

| MATHEMATICS | STUDY NOTES

Chapter- 1 Relations and Functions

Introduction:-

Relation from a set A to B:-

Let A and B be two non-empty sets. Then a set R is said to be a relation from set A to set B if R is a subset of $A \times B$. i.e., if $R \subseteq A \times B$.

Example:-

Let A = $\{1, 2, 3\}$ and B = $\{2, 3, 4\}$. Define R = $\{(a, b) : 2a = b, a \in A, b \in A\}$

Show that R is a relation from A to B. Also, find the number of possible relations from A to B.

Solution: We have,

 $\mathsf{A}\times\mathsf{B}=\{(1,\,2)\,,\,(1,\,3),\,(1,\,4),\,(2,\,2),\,(2,\,3),\,(2,\,4),\,(3,\,1),\,(3,\,3),\,(3,\,4)\}$

| MATHEMATICS | STUDY NOTES

Here, R = {(1, 2), (2, 4)}.

Since, $R \subseteq A \times B$, so R is a relation from A to B.

The number of possible relations from A to B is $2^9 = 512$.

Relation on a set A:- Let A be any non-empty set. Then a set R is said to be a relation on A if R is a subset of A × A . i.e., if $R \subseteq A \times A$.

Example:-

Let A = {1, 2, 3} and define R = {(a, b) : $2a = b : a, b \in A$ }. Show that R is a relation on A. What is the possible number of relations on A.

Solution: We have

 $A \times A = \{(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3)\}.$

Here, $R = \{(1, 2)\}$. So, R is a relation on A.

The number of relations on $A = 2^{3^2} = 512$.

| MATHEMATICS | STUDY NOTES

Types of Relations:-

Empty or Void Relation:- A relation R on the set A is called empty relation if no elements of A are related to any elements of A, i.e., if R = Ø.

Example:-

Let A = $\{1, 2, 3\}$ and define R = $\{(a, b) : a - b = 12\}$. Show that R is an empty relation on set A.

Solution: We have

 $A \times A = \{(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3)\}.$

Since $R = \{(a, b) : a - b = 12\}$, so $\emptyset \subseteq A \times A$.

Hence, R is an empty relation on set A.

2. <u>Universal Relation:</u> A relation R on a set A is called universal relation if each element of A is related to every element of A. i.e. if R = A × A.

Example:-

Let A = $\{1, 2\}$ and define R = $\{(a, b) : a + b > 0\}$. Show that R is a universal relation on set A.

| MATHEMATICS | STUDY NOTES

Solution: We have, $A \times A = \{(1, 1), (1, 2), (2, 1), (2, 2)\}$

Since $R = \{(a, b) : a + b > 0\}$, so $R = \{(1, 1), (1, 2), (2, 1), (2, 2)\} = A \times A$.

Hence, R is a universal relation on set A.

Remark:- Void and universal relations are called trivial relations.

3. Identity Relation:- A relation R on set A is called identity relation if every element of A is related

to itself only. i.e., if R = {(a, a) : $a \in A$ }. The identity relation on set A is denoted by I_A . **Example:**-

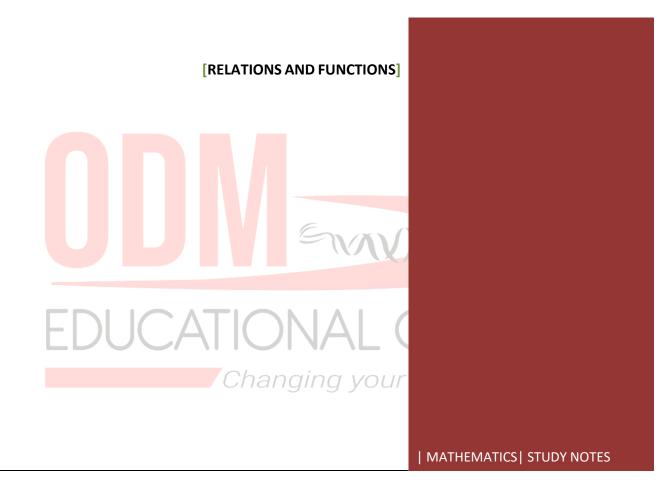
Let A = {1, 2, 3}, and the relation R defined by R = {(a, b) : a - b = 0; $a, b \in A$ }. Show that R is an identity relation.

Solution: We have

 $A \times A = \{(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3)\}.$

Since $R = \{(a, b) : a - b = 0; a, b \in A\}$, so $R = \{(1, 1), (2, 2), (3, 3)\} \subseteq A \times A$.

