

TANGENTS AND NORMALS

SUBJECT : MATHEMATICS CHAPTER NUMBER:6 CHAPTER NAME :APPLICATION OF DERIVATIVES

CHANGING YOUR TOMORROW

Website: www.odmegroup.org Email: info@odmps.org Toll Free: 1800 120 2316

Sishu Vihar, Infocity Road, Patia, Bhubaneswar- 751024

INTRODUCTION

In this topic we shall use the derivative of the function y = f(x) to find the equation of tangent and normal to the curve at a given point.

Slope or Gradient of a line:

If a line makes an angle θ with the positive direction of x-axis in anticlockwise direction,

Then $tan\theta$ is called slope of the line.

Slope of the line perpendicular to x-axis is not defined.

Slope of the line parallel to x-axis is zero.

Equation of Tangent and Normal at a point to a curve:

Let y = f(x) be a curve and $p(\alpha, \beta)$ be a point on it.

Then we know that slope of the tangent to the curve y = f(x)

at the point
$$p(\alpha, \beta)$$
 is given by $\left(\frac{dy}{dx}\right)_{at(\alpha,\beta)} = f'(\alpha)$

Equation of tangent at a point:

As we know that the equation of a line passing through the point (α, β) having slope m is

$$y - \beta = m(x - \alpha)$$

Therefore the equation of the tangent to the curve y = f(x) at $p(\alpha, \beta)$ is

$$y - \beta = \left(\frac{dy}{dx}\right)_{at(\alpha,\beta)} (x - \alpha)$$
$$y - \beta = f'(\alpha)(x - \alpha)$$

Equation of normal at a point:

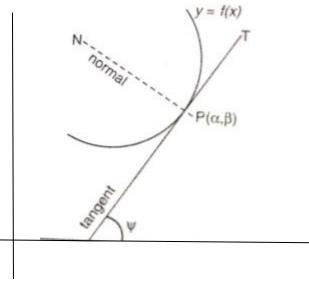
We know that normal to the curve at the point P in a line perpendicular to the tangent to the curve at P.

Hence, the slope of the normal to the curve
$$y = f(x)$$
 at P = $\frac{-1}{\left(\frac{dy}{dx}\right)_{at(\alpha,\beta)}} = \frac{1}{f'(x)}$

Equation of the normal to the curve y = f(x) at $P(\alpha, \beta)$ is

$$(y - \beta) = \frac{-1}{\left(\frac{dy}{dx}\right)_{at(\alpha,\beta)}}(x - \alpha)$$

then,
$$(y - \beta) = \frac{-1}{f'(\alpha)}(x - \alpha)$$



Working Rule:

Step I. Find $\frac{dy}{dx}$ from the equation of the given curve

Step II. If the equation of the tangent and normal at (α, β) is needed, find $\frac{dy}{dx} \operatorname{at}(\alpha, \beta)$. This value of $\frac{dy}{dx}$ will be the

slope of tangent at (α, β)

slope of normal at $(\alpha, \beta) = \frac{-1}{\text{Slope of the tangent } at(\alpha, \beta)}$

Step III. If the value of $\frac{dy}{dx}$ at (α, β) be m, the equation of normal and tangent at (α, β) will be

(a)
$$y - \beta = m(x - \alpha)$$
 (b) $y - \beta = \frac{-1}{m}(x - \alpha)$

Step IV. If $\frac{dy}{dx}$ at a point (α, β) is zero then the tangent is parallel to x-axis

If $\frac{dy}{dx}$ is at (α, β) is undefined then the tangent at (α, β) is parallel to y-axis and normal at (α, β) is parallel to x-axis. In this case equation of tangent at P will be $x = \alpha$ and that of normal will be $y = \beta$.

Find the slope of the tangent to the curve $y^2 = x$ at the point x = 1.

Find the equation of the tangent and normal to the curve $y = x^2 + 4x + 1$ at the point whose x-coordinate is 3.

Find the points on the curve $y = x^3 - x^2 - x + 3$, where the tangent is parallel to

x-axis.

Find the point on the curve $y = (x - 3)^2$, where tangent is parallel to the line joining (4,1) and (3,0).

HOME ASSIGNMENT

Q1. Find the slope of tangent and normal to the curve $x^2 + 3y + y^2 = 5$ at (1,1)

Q2. The slope of the curve $2y^2 = ax^2 + b$ at (1, -1) is -1. Find a, b.

Q3. Find the sope of the normal to the curve $x = 1 - aSin\theta$, $y = bCos^2\theta$ at $\theta = \frac{\pi}{2}$

THANKING YOU ODM EDUCATIONAL GROUP