

| MATHEMATICS| STUDY NOTES

Chapter- 1 Relations and Functions

Introduction:-

Relation from a set A to B:-

Let A and B be two non-empty sets. Then a set R is said to be a relation from set A to set B if R is a subset of $A \times B$. i.e., if $R \subseteq A \times B$.

Example:-

Let A = $\{1, 2, 3\}$ and B = $\{2, 3, 4\}$. Define R = $\{(a, b) : 2a = b$, $a \in A$, $b \in A\}$

Show that R is a relation from A to B. Also, find the number of possible relations from A to B.

Solution: We have,

 $A \times B = \{(1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4), (3, 1), (3, 3), (3, 4)\}\$

| MATHEMATICS| STUDY NOTES

Here, $R = \{(1, 2), (2, 4)\}.$

Since, $R \subseteq A \times B$, so R is a relation from A to B.

The number of possible relations from A to B is $2^9 = 512$.

Relation on a set A:- Let A be any non-empty set. Then a set R is said to be a relation on A if R is a subset of $A \times A$. i.e., if $R \subseteq A \times A$.

Example:-

Let A = $\{1, 2, 3\}$ and define R = $\{(a, b) : 2a = b : a, b \in A\}$. Show that R is a relation on A. What is the possible number of relations on A.

Solution: We have

 $A \times A = \{(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3)\}.$

Here, $R = \{(1, 2)\}\)$. So, R is a relation on A.

The number of relations on $A = 2^{3^2} = 512$.

Types of Relations:-

1. Empty or Void Relation:- A relation R on the set A is called empty relation if no elements of A are related to any elements of A, i.e., if $R = \emptyset$.

Example:-

Let A = $\{1, 2, 3\}$ and define R = $\{(a, b) : a - b = 12\}$. Show that R is an empty relation on set A.

Solution: We have

 $A \times A = \{(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3)\}.$

Since R = {(a, b) : a - b = 12 }, so $\emptyset \subseteq A \times A$.

Hence, R is an empty relation on set A.

2. Universal Relation:- A relation R on a set A is called universal relation if each element of A is related to every element of A. i.e. if $R = A \times A$.

Example:-

Let A = $\{1, 2\}$ and define R = $\{(a, b) : a + b > 0\}$. Show that R is a universal relation on set A.

| MATHEMATICS| STUDY NOTES

Solution: We have, $A \times A = \{(1, 1), (1, 2), (2, 1), (2, 2)\}$

Since R = {(a, b) : a + b > 0}, so R = {(1, 1), (1, 2), (2, 1), (2, 2)} = A \times A.

Hence, R is a universal relation on set A.

 Remark:- Void and universal relations are called trivial relations.

3. Identity Relation:- A relation R on set A is called identity relation if every element of A is related

to itself only. i.e., if $\ R$ = {(a, a) : a \in A}.The identity relation on set A is denoted by $^{\ R}$.

Example:-

Let A = $\{1, 2, 3\}$, and the relation R defined by R = $\{(a, b) : a - b = 0; a, b \in A\}$. Show that R is an identity relation.

Solution: We have

 $A \times A = \{(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3)\}.$

Since R = {(a, b) : a - b = 0; a, b \in A }, so R = {(1, 1), (2, 2), (3, 3)} \subseteq A \times A.

Hence, R is an identity relation on A.

4. Reflexive Relation:- A relation R on the set A is called reflexive relation if a R a for every a ∈ A . i.e., if $(a, a) \in R$ for every $a \in A$.

Example:-

Let A = $\{1, 2, 3\}$. Define the relation R₁, R₂ on A as

(i) $R_1 = \{(1,1), (2, 1), (2, 2), (3, 1), (3, 2), (3, 3)\}$ (ii) $R_2 = \{(1, 2), (1, 3), (2, 3)\}$

Check whether R_1 and R_2 are reflexive or not.

Solution: (i) Since, (a, a) \in R₁, for every a \in A, so R₁ is a relation on set A.

(*ii*) Since, $(1, 1) \notin R_2$, so R_2 is not a reflexive relation on set A.