Hence, R is an identity relation on A.



4. <u>Reflexive Relation</u>:- A relation R on the set A is called reflexive relation if a R a for every $a \in A$. i.e., if $(a, a) \in R$ for every $a \in A$.

Example:-

Let A = $\{1, 2, 3\}$. Define the relation R_1 , R_2 on A as

(i) $R_1 = \{(1,1), (2, 1), (2, 2), (3, 1), (3, 2), (3, 3)\}$ (ii) $R_2 = \{(1, 2), (1, 3), (2, 3)\}$

Check whether R_1 and R_2 are reflexive or not.

Solution: (i) Since, $(a, a) \in R_1$, for every $a \in A$, so R_1 is a relation on set A.

(*ii*) Since, $(1, 1) \notin R_2$, so R_2 is not a reflexive relation on set A.

Remarks:-

- > Identity and universal relations are reflexive, but empty relation is not reflexive.
- > All reflexive relations are not identity relations.

5. <u>Symmetric Relation</u>:- A relation R on the set a is called symmetric relation if a R b implies b R a, for every a, $b \in A$.

| MATHEMATICS | STUDY NOTES

Example:-

Let A = $\{1, 2, 3\}$ define the relation R_1 and R_2 on A as

(i) $R_1 = \{(1, 1), (2, 2), (1, 2), (2, 1)\}$ (ii) $R_2 = \{(1, 1), (2, 2), (1, 2), (2, 1), (3, 1)\}$

Check whether R_1 , R_2 , are symmetric or not.

Solution: (*i*) Here $R_1 = \{(1, 1), (2, 2), (1, 2), (2, 1)\}$

Since, $(a, b) \in R_1 \Rightarrow (b, a) \in R_1$, for every $a, b \in A$.

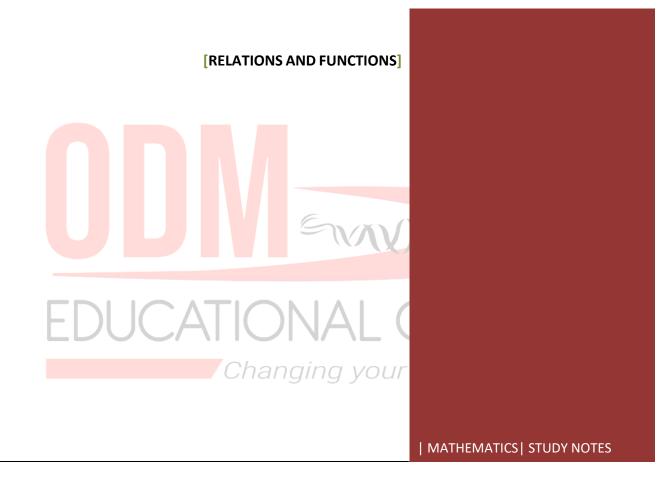
Hence, R_1 is a symmetric relation on set A.

(*ii*) Since, $(3, 1) \in R_2$, but $(1, 3) \notin R_2$.

Hence, R_2 is not a symmetric relation on set *A*.

Remarks:-

> Identity and universal relation are symmetric



Empty relation is also symmetric, as there is no situation in which $(a, b) \in \mathbb{R}$.

6. <u>Transitive Relation</u>:- A relation R on the set A is called transitive relation if a R b and b R c implies a R c, for every a, b, $c \in A$, i.e., if (a, b) \in R and (b, c) \in R \Rightarrow (a, c) \in R for every a, b, $c \in A$.

Example:-

Let A = $\{1, 2, 3\}$. Define R₁, R₂ on A as

(i) $R_1 = \{(1, 1), (1, 2), (2, 3)\}$ (ii) $R_2 = \{(1, 2), (1, 3)\}$

Check R_1 and R_2 are transitive or not.

Solution: (i) Since, $(1, 2) \in R_1$ and $(2, 3) \in R_1$ but $(1, 3) \notin R_1$, so R_1 is not a transitive relation on set A.

(*ii*) Since there is no situation in which (a, b) $\in R_2$ and (b, c) $\in R_2$, so R_2 is a transitive relation on set A.

| MATHEMATICS | STUDY NOTES

Remarks:-

- > Identity and universal relations are transitive.
- > If there is no situation in which $(a, b) \in R$ and $(b, c) \in R$, then the relation is transitive.

7. Equivalence Relation:- A relation R on a set A is called equivalence relation if R is reflexive, symmetric, and transitive.

