation order of given expression will be

=(   ((A B *C) /D) E^F) / G  

Converting expressions in the braces, we get

 [STACK] | COMPUTER SCIENCE STUDY NOTE

ODM Educational Group Page 14

=(   ((AB *C) /D) EF^) / G  

   AB C* / D EF^ / G  

    AB C*D / EF^ / G AB C*D /EF^ / G     

AB C*D /EF^G/ 

Example: Give postfix form of the following expression     A* B C D * E F / G *H  

Solution: Evaluation order is

      A* B C D * E F / G *H  

Converting expressions in the braces, we get

        A* B CD * EF / G *H A B CD EF * / G          

     A* B CD EF *G/ *H A* BCD EF *G/ *H       

 ABCD EF *G/ * *H ABCD EF *G/ *H*       

Example: Give postfix form for    A B C D E *F / G     

Solution: Evaluation order is:      A | B C D E *F / G    
 

Converting expressions in braces, we get

         A BC DE *F / G A BC DE F* / G               

   A BC DE F* / G A BC DE F* G /           

ABC DE F* G/    

Example: Give postfix form of expression for the following: NOT A OR NOT B NOT C

 [STACK] | COMPUTER SCIENCE STUDY NOTE

ODM Educational Group Page 15

Solution: The order of evaluation will be

       NOTA OR NOT B AND NOT C (As priority order is NOT, AND, OR)

       AND OR B NOT AND C NOT

     A NOT OR B NOT C NOT AND

A NOT B NOT C NOT AND OR

While converting from infix to prefix form, operators are put before the operands. Reverse

conversion procedure is like that of infix to postfix conversion.

Example: Convert into postfix form showing stack status after every step in tabular form.

  X: A B C D /E^F *G *H  

 [STACK] | COMPUTER SCIENCE STUDY NOTE

ODM Educational Group Page 16

Evaluation of a postfix Expression using stack:

As postfix expression is without parenthesis and can be evaluated as two operands and an
operator at a time, this becomes easier for the compiler and the computer to handle. Evaluation
rule of a postfix expression states:

 While reading the expression from left to right, push the element in the stack if it is an
operand:

 Pop the two operands from the stack if the element is a binary operator. In case of NOT
operator. Pop one operand from the stack and then evaluate it (two operands and in
operator).

 Push back the result of the evaluation, repeat it till the end of the expression.

For a binary operator, two operands one popped from stack and for a unary operator one
operand is popped. Then, the result is calculated using operand(s) and the operator and
pushed back into the stack.

Algorithm: Evaluation of Postfix Expression:

Reading of expression takes place from left to right’’’’

1. Read the next element ‘’’first element for the first time’’’

2. If element is operand, then

Push the element in the stack

3. If element is operator, then

{

4. Pop two operands from the stack

 ‘’’ POP one operand in case of unary operator’ ‘ ‘

5. Evaluate the expression formed by the two operands and the operator

6. Push the result of the expression in the stack end

}

7. If no-more-elements, then

POP the result

Else

Go to step 1

8. END

 [STACK] | COMPUTER SCIENCE STUDY NOTE

ODM Educational Group Page 17

Example: Evaluate the profit expression 7 4 -3 * 1 5 + / *

Example : Evaluate the profit expression 2 10 + 9 6 - /

Example : Evaluate the profit expression 3 10 5 + *

 [STACK] | COMPUTER SCIENCE STUDY NOTE

ODM Educational Group Page 18

Example: Evaluate the expression 562 * 12 4/ - in tabular form showing stack status after every

step.

Example : Evaluate the expression 4 5 6 * + in tabular form showing stack status after every step.

 [STACK] | COMPUTER SCIENCE STUDY NOTE

ODM Educational Group Page 19

Example : Evaluate the expression True False NOT AND True True AND OR in tabular form showing

stack status after every step.

Example : Evaluate the expression T F NOT AND T OR F AND in tabular form showing stack status after
every step.