Remarks:-

- \triangleright Identity and universal relations are reflexive, but empty relation is not reflexive.
- \triangleright All reflexive relations are not identity relations.

5. **Symmetric Relation**:- A relation R on the set a is called symmetric relation if a R b implies b R a, for every $a, b \in A$.

| MATHEMATICS| STUDY NOTES

Example:-

Let $A = \{1, 2, 3\}$ define the relation R_1 and R_2 on A as

(i) $R_1 = \{(1, 1), (2, 2), (1, 2), (2, 1)\}$ (ii) $R_2 = \{(1, 1), (2, 2), (1, 2), (2, 1), (3, 1)\}$

Check whether R_1 , R_2 , are symmetric or not.

Solution: (*i*) Here R₁ = {(1, 1), (2, 2), (1, 2), (2, 1)}

Since, $(a, b) \in R_1 \Rightarrow (b, a) \in R_1$, for every a, b \in A.

Hence, R_1 is a symmetric relation on set A.

 (ii) Since, (3, 1) ∈ R₂, but (1, 3) ∉ R₂.

Hence, R_2 is not a symmetric relation on set A .

Remarks:-

 \triangleright Identity and universal relation are symmetric

Empty relation is also symmetric, as there is no situation in which $(a, b) \in R$.

6. Transitive Relation:- A relation R on the set A is called transitive relation if a R b and b R c implies a R c, for every a, b, c \in A, i.e., if (a, b) \in R and (b, c) \in R \Rightarrow (a, c) \in R for every a, b, c \in A.

Example:-

Let $A = \{1, 2, 3\}$. Define R_1 , R_2 on A as

(i) $R_1 = \{(1, 1), (1, 2), (2, 3)\}$ (ii) $R_2 = \{(1, 2), (1, 3)\}$

Check R_1 and R_2 are transitive or not.

Solution: (i) Since, $(1, 2) \in R_1$ and $(2, 3) \in R_1$ but $(1, 3) \notin R_1$, so R_1 is not a transitive relation on set A.

(ii) Since there is no situation in which (a, b) \in R₂ and (b, c) \in R₂, so R₂ is a transitive relation on set A.

| MATHEMATICS| STUDY NOTES

Remarks:-

- \triangleright Identity and universal relations are transitive.
- $▶$ If there is no situation in which (a, b) $∈$ R and (b, c) $∈$ R, then the relation is transitive.

7. Equivalence Relation:- A relation R on a set A is called equivalence relation if R is reflexive, symmetric, and transitive.

Equivalence Class: - Let R be an equivalence relation on set A and let a ∈ A. Then we define the equivalence class of 'a' as

 $[a] = \{ b \in A : b \text{ is related to } a \} = \{ b \in A : (b, a) \in R \}$

Example:-

Let A = $\{1, 2, 3\}$. Define the relations R₁ on A as R₁ = $\{(1, 1), (1, 2), (2, 1), (2, 2)\}$

Check whether R_1 is an equivalence relation or not. If yes, then find the equivalence classes of all the elements of set A.

| MATHEMATICS| STUDY NOTES

Solution: Since $(3, 3) \notin R_1$, so R_1 is not reflexive.

Hence, R_1 is not an equivalence relation.

Example:-

Prove that the relation R on Z, defined by (a, b) \in R \Leftrightarrow a - b is divisible by n, n \in Z is an equivalence relation on Z.

Solution:

Reflexive: For $a \in Z$, we have $a - a = 0 = 0 \times n$.

So, $(a, a) \in R$. Hence, R is reflexive.

Symmetric: Let $(a, b) \in R$, where $a, b \in Z$

 \Rightarrow a - b = n \times k, where k \in Z

 \Rightarrow b - a = - n \times k = n (- k)

So, $(b, a) \in R$. Hence, R is symmetric.

| MATHEMATICS| STUDY NOTES

Transitive: Let $(a, b) \in R$ and $(b, c) \in R$, where a, b, $c \in Z$.

 \Rightarrow a - b = n \times k and b - c = n \times m, where k, m \in Z

Adding, $a - c = n (k + m)$

So, (a, c)∈ R, Hence, R is transitive.