Equivalence Class: - Let R be an equivalence relation on set A and let $a \in A$. Then we define the equivalence class of 'a' as

 $[a] = \{ b \in A : b \text{ is related to } a \} = \{ b \in A : (b, a) \in R \}$

Example:-

Let A = $\{1, 2, 3\}$. Define the relations R₁ on A as R₁ = $\{(1, 1), (1, 2), (2, 1), (2, 2)\}$

Check whether R₁ is an equivalence relation or not. If yes, then find the equivalence classes of all the elements of set A.

| MATHEMATICS | STUDY NOTES

Solution: Since $(3,3) \notin R_1$, so R_1 is not reflexive.

Hence, R_1 is not an equivalence relation.

Example:-

Prove that the relation R on Z, defined by (a, b) \in R \Leftrightarrow a - b is divisible by n, n \in Z is an equivalence relation on Z.

Solution:

Reflexive: For $a \in Z$, we have $a - a = 0 = 0 \times n$.

So, $(a, a) \in R$. Hence, R is reflexive.

Symmetric: Let $(a, b) \in R$, where $a, b \in Z$

 \Rightarrow a - b = n × k, where k \in Z

 \Rightarrow b - a = - n × k = n (- k)

So, (b, a) \in R. Hence, R is symmetric.

| MATHEMATICS | STUDY NOTES

Transitive: Let $(a, b) \in R$ and $(b, c) \in R$, where $a, b, c \in Z$.

 \Rightarrow a - b = n × k and b - c = n × m, where k, m \in Z

Adding, a - c = n (k + m)

So, $(a, c) \in R$, Hence, R is transitive.

Therefore, R is an equivalence relation.

Example:-

Write the smallest and largest equivalence relation on the set A = {1, 2, 3}.

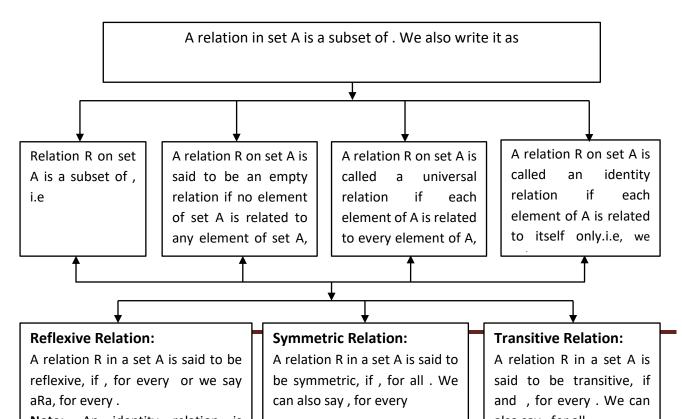
Solution: The smallest equivalence relation on the set A is $I_A = \{(1, 1), (2, 2), (3, 3)\}$.

The largest equivalence relation on set A is

 $A \times A = \{(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3)\}$

| MATHEMATICS | STUDY NOTES

MEMORY MAPS



| MATHEMATICS | STUDY NOTES

Functions

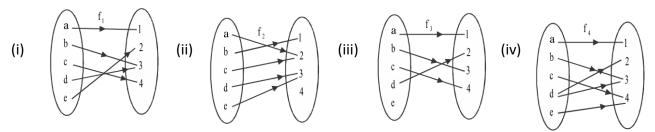
Introduction:

Function from set A to set B:- Let A and B be two non-empty sets, then a function f from set A to set B is a rule (or map or correspondence) which associates each element of set A to exactly one element

of set B. If f is a function from set A to set B, then we denote it by $\,f:A\,{\rightarrow}\,B$.

Example:-

Check whether the maps in the following diagram are functions or not.



Solution: (*i*) Every element in A has exactly one image in B. So, f_1 is a function.

| MATHEMATICS | STUDY NOTES

- (*ii*) Every element in A has exactly one image in B. So, f_2 is a function.
- (*iii*) Element e in A does not have an image in B. So, f_3 is not a function.
- (iv) Element d in A does not have exactly one image in B. So, f_4 is not a function.

