

Maxima and Minima

SUBJECT : MATHEMATICS CHAPTER NUMBER: 6 CHAPTER NAME : Application of Derivatives

CHANGING YOUR TOMORROW

Website: www.odmegroup.org Email: info@odmps.org

Toll Free: **1800 120 2316**

Sishu Vihar, Infocity Road, Patia, Bhubaneswar- 751024

First Derivative Test of Maxima and Minima

Local Maximum and minimum values of y = f(x)

Definition of local Maximum value:

A function f(x) said to have a local maximum value at x = a, if f(a) is greater than any other value that f(x) can have in the some suitably small neighbourhood of x = a.

OR

A function is said to have local maximum value f(a) at x = a if f(x) stop to increase at x = a and begins to decrease as x increases beyond a.

Definition of Local Minimum value:

A function f(x) said to have a local minimum value at x = a, if f(a) is less than any other value that f(x) can have in the some suitably small neighbourhood of x = a.

OR

A function is said to have local minimum value f(a) at x = a if f(x) stop to decrease at x = a and begins to increase as x increases beyond a.

First Derivative Test For Local Maxima Of a Function

Function f(x) has a local maximum value at x = a, if f(x) stops to increase at x = a and begins to decrease as x increases beyond 'a'.

Thus when x is slightly less than 'a', y increases and $\frac{dy}{dx}$ is + ve

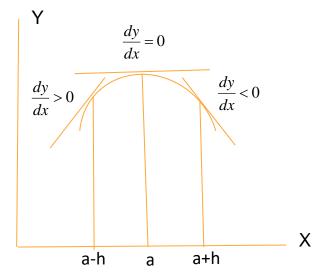
When x is slightly greater than 'a', y decreases and $\frac{dy}{dx}$ is – ve

Therefore $\frac{dy}{dx}$ changes its sign from +ve to -ve as x passes through the Value 'a'. But it can not change sign without passing through the value zero which must evidently be attained at x = a.

Hence, we have the following two conditions for y = f(x) to have a A local Maximum value f(a) at x = a.

(i)
$$\frac{dy}{dx} = 0$$
 at $x = a$.

(ii) $\frac{dy}{dx}$ changes its sign from +ve to -ve as x passes through the value a.



First Derivative Test For Local Minima Of a Function

Function f(x) has a local minimum value at x = a, if f(x) stops to decrease at x = a and begins to increase as x increases beyond 'a'.

Thus when x is slightly less than 'a', y decreases and $\frac{dy}{dx}$ is -ve

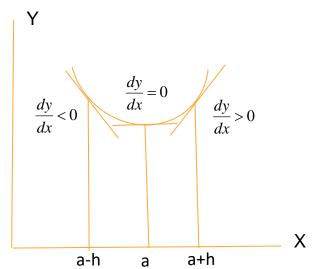
When x is slightly greater than 'a', y increases and $\frac{dy}{dx}$ is +ve

Therefore $\frac{dy}{dx}$ changes its sign from -ve to +ve as x passes through the Value 'a'. But it can not change sign without passing through the value zero which must evidently be attained at x = a.

Hence, we have the following two conditions for y = f(x) to have a A local Minimum value f(a) at x = a.

(i)
$$\frac{dy}{dx} = 0$$
 at $x = a$.

(ii) $\frac{dy}{dx}$ changes its sign from -ve to +ve as x passes through the value a.



Working Rules For First Derivative Test

Step-1 Find $\frac{dy}{dx}$ of the given function.

Step-2

let $\frac{dy}{dx} = 0$ for critical points (say x = a, b, c.....), (remember critical point is the point where derivative of the function is equal to zero.)

Step-3

(i) If $\frac{dy}{dx}$ changes its sign from +ve to – ve as x passes through the values 'a, b, c.....' then function attain

the maximum value.

(ii) If $\frac{dy}{dx}$ changes its sign from -ve to +ve as x passes through the values 'a, b, c.....' then function attain the minimum value

the minimum value.

Problem: 1

Find all points of local maxima and local minima of the function given by $f(x) = x^3 - 3x + 3$

Problem: 2

Find all points of local maxima and local minima as well as corresponding local maximum and local minimum values for the function $f(x) = (x - 1)^3(x + 1)^2$

Points of Inflection

 $\frac{dy}{dx} = 0$

For the function y = f(x) to have maximum or minimum value at x = a, $\frac{dy}{dx} = 0$, at x = a. But if $\frac{dy}{dx} = 0$

at x = a, it is not essential that the function may have maximum or minimum values at x = a. For it

may happens that $\frac{dy}{dx}$ does not change sign from – ve to + ve as + ve to – ve as x passess through value a and cosequently, function may go on increasing or decreasing.

Thus the condition that $\frac{dy}{dx} = 0$ for a maximum or a minimum value of the function is only necessary and not sufficient. y = f(x)

 $\frac{dy}{dx} < 0$

 $\frac{dy}{dx} < 0$

DEFINITION

A point on the curve y = f(x) at which $\frac{dy}{dx} = 0$ but

 $\frac{dy}{dx}$ does not change sign as x passes through the

point is called a point of inflexion.

Problem: 3

Find the point of inflexion of the function $f(x) = x^5$

HOME ASSIGNMENT

Q1. Find the local maximum and local minimum values of the function f given by

$$f(x) = 3x^4 + 4x^3 - 12x^2 + 12$$

Q2. Find the local maximum and local minimum values of the function $f(x) = x\sqrt{1-x}$, 0 < x < 1.

Q3. Prove that the function $f(x) = x^3 + x^2 + x + 1$ do not have maxima and minima.

THANKING YOU ODM EDUCATIONAL GROUP