Therefore, R is an equivalence relation.

Example:-

Write the smallest and largest equivalence relation on the set $A = \{1, 2, 3\}$.

Solution: The smallest equivalence relation on the set A is $I_A = \{(1, 1), (2, 2), (3, 3)\}.$

The largest equivalence relation on set A is

 $A \times A = \{(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3)\}\$

| MATHEMATICS| STUDY NOTES

MEMORY MAPS

| MATHEMATICS| STUDY NOTES

Functions

Introduction:

Function from set A to set B:- Let A and B be two non-empty sets, then a function f from set A to set B is a rule (or map or correspondence) which associates each element of set A to exactly one element

of set B. If f is a function from set A to set B, then we denote it by $\, \mathrm{f : A \to B}$.

Example:-

Check whether the maps in the following diagram are functions or not.

Solution: (i) Every element in A has exactly one image in B . So, f_1 is a function.

| MATHEMATICS| STUDY NOTES

- (*ii*) Every element in A has exactly one image in B. So, f_2 is a function.
- (*iii*) Element e in A does not have an image in B . So, f_3 is not a function.
- (iv) Element d in A does not have exactly one image in B. So, f_4 is not a function.

Domain, Co-domain, and Range of a function:-

Let $f : A \rightarrow B$ be function, then

- (i) set A is called the domain of function f .
- (ii) the set B is called the Co-domain of f .

(iii) the set of all images of elements of set A under f is called range or image set of A under f .

Remarks:-

- \triangleright The range of A under f is denoted by $f(A)$.
- If $f(a) = b$ then, b is called an image of a under f, and a is called pre-image of b.
- \triangleright The range is always a subset of the co-domain.

 \rightarrow If $n(A) = p, n(B) = q$, then the number of functions from A to B is $(q)^p$

Types of Functions:-

1. One-one function or Injective function:- A function $f : A \rightarrow B$ is said to be one-one if no two elements of A have the same image, i.e., if $a\neq b$ \Rightarrow $f\left(a\right) \neq f\left(b\right) \,$ for all $\,$ a, $b\in A$

or
$$
f(a) = f(b) \Rightarrow a = b
$$
 for all $a, b \in A$.

Remarks:-

- \triangleright If a function $f : A \rightarrow B$ is not one-one then it is called the many-one function.
- \triangleright if a function $f : A \to B$ is one-one then $n(A) \le n(B)$
- \triangleright If $n(A) = p, n(B) = q$, then no of one-one function from A to B

| MATHEMATICS| STUDY NOTES

$$
\begin{cases}\n0, & \text{if } p > q \\
{}^{q}P_{p} = \frac{q!}{(q-p)}, & \text{if } p \leq q\n\end{cases}
$$

Example:-

Check whether the function in the diagrams is one-one or not.

Solution: (*i*) Every element in A has a different image in B . So, f_1 is a one-one function.

(ii) Elements b and d in A have the same image 2 in B . So, f_3 is not a one-one function.

2. Onto function or Surjective function:-

A function $f : A \to B$ is said to be onto if, for each $b \in B$, there exists $a \in A$ such that $f(a) = b$, we say that a is pre-image of b. In other words, f is onto if Range of $f =$ Co-domain of f, i.e., if every element in B has a preimage in A.

Remarks:-

- **►** If a function $f : A \rightarrow B$ is not onto then it is called into function.
- \triangleright If a function $f : A \to B$ is onto then $n(A) \ge n(B)$
- Exect A be any finite set such that $n(A) = p$ then, the number of onto functions from A to A is $p!$.

Example:- Check whether functions in the following diagram are onto:

| MATHEMATICS| STUDY NOTES

Solution: (i) Since, every element in B has preimage in A , so, f_1 is onto function.

(*ii*) Since, $4 \in B$ does not have pre-image in A, so, f_2 is not onto function.

3. Bijective Function:-

A function $\hspace{.1cm} \mathrm{f:}\hspace{.1cm} \mathrm{A} \rightarrow \mathrm{B} \hspace{.1cm}$ is said to be bijective if it is both one-one and onto.