Domain, Co-domain, and Range of a function:-

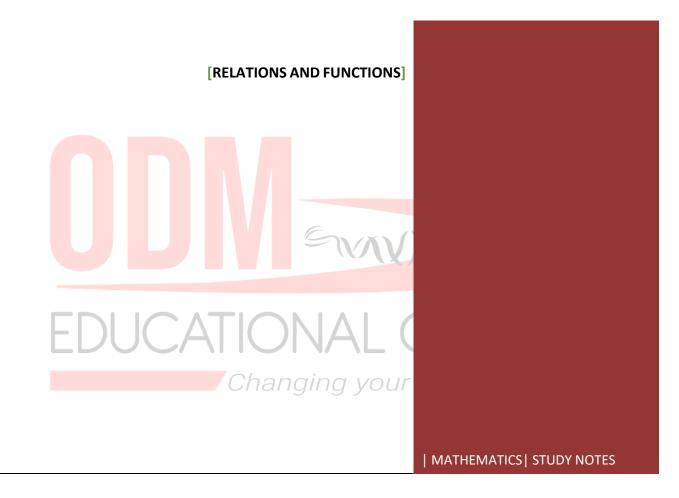
Let $f: A \rightarrow B$ be function, then

- (i) set A is called the domain of function f.
- (ii) the set B is called the Co-domain of f.

(iii) the set of all images of elements of set A under f is called range or image set of A under f.

Remarks:-

- > The range of A under f is denoted by f(A).
- > If f(a) = b then, b is called an image of a under f, and a is called pre-image of b.
- > The range is always a subset of the co-domain.



> If n(A) = p, n(B) = q, then the number of functions from A to B is $(q)^p$

Types of Functions:-

1. <u>One-one function or Injective function:</u> A function $f : A \to B$ is said to be one-one if no two elements of A have the same image, i.e., if $a \neq b \Rightarrow f(a) \neq f(b)$ for all $a, b \in A$

or
$$f(a) = f(b) \Longrightarrow a = b$$
 for all $a, b \in A$.

Remarks:-

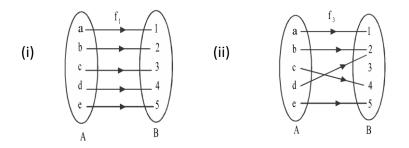
- > If a function $f : A \rightarrow B$ is not one-one then it is called the many-one function.
- \succ if a function $f: A \rightarrow B$ is one-one then $n(A) \leq n(B)$
- > If n(A) = p, n(B) = q, then no of one-one function from A to B

| MATHEMATICS | STUDY NOTES

$$= \begin{cases} 0, & \text{if } p > q \\ {}^{q}P_{p} = \frac{q!}{(q-p)}, & \text{if } p \le q \end{cases}$$

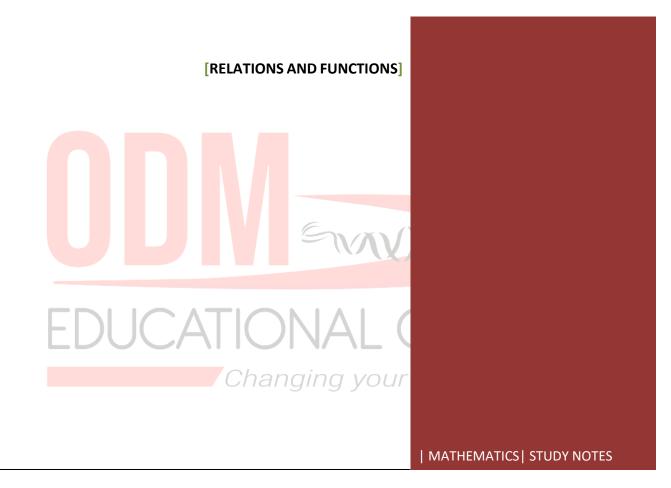
Example:-

Check whether the function in the diagrams is one-one or not.



Solution: (*i*) Every element in A has a different image in B. So, f_1 is a one-one function.

(*ii*) Elements b and d in A have the same image 2 in B. So, f_3 is not a one-one function.



2. Onto function or Surjective function:-

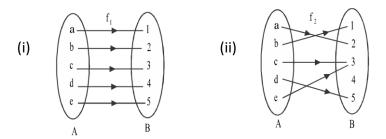
A function $f : A \to B$ is said to be onto if, for each $b \in B$, there exists $a \in A$ such that f(a) = b, we say that a is pre-image of b. In other words, f is onto if Range of f = Co-domain of f, i.e., if every element in B has a preimage in A.

Remarks:-

- > If a function $f: A \rightarrow B$ is not onto then it is called into function.
- > If a function $f: A \rightarrow B$ is onto then $n(A) \ge n(B)$
- > Let A be any finite set such that n(A) = p then, the number of onto functions from A to A is p!.

Example:- Check whether functions in the following diagram are onto:

| MATHEMATICS | STUDY NOTES



Solution: (*i*) Since, every element in B has preimage in A, so, f_1 is onto function.

(*ii*) Since, $4 \in B$ does not have pre-image in A, so, f_2 is not onto function.