Remarks:

- \triangleright If $f : A \to B$ is a bijection, then $n(A) = n(B)$.
- Exect A and B be two non-empty finite sets such that $n(A) = p$ and $n(B) = q$. Then,

Number of bijective functions from to

| MATHEMATICS| STUDY NOTES

Example:-

Classify the following function as one– one, onto, or bijection:

 $f: N \to N$ defined by $f(x) = x^2 + 1$.

Solution: <u>One – one</u>: Let $x_1, x_2 \in N$ be any two elements.

Then,
$$
f(x_1) = f(x_2) \Rightarrow x_1^2 + 1 = x_2^2 + 1
$$

$$
\Rightarrow x_1^2 = x_2^2 \Rightarrow x_1 = x_2
$$

So, f is one – one.

Onto: Let $y \in N$ be any element.

Then, $f(x) = y \Rightarrow x^2 + 1 = y$

$$
\Rightarrow x = \sqrt{y - 1}
$$

For $y = 1 \in N$, we have $x \notin N$.

| MATHEMATICS| STUDY NOTES

So, f is not onto.

Hence, f is not a bijection.

Composition of Functions:-

The composition of two functions is a chain process in which the output of the first function becomes the input of the 2nd function. Let $f : A \rightarrow B$ and $g : B \rightarrow C$ be two functions.

For every $x \in A$, there is exactly one element $f(x) \in B$. For $f(x) \in B$, there is exactly one element $\mathrm{g}\big(\mathrm{f}\,(\mathrm{x})\big) \! \in \! \mathbf{C}$. This result is a new function from A to C as shown in the figure.

| MATHEMATICS| STUDY NOTES

Definition: Let and be any two functions. Then the composition of f and g is a function defined as .

Remarks:-

- \triangleright The composition gof exists if the range of $f \subseteq$ domain of g.
- The composition $f \circ g$ exists if the range of $g \subseteq$ domain of f.
- \triangleright It may be possible gof exists but $f \circ g$ does not exist
- \triangleright gof and fog may or may not be equal.

Example: If $f : R \to R$ and $g : R \to R$ is given by

 $f(x) = \cos x$ and $g(x) = 5x^2$. Find gof and fog show that $f \circ g \neq g \circ f$.

| MATHEMATICS| STUDY NOTES

Solution: $gof(x) = g(f(x)) = g(cos x) = 5 cos² x$

and $fog(x) = f(g(x)) = f(5x^2) = cos cos (5x^2)$

Properties of the composition of Functions:-

1. Composition of functions is not necessarily commutative. Let $f: A \longrightarrow B$ and $g: B \longrightarrow C$, then $f \circ g \neq g \circ f$.

2. Composition of functions is associative. Let $f : A \rightarrow B, g : B \rightarrow C$ and $h : C \rightarrow D$ then (hog) of = ho (gof)

3. Let $f : A \rightarrow B$ and $g : B \rightarrow C$ be two functions.

- (i) If both are one-one then gof is one-one
- (ii) If both are onto then gof is onto.

4. Let $f : A \rightarrow B$ and $g : B \rightarrow C$ be two functions such that $gof : A \rightarrow C$

| MATHEMATICS| STUDY NOTES

- (i) If gof is onto, then g is onto.
- (ii) If gof is one-one then f is one-one.
- (iii) If gof is onto and g is one-one then f is onto.
- (iv) If gof is one-one and f is onto then g is one-one.

Example:

Let $f: R \to R$ be signum function as (\mathbf{x}) 1 if $x > 0$ $f(x) = \langle 0$ if $x = 0$ 1 if $x < 0$ $\begin{cases} 1 & \text{if} \quad x > \end{cases}$ I $=\begin{cases} 0 & \text{if} \quad x = \end{cases}$ $\begin{bmatrix} -1 & \text{if} & x < 0 \\ \text{and } g: \mathsf{R} \to \mathsf{R} \end{bmatrix}$, be the greatest integer function given by $g(x)$ = $[x]$. Do fog and gof coincide in $(0,1]$?

Solution:-

Let $x \in (0,1)$ be any element

| MATHEMATICS| STUDY NOTES

$$
=f(0) \text{ as } x \in (0,1) = 0
$$

Also $(gof)(x) = g(f(x)) = g(1) = [1] = 1$ as $x \in (0,1)$

 \therefore $(fog)(x) \neq (gof)(x)$ for every $x \in (0,1)$; so fog and gof does not coincide in $(0,1]$

The inverse of a Function:-

Fog(x) = f (g(x)) = f ([x])

= f (0) as x \in (0,1) = 0

Also (gof)(x) = g(f(x)) = g(1) = [1] = 1 _{as} x \in (0,1)
 \therefore (fog)(x) \neq (gof)(x) for every x \in (0,1) ; so fog and gof does not coincide in (0,1]
 The Let f be a one-one and on-to function from A to B. Let y be an arbitrary element of B. Then f being onto, there exists an element $x \in A$ such that $f(x) = y$, Also f being one-one this x must be unique.

Thus for each $y \in B$, there exists a unique element $x \in A$ such that $f(x) = y$. So we may define a function denoted by f^{-1} as f^{-1} : $B \to A$. Such that $f^{-1}(y) = x \Leftrightarrow f(x) = y$.

The function f^{-1} is called the inverse of f.

 \triangleright A function f is invertible if and only if f is one-one and onto.

| MATHEMATICS| STUDY NOTES

- \triangleright The two definitions of the Inverse function given above are equivalent.
- > The domain of f^{-1} = Range of f and range of f^{-1} = domain of f.

$$
\triangleright \qquad \left(f^{-1}of\right)(x) = x, \forall x \in \text{the domain of } f \text{ i.e } f^{-1}of \text{ is an identity function.}
$$

$$
\qquad \qquad \blacktriangleright \qquad \left(f^{-1} \right)^{-1} = f
$$

 \triangleright If f is one-one and onto then f^{-1} is also one-one and onto.

Working Rule to find Inverse of a Function:-

Let defined by

Step – I:- Prove that f is one-one i.e take and show that

Step – II:- Prove that f is onto i.e for any , there exists

Step – III:- Find x in terms of y from let

Example -1

Consider $f: R \to R$ given by $f(x) = 4x + 3$. Show that f is invertible, find the inverse of f.

Solution: Given $f: R \to R$ defined by $f(x) = 4x + 3$.

One – one: Let $x_1, x_2 \in R$ be any two elements.

Then, $f(x_1) = f(x_2) \Rightarrow 4x_1 + 3 = 4x_2 + 3$

 \Rightarrow $x_1 = x_2$

So, f is one – one.

Onto: Let $y \in R$ be any element.

Then, $f(x) = y \Rightarrow 4x + 3 = y$

$$
\Rightarrow x = \frac{y-3}{4}
$$

For every $y \in R$, we have $x \in R$. So, f is onto.

Thus, f is a bijection and hence invertible.

So, $f^{-1}: R \to R$ exists and we have $f^{-1}(y) = \frac{y-3}{4}$ $\frac{-3}{4}$ $\left[\because f(x) = y \Leftrightarrow x = f^{-1}(y) \right]$

Hence, the inverse of f is given by $f^{-1}(x) = \frac{x-3}{4}$ $\frac{3}{4}$.

Properties of Invertible Functions:-

(1) If $f:X\to Y$ $g:Y\to Z$ are two invertible functions. Then gof is also invertible with $(gof)^{-1} = f^{-1}og^{-1}.$

(2) If $f: X \to Y$ is invertible, then its inverse is unique.

(3) If $f: X \to Y$ is invertible then $f^{-1} \circ f = I_x$ and $f \circ f^{-1}$ f^{-1} o f = I_x and fof⁻¹ = I_y

(4) Let $f:X\to Y$ and $g:Y\to X$ be two functions such that $gof=I_x$ and $f\circ g=I_y$ then f and g are bijections and $g = f^{-1}$.

ODM Educational Group **Page 27**

| MATHEMATICS| STUDY NOTES

Example:

If
$$
A = \{a, b, c, d\}
$$
 and the function $f = \{(a, b), (b, d), (c, a), (d, c)\}$. Write f^{-1} .