3. Bijective Function:-

A function $f: A \rightarrow B$ is said to be bijective if it is both one-one and onto.

Remarks:

- ▶ If $f: A \to B$ is a bijection, then n(A) = n(B).
- > Let A and B be two non-empty finite sets such that n(A) = p and n(B) = q. Then,

Number of bijective functions from to

| MATHEMATICS | STUDY NOTES

Example:-

Classify the following function as one-one, onto, or bijection:

 $f: N \to N$ defined by $f(x) = x^2 + 1$.

Solution: <u>One – one</u>: Let $x_1, x_2 \in N$ be any two elements.

Then,
$$f(x_1) = f(x_2) \Rightarrow x_1^2 + 1 = x_2^2 + 1$$

$$\Rightarrow x_1^2 = x_2^2 \Rightarrow x_1 = x_2$$

So, f is one – one.

<u>Onto:</u> Let $y \in N$ be any element.

Then, $f(x) = y \Rightarrow x^2 + 1 = y$

$$\Rightarrow x = \sqrt{y - 1}$$

For $y = 1 \in N$, we have $x \notin N$.

| MATHEMATICS | STUDY NOTES

So, f is not onto.

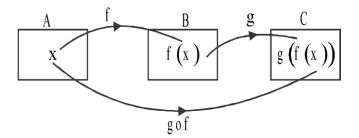
Hence, f is not a bijection.

Composition of Functions:-

The composition of two functions is a chain process in which the output of the first function becomes the input of the 2nd function. Let $f : A \to B$ and $g : B \to C$ be two functions.

For every $x \in A$, there is exactly one element $f(x) \in B$. For $f(x) \in B$, there is exactly one element $g(f(x)) \in C$. This result is a new function from A to C as shown in the figure.

MATHEMATICS | STUDY NOTES



Definition: Let and be any two functions. Then the composition of f and g is a function defined as .

Remarks:-

- > The composition gof exists if the range of $f \subseteq$ domain of g.
- > The composition $f \circ g$ exists if the range of $g \subseteq$ domain of f.
- It may be possible gof exists but fog does not exist
- ➢ gof and fog may or may not be equal.

Example: If $f: R \rightarrow R$ and $g: R \rightarrow R$ is given by

 $f(x) = \cos x$ and $g(x) = 5x^2$. Find gof and fog show that $fog \neq gof$.

| MATHEMATICS | STUDY NOTES

Solution: $gof(x) = g(f(x)) = g(cosx) = 5 cos^2 x$

and $fog(x) = f(g(x)) = f(5x^2) = cos cos (5x^2)$

Properties of the composition of Functions:-

1. Composition of functions is not necessarily commutative. Let $f: A \to B$ and $g: B \to C$, then $f \circ g \neq g \circ f$.

2. Composition of functions is associative. Let $f: A \to B, g: B \to C$ and $h: C \to D$ then (hog)of = ho(gof)

3. Let $f:A \to B$ and $g:B \to C$ be two functions.

- (i) If both are one-one then gof is one-one
- (ii) If both are onto then gof is onto.

4. Let $f: A \to B$ and $g: B \to C$ be two functions such that $gof: A \to C$

| MATHEMATICS | STUDY NOTES

- (i) If gof is onto, then g is onto.
- (ii) If gof is one-one then f is one-one.
- (iii) If gof is onto and g is one-one then f is onto.
- (iv) If gof is one-one and f is onto then g is one-one.

Example:

 $f(x) = \begin{cases} 1 & \text{if } x > 0 \\ 0 & \text{if } x = 0 \\ -1 & \text{if } x < 0 \\ \text{and } g : R \to R \end{cases}$, be the greatest integer function given by g(x) = [x]. Do fog and gof coincide in (0,1]?

Solution:-

Let $x \in (0,1)$ be any element

| MATHEMATICS | STUDY NOTES

fog(x) = f(g(x)) = f([x])

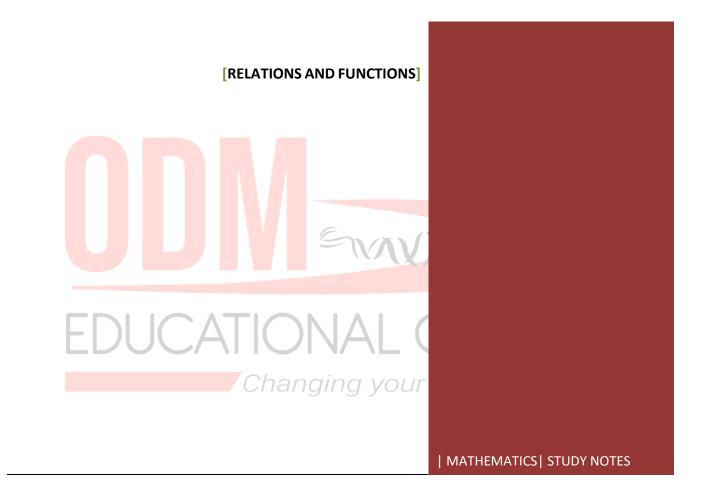
$$= f(0) as x \in (0,1) = 0$$

Also (gof)(x) = g(f(x)) = g(1) = [1] = 1 as $x \in (0,1)$

 $\therefore (fog)(x) \neq (gof)(x) \text{ for every } x \in (0,1) \text{ ; so fog and gof does not coincide in } (0,1]$

The inverse of a Function:-

Let f be a one-one and on-to function from A to B. Let y be an arbitrary element of B. Then f being onto, there exists an element $x \in A$ such that f(x) = y, Also f being one-one this x must be unique.



Thus for each $y \in B$, there exists a unique element $x \in A$ such that f(x) = y. So we may define a function denoted by $f^{-1} as f^{-1} : B \to A$. Such that $f^{-1}(y) = x \Leftrightarrow f(x) = y$.

The function $\,f^{^{-1}}\,$ is called the inverse of f.

x	
$x = f^{-1}(y) \qquad f^{-1}$	y = f(x)

Definition (2)	Remarks:-
Another definition of the inverse function. Let be one-one and onto	function, then is a function which associates to each y of B, a unique inverse of function f.
function, then the function such that and , where are	
identity functions on A and	
B respectively, is called the	> If the inverse of a function f exists then f is called an invertible

function.

> A function f is invertible if and only if f is one-one and onto.

| MATHEMATICS | STUDY NOTES

- > The two definitions of the Inverse function given above are equivalent.
- > The domain of $f^{-1} =$ Range of f and range of $f^{-1} =$ domain of f.

>
$$(f^{-1}of)(x) = x, \forall x \in$$
 the domain of file $f^{-1}of$ is an identity function.

$$(\mathbf{f}^{-1})^{-1} = \mathbf{f}$$

> If f is one-one and onto then f^{-1} is also one-one and onto.

Working Rule to find Inverse of a Function:-

Let defined by

Step – I:- Prove that f is one-one i.e take and show that

Step – II:- Prove that f is onto i.e for any , there exists

Step – III:- Find x in terms of y from let

| MATHEMATICS | STUDY NOTES

Example -1

Consider $f: R \to R$ given by f(x) = 4x + 3. Show that f is invertible, find the inverse of f.

Solution: Given $f: R \rightarrow R$ defined by f(x) = 4x + 3.

One – one: Let $x_1, x_2 \in R$ be any two elements.

Then, $f(x_1) = f(x_2) \Rightarrow 4x_1 + 3 = 4x_2 + 3$

 $\Rightarrow x_1 = x_2$

So, f is one – one.

Onto: Let $y \in R$ be any element.

Then, $f(x) = y \Rightarrow 4x + 3 = y$

$$\Rightarrow x = \frac{y-3}{4}$$

For every $y \in R$, we have $x \in R$. So, f is onto.

<u>| MATHEMATICS | ST</u>UDY NOTES

Thus, f is a bijection and hence invertible.

So, $f^{-1}: R \to R$ exists and we have $f^{-1}(y) = \frac{y-3}{4} [:: f(x) = y \Leftrightarrow x = f^{-1}(y)]$

Hence, the inverse of f is given by $f^{-1}(x) = \frac{x-3}{4}$.

Properties of Invertible Functions:-

(1) If $f: X \to Y$ $g: Y \to Z$ are two invertible functions. Then gof is also invertible with $(gof)^{-1} = f^{-1}og^{-1}$

(2) If $f: X \to Y$ is invertible, then its inverse is unique.

(3) If $f: X \to Y$ is invertible then $f^{-1}of = I_X$ and $fof^{-1} = I_Y$

(4) Let $f: X \to Y$ and $g: Y \to X$ be two functions such that $gof = I_x$ and $fog = I_y$ then f and g are bijections and $g = f^{-1}$.

ODM Educational Group

| MATHEMATICS | STUDY NOTES

Example:

If
$$A = \{a, b, c, d\}$$
 and the function $f = \{(a, b), (b, d), (c, a), (d, c)\}$. Write f^{-1} .