Solution: $f^{-1} = \{(b, a), (d, b), (a, c), (c, d)\}.$

Example:

If $f(x) = \frac{4x + 3}{6}$, $x \neq \frac{2}{3}$ $\overline{6x-4}$, $x \neq \overline{3}$ $=\frac{4x+3}{6}$, $x \neq \frac{2}{3}$ $\overline{-4}$, $x \neq -\frac{1}{3}$ show that for $(x) = x$ for all $x \neq \frac{2}{3}$. What is the inverse of f?

Solution: Given $f(x) = \frac{4x+3}{6x-4}$ $\frac{4x+3}{6x-4}$, $x \neq \frac{2}{3}$ $\frac{2}{3}$.

Now,
$$
f \circ f(x) = f(f(x)) = f\left(\frac{4x+3}{6x-4}\right) = \frac{4\left(\frac{4x+3}{6x-4}\right)+3}{6\left(\frac{4x+3}{6x-4}\right)-4} = \frac{34x}{34} = x.
$$

 $\Rightarrow (f \circ f)(x) = x$, for all $x \neq \frac{2}{3}$ $\frac{2}{3}$. Since, $(f \circ f)(x) = x = I(x)$, for all $x \neq \frac{2}{3}$ 3

| MATHEMATICS| STUDY NOTES

So,
$$
f^{-1} = f \Rightarrow f^{-1}(x) = f(x)
$$
, for all $x \neq \frac{2}{3}$
\n $\Rightarrow f^{-1}(x) = \frac{4x+3}{6x-4}$, for all $x \neq \frac{2}{3}$

Hence, the inverse of f is given by $f^{-1}(x) = \frac{4x+3}{6x-4}$ $\frac{4x+3}{6x-4}$, for all $x \neq \frac{2}{3}$ $\frac{2}{3}$.

Example:

Show that the modulus function $\text{f}:\text{R}\rightarrow \text{R}$, given by $\text{f} \, (\text{x})\!=\!\!|\,\text{x}|$ is neither one-one nor onto. **Solution:-**

For one-one $f(3) = |3| = 3$ $f(-3) = |-3| = 3$

As $f(3)=f(-3)$ but $3 \neq -3$ so f is not one-one

For onto $\text{Range } f = \mathbb{R}^+ \cup \{0\}$ $\text{Co-dom of } f = \mathbb{R}$

| MATHEMATICS| STUDY NOTES

As Range $f \neq$ co-dom f so f is not onto

Example:

Give an example of a function

(i) Which is one-one but not onto (ii) Which is not one-one but onto

(iii) Which is neither one-one nor onto.

Solution:-

(i) Let $A = \{1, 2\}$, $B = \{4, 5, 6\}$ and let $f = \{(1, 4), (2, 5)\}$. Since every element of A has different images

in B so f is one-one. Also, the element $6 \in B$ that does not have a pre-image is A. So f is not onto

(ii) Let $A = \{1, 2, 3\}$, $B = \{4, 5\}$ and $g = \{(2, 4), (1, 4), (3, 5)\}$ Since $1, 2 \in A$ have the same image 4 is B. So, g is not one-one. Also, every element of B has a pre-image is A, so g is onto

(iii) $A = \{1, 2, 3\}$, $B = \{4, 5\}$ and $h = \{(1, 4), (2, 4), (3, 4)\}$. Since elements $1, 2, 3 \in A$ have the same image 4 in B. So h is not one-one. Also, the element $5 \in B$ does not have a pre-image in A so h is not onto.

Example:

If the function $f: R \to R$ is defined by $f(x)=2x-3$ and $g: R \to R$, $g(x)=x^3+5$. Then find fog and show that fog is invertible. Also find $\left({\sf fog} \right)^{-1}$, Hence find $\left({\sf fog} \right)^{-1}(9)$.