Solution: $f^{-1} = \{(b, a), (d, b), (a, c), (c, d)\}.$

Example:

If $f(x) = \frac{4x+3}{6x-4}, x \neq \frac{2}{3}$ show that for f(x) = x for all $x \neq \frac{2}{3}$. What is the inverse of f?

Solution: Given $f(x) = \frac{4x+3}{6x-4}$, $x \neq \frac{2}{3}$.

Now,
$$fof(x) = f(f(x)) = f\left(\frac{4x+3}{6x-4}\right) = \frac{4\left(\frac{4x+3}{6x-4}\right)+3}{6\left(\frac{4x+3}{6x-4}\right)-4} = \frac{34x}{34} = x.$$

 $\Rightarrow (fof)(x) = x, \text{ for all } x \neq \frac{2}{3}.$ Since, $(fof)(x) = x = I(x), \text{ for all } x \neq \frac{2}{3}$

| MATHEMATICS | STUDY NOTES

So,
$$f^{-1} = f \Rightarrow f^{-1}(x) = f(x)$$
, for all $x \neq \frac{2}{3}$
 $\Rightarrow f^{-1}(x) = \frac{4x+3}{6x-4}$, for all $x \neq \frac{2}{3}$

Hence, the inverse of f is given by $f^{-1}(x) = \frac{4x+3}{6x-4}$, for all $x \neq \frac{2}{3}$.

Example:

Show that the modulus function $f: R \to R$, given by f(x) = |x| is neither one-one nor onto. Solution:-

For one-one f(3) = |3| = 3 f(-3) = |-3| = 3

As f(3) = f(-3) but $3 \neq -3$ so f is not one-one

For onto $Range \; f = R^{+} \mathbf{U} \left\{ 0 \right\} \;$ Co-dom of f = R

| MATHEMATICS | STUDY NOTES

As Range $f \neq$ co-dom f so f is not onto

Example:

Give an example of a function

(i) Which is one-one but not onto (ii) Which is not one-one but onto

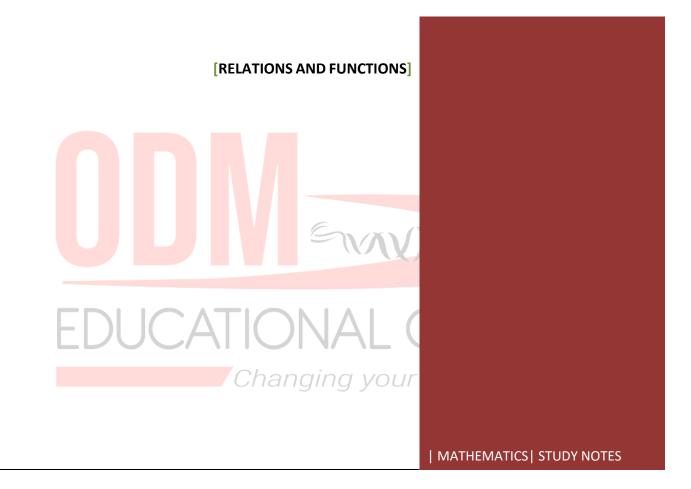
(iii) Which is neither one-one nor onto.

Solution:-

(i) Let $A = \{1, 2\}, B = \{4, 5, 6\}$ and let $f = \{(1, 4), (2, 5)\}$. Since every element of A has different images

in B so f is one-one. Also, the element $6 \in B$ that does not have a pre-image is A. So f is not onto

(ii) Let $A = \{1, 2, 3\}, B = \{4, 5\}$ and $g = \{(2, 4), (1, 4), (3, 5)\}$ Since $1, 2 \in A$ have the same image 4 is B. So, g is not one-one. Also, every element of B has a pre-image is A, so g is onto



(iii) $A = \{1, 2, 3\}, B = \{4, 5\}$ and $h = \{(1, 4), (2, 4), (3, 4)\}$. Since elements $1, 2, 3 \in A$ have the same image 4 in B. So h is not one-one. Also, the element $5 \in B$ does not have a pre-image in A so h is not onto.

Example:

If the function $f: R \to R$ is defined by f(x) = 2x - 3 and $g: R \to R$, $g(x) = x^3 + 5$. Then find fog and show that fog is invertible. Also find $(fog)^{-1}$, Hence find $(fog)^{-1}(9)$.