Solution:-

Here $f: R \to R$ defined by $f \circ g(x) = f(g(x)) = f(x^3 + 5) = 2(x^3 + 5) - 3 = 2x^3 + 7$. Now to prove fog is invertible. One-one:- Let $x_1, x_2 \in$ <code>Rand(fog)(x₁)</code> = (fog)(x₂)

| MATHEMATICS| STUDY NOTES

$$
\Rightarrow 2x_1^3 + 7 = 2x_2^3 + 7
$$

$$
\Longrightarrow \mathbf{x}_1^3 = \mathbf{x}_2^3 \Longrightarrow \mathbf{x}_1 = \mathbf{x}_2
$$

So fog is one-one Onto:- let $\,$ Y \in R $\,$ be any element then $\,$ fog $\rm (x)$ = y

$$
\Rightarrow 2x^3 + 7 = y
$$

$$
\Rightarrow 2x^3 = y - 7 \Rightarrow x^3 = \frac{y - 7}{2}
$$

$$
\Rightarrow 2x_1^3 + 7 = 2x_2^3 + 7
$$

\n
$$
\Rightarrow x_1^3 = x_2^3 \Rightarrow x_1 = x_2
$$

\nSo fog is one-one Onto:- let $Y \in R$ be any element then $log(x) = y$
\n
$$
\Rightarrow 2x^3 + 7 = y
$$

\n
$$
\Rightarrow 2x^3 = y - 7 \Rightarrow x^3 = \frac{y - 7}{2}
$$

\n
$$
\Rightarrow x = \sqrt[3]{\frac{y - 7}{2}}
$$

\nFor every, $y \in R$ we have $x \in R$ so fog is onto.
\nODM Educational Group
\nPage 32

For every, $Y \in R$ we have $x \in R$ so fog is onto.

| MATHEMATICS| STUDY NOTES

Thus, fog is an invertible function so
$$
(f \circ g)^{-1}: R \to R
$$
 exists and from (1)

$$
\sqrt{g-7} \left(\frac{g-7}{2} \right) = \sqrt{9-7}
$$

$$
(\text{fog})^{-1}(y) = \sqrt[3]{\frac{y-7}{2}}; (\text{fog})^{-1}(9) = \sqrt[3]{\frac{9-7}{2}} = 1
$$

Example:

If the function $f(x) = \sqrt{2x-3}$ is veritable, then find f^{-1} . Hence prove that $(fof^{-1})(x) = x$.

Solution:-

Given $f: R \to R$ defined by $f(x) = \sqrt{2x-3}$

One-one: Let $x_1, x_2 \in R$ and $f(x_1) = f(x_2)$

$$
\Rightarrow \sqrt{2x_1 - 3} = \sqrt{2x_2 - 3}
$$

$$
\Rightarrow 2x_1 - 3 = 2x_2 - 3
$$

ODM Educational Group **Page 33**

| MATHEMATICS| STUDY NOTES

 \Rightarrow $x_1 = x_2$

So f is one-one

Onto:- Let $Y \in R$ be any element then $f(x) = y$

 $\Rightarrow \sqrt{2x-3} = y$

 \Rightarrow 2x - 3 = y²

 $x = \frac{y^2 + 3}{2}$ + = …………………………..(1)

So f is onto. Thus f is on invertible function so $f^{-1}: R \rightarrow R$ exists and from (1) we have

 $f^{-1}(y) = \frac{y^2 + 3}{2}$ $y^{2} + y^{2} = \frac{y^{2} + y^{2}}{2}$

$$
\frac{\frac{\frac{1}{\sqrt{1-\frac{1}{1\sqrt{1-\frac{1}{\sqrt{1-\frac{1}{1\sqrt{1-\frac{1}{\sqrt{1-\frac{1}{\sqrt{1-\frac{1}{1\sqrt{1-\frac{1}{\sqrt{1-\frac{1}{1\sqrt{1-\frac{1}{\sqrt{1-\frac{1}{1\sqrt{1-\frac{1}{\sqrt{1-\frac{1}{\sqrt{1\sqrt{11}}\frac{1}{\sqrt{1-\frac{1}{1\sqrt{11}}}}}}}}}}}}}}}}}}{1\cdot\frac{\frac{1}{1-\frac{1}{1-\frac{1}{1-\frac{1}{1-\frac{1}{1-\frac{1}{1-\frac{1}{1\sqrt{11}}}}}}}}{1-\frac{1}{1-\frac{1}{1-\frac{1}{1-\frac{1}{1-\frac{1}{1\sqrt{11}}}}}}{1-\frac{1}{1-\frac{1}{1-\frac{1}{1\sqrt{11}}}}}}{1-\frac{1}{1-\frac{1}{1-\frac{1}{1-\frac{1}{1\sqrt{11}}}}}}{1-\frac{1}{1-\frac{1}{1-\frac{1}{1-\frac{1}{1\sqrt{11}}}}}}{1-\frac{1-\frac{1}{1-\frac{1}{1-\frac{1}{1\sqrt{11}}}}}}{1-\frac{1}{1-\frac{1}{1-\frac{1}{1-\frac{1}{1\sqrt{11}}
$$

| MATHEMATICS| STUDY NOTES

The inverse of f is given by
$$
f^{-1}(x) = \frac{x^2 + 3}{2}
$$

$$
\mathsf{Now} \left(\mathsf{fof}^{-1}\right)\! (x) \!=\! \mathsf{f}\!\left(\mathsf{f}^{-1}\!\left(x\right)\right)
$$

$$
=f\left(\frac{x^2+3}{2}\right)=\sqrt{2\left(\frac{x^2+3}{2}\right)-3}
$$

Example:

Consider $f: N \to N$,g: $N \to N$ and $h: N \to R$ define as $f(x) = 2x$, $g(y) = 3y + 4$ and $f(x) = \sin x$ for all x,y,z \in N $\,$. Show that $\,$ ho $({\rm gof})$ $\! =$ $\,$ (hof $\,$)of

Solution:-

Given $f: N \to N$, defined by $f(x)=2x; g:N \to N$ defined by $g(y)=3y+4$ and $h: N \to R$, $h(x)=\sin x$

$$
\frac{\frac{\frac{1}{\sqrt{1-\frac{1}{\sqrt{1\cdot\frac{1}{\sqrt{1-\frac{1}{\sqrt{1\cdot\frac
$$

| MATHEMATICS| STUDY NOTES

Now
$$
ho(gof): N \rightarrow R
$$
 such that $[ho(gof)](x) = h[gof(x)]$
\n
$$
= h(g(f(x))) = h(g(2x)) = h[3(2x) + 4]
$$
\n
$$
= h(6x + 4) = sin(6x + 4)
$$
\nAlso $(hog)of: N \rightarrow R$ such that $[(hog)of](x) = (hog)(f(x))$
\n
$$
= (hog)(2x) = h(g(2x))
$$
\n
$$
= h[3(2x) + 4]
$$

 $= h(6x + 4) = sin(6x + 4)$

 $\textsf{Hence, } \big[\textsf{ho}(\textsf{gof}) \big] \! \big(\textsf{x} \big) \! = \! \big[\! \big(\textsf{hog} \big) \! \textsf{of} \, \big] \! \big(\textsf{x} \big) ; \forall \textsf{x} \! \in \! \textsf{N}$

| MATHEMATICS| STUDY NOTES

MEMORY MAPS

A function is said to be one-one (or injective), if the images of distance elements of A under the rule f are distinct in B. i.e for every or we can also say that if range of the state of th

Onto (surjective) function:

A function is said to be onto(or surjective), if every element of B is the image of some element of A under the rule f, i.e for every , there exists an element such that .

Note: A function is onto if and only

One-one and onto (bijective) function: A function is said to be one-one and onto

(or bijective) if f is both one-one and onto.

| MATHEMATICS| STUDY NOTES

Composition of function: Let and $g : B$ (range of f) be

two functions. Then the composition of functions f and g is a function

from A to C and is denoted by gof. We define gof as

. For working, on element x first we apply f

rule and whatever result is obtained in set B, we apply g rule on it to get the required result in set C.

Invertible function: A function is said to be invertible, if there exists a function such that . The function g is called the inverse of f and is denoted by .

Note:- For a function to be invertible, it must be one-one and onto, i.e. bijective.