Solution:-

Here $f: R \rightarrow R$ defined by $fog(x) = f(g(x)) = f(x^3 + 5) = 2(x^3 + 5) - 3 = 2x^3 + 7$. Now to prove fog is invertible. One-one:- Let $x_1, x_2 \in Rand(fog)(x_1) = (fog)(x_2)$

| MATHEMATICS | STUDY NOTES

$$\Rightarrow 2x_1^3 + 7 = 2x_2^3 + 7$$

$$\Longrightarrow \mathbf{X}_1^3 = \mathbf{X}_2^3 \Longrightarrow \mathbf{X}_1 = \mathbf{X}_2$$

So fog is one-one Onto:- let $y \in R$ be any element then fog(x) = y

$$\Rightarrow 2x^3 + 7 = y$$

$$\Rightarrow 2x^3 = y - 7 \Rightarrow x^3 = \frac{y - 7}{2}$$

For every, $y \in R$ we have $x \in R$ so fog is onto.

| MATHEMATICS | STUDY NOTES

Thus, fog is an invertible function so
$$(fog)^{-1}: R \to R$$
 exists and from (1)
 $(fog)^{-1}(y) = \sqrt[3]{\frac{y-7}{2}}; (fog)^{-1}(9) = \sqrt[3]{\frac{9-7}{2}} = 1$

Example:

If the function $f(x) = \sqrt{2x-3}$ is veritable, then find f^{-1} . Hence prove that $(fof^{-1})(x) = x$.

Solution:-

Given f:R \rightarrow R defined by f(x)= $\sqrt{2x-3}$

One-one: Let $x_1, x_2 \in R_{and} f(x_1) = f(x_2)$

$$\Rightarrow \sqrt{2x_1 - 3} = \sqrt{2x_2 - 3}$$

$$\Rightarrow 2x_1 - 3 = 2x_2 - 3$$

ODM Educational Group

| MATHEMATICS | STUDY NOTES

 $\Rightarrow \mathbf{X}_1 = \mathbf{X}_2$

So f is one-one

Onto:- Let $y \in R$ be any element then f(x) = y

 $\Rightarrow \sqrt{2x-3} = y$

 \Rightarrow 2x - 3 = y²

So f is onto. Thus f is on invertible function so $f^{-1}: R \to R$ exists and from (1) we have

 $f^{-1}(y) = \frac{y^2 + 3}{2}$

| MATHEMATICS | STUDY NOTES

The inverse of f is given by
$$f^{-1}(x) = \frac{x^2 + 3}{2}$$

Now
$$(fof^{-1})(x) = f(f^{-1}(x))$$

$$= f\left(\frac{x^2+3}{2}\right) = \sqrt{2\left(\frac{x^2+3}{2}\right)-3}$$

Example:

Consider $f: N \rightarrow N, g: N \rightarrow N$ and $h: N \rightarrow R$ define as f(x) = 2x, g(y) = 3y + 4 and f(x) = sinx for all $x, y, z \in N$. Show that ho(gof) = (hof)of

Solution:-

Given f:N \rightarrow N, defined by f(x)=2x;g:N \rightarrow N defined by g(y)=3y+4and h:N \rightarrow R, h(x)=sinx

| MATHEMATICS | STUDY NOTES

Now
$$ho(gof): N \rightarrow R$$
 such that $[ho(gof)](x) = h[gof(x)]$
= $h(g(f(x))) = h(g(2x)) = h[3(2x)+4]$

$$=h(6x+4)=sin(6x+4)$$

Also $(hog)of: N \rightarrow R$ such that [(hog)of](x) = (hog)(f(x))

$$=(hog)(2x)=h(g(2x))$$

=h[3(2x)+4]

$$=h(6x+4)=sin(6x+4)$$

Hence, $\left[ho(gof)\right](x) = \left[(hog)of\right](x); \forall x \in N$

| MATHEMATICS | STUDY NOTES

MEMORY MAPS

A function is said to be one-one (or injective), if the images of distance elements of A under the rule f are distinct in B. i.e for every or we can also say that

Onto (surjective) function:

A function is said to be onto(or surjective), if every element of B is the image of some element of A under the rule f, i.e for every , there exists an element such that .

Note: A function is onto if and only

One-one and onto (bijective) function: A function is said to be one-one and onto

(or bijective) if f is both one-one and onto.

| MATHEMATICS | STUDY NOTES

Composition of function: Let and g : B (range of f) be

two functions. Then the composition of functions f and g is a function

from A to C and is denoted by gof. We define gof as

. For working, on element x first we apply f

rule and whatever result is obtained in set B, we apply g rule on it to get the required result in set C.

Invertible function: A function is said to be invertible, if there exists a function such that . The function g is called the inverse of f and is denoted by .

Note:- For a function to be invertible, it must be one-one and onto, i.e. bijective.