

Types of Relations

SUBJECT : MATHEMATICS CHAPTER NUMBER: 01 CHAPTER NAME :RELATIONS AND FUNCTIONS

CHANGING YOUR TOMORROW

Website: www.odmegroup.org Email: info@odmps.org

Toll Free: **1800 120 2316** Sishu Vihar, Infocity Road, Patia, Bhubaneswar- 751024

What we expect to learn?

- Students will be able to learn different types of relations.
- Students will be able to learn about finding equivalence class related to a given relation.
- Students will be able to learn about different types of functions.
- Students will be able to learn about composite functions and invertible functions.
- Students will able to find the inverse of a function.

Introduction

Relation:

Let A and B be two be two non -empty sets. A relation R from a set A to set B is a subset of A x B.

i.e., $R \subseteq A \times B$.

Relation on a set A:

Let A be any non empty set. Then a set R is said to be a relation on A if R is a subset of $A \times A$.

Types of Relations:-

1. Empty or Void relation:- A relation R on the set A is called an empty relation if no elements of A is related to any elements of A, i.e., $R = \phi$.

Example: Let $A = \{1, 2, 3\}$, define $R = \{(a, b) : a - b = 12\}$. Show that R is an empty relation on set A.

Universal Relation:- A relation R on a set A is called universal relation if each element of A is related to every element of A. i.e. if R = A × A.

Example: Let $A = \{1, 2\}$ and define $R = \{(a, b) : a + b > 0\}$. Show that R is a universal relation on set A.

3. Identity Relation:- A relation R on set A is called identity relation if every element of A is related to itself only. i.e. if R = {(a, a) : a ∈ A }.

The identity relation on set A is denoted by I_A .

Example: Let A = $\{1, 2, 3\}$ and the relation R defined by R = $\{(a, b) : a - b = 0 : a, b \in A\}$. Show that R is an identity relation.

Assignments

- 1. Let R be the relation in the set N given by $R = \{(a, b) : a = b 2, b > 6\}$. Choose the correct answer.
 - a) $(2, 7) \in \mathbb{R}$ b) $(3, 8) \in \mathbb{R}$ c) $(6, 8) \in \mathbb{R}$ d) $(8, 7) \in \mathbb{R}$
- 1. Let A and B be finite sets containing m and n elements respectively. Find the number of relations that can be defined from A to B is
 - a) 2^{mn} b) 2^{m+n} c) mn d) 0
- 1. If $R = \{(a, a^3) : a \text{ is a prime number less than 5}\}$ be a relation, then find the range of R.
- 2. If $R = \{(x, y) : x + 2y = 8\}$ is a relation on N, then write the range of R.

Reflexive, Symmetric, and Transitive Relations

SUBJECT : MATHEMATICS CHAPTER NUMBER: 01 CHAPTER NAME :RELATIONS AND FUNCTIONS

CHANGING YOUR TOMORROW

Website: www.odmegroup.org Email: info@odmps.org Toll Free: **1800 120 2316** Sishu Vihar, Infocity Road, Patia, Bhubaneswar- 751024

Types of Relations (contd.)

4. Reflexive Relation:

A relation R on the set A is called reflexive relation if **a** R **a** for every $a \in A$ i.e., if $(a, a) \in R$ for every $a \in A$.

Points to Remember:

- ✓ Identity and Universal relations are reflexive, but empty relation is not reflexive.
- ✓ All reflexive relations are not identity relation.

5. Symmetric Relation:

A relation R on the set A is called symmetric relation if **a R b** implies **b R a**.

i.e., for every a, $b \in A$, $(a, b) \in R \Rightarrow (b, a) \in R$.

Points to Remember:

- ✓ Identity and Universal relations are symmetric relations.
- ✓ Empty relation is also symmetric as there is no situation in which (a, b) \in R.

6. Transitive Relation:

A relation R on the set A is called transitive relation if **a** R **b** and **b** R **c** implies **a** R **c**, for every a, b, $c \in A$. i.e., if (a, b) \in R and (b, c) \in R \Rightarrow (a, c) \in R.

Point to Remember:

✓ If there is no situation in which $(a, b) \in R$ and $(b, c) \in R$, then relation is transitive.

Examples:

- Determine whether the relation R = {(x, y) : y = x + 5, x < 4 } reflexive, symmetric and transitive on the set of natural numbers.
- 2. Find whether the relation R' on the set R of all real numbers defined as R' = {(a, b) : a, b \in R and a b + $\sqrt{3} \in$ S } where S is the set of all irrational numbers, is reflexive, symmetric and transitive.
- 3. Let A = {a, b, c} and the relation R be defined on A as follows: R = {(a, a), (b, c), (a, b)}. Then write the minimum number of ordered pairs added to R to make it reflexive and transitive.
- 4. State the reason for the relation R in the set $\{1, 2, 3\}$ given by R = $\{(1, 2), (2, 1)\}$ not to be transitive.

Assignments

- 1. Show that the relation $S = \{(a, b) : a, b \in R \text{ and } a \le b^3\}$ defined in the set of real numbers, is neither reflexive nor symmetric nor transitive.
- 2. Let $A = \{1, 2, 3\}$. Define a relation on A which have properties being

(i) reflexive, symmetric but not transitive.

(ii) symmetric but neither reflexive nor transitive.

(iii) reflexive, symmetric and transitive.

3. Show that the relation S on R the set of real numbers given as $S = \{(x, y) : x \le y\}$ is reflexive but not symmetric.

Assignments

- Check whether the relation R in the set R of real numbers, defined by R = {(a, b) : 1 + ab > 0 } is reflexive, symmetric or transitive.
- 5. State the reason for the relation R in the set $\{1, 2, 3\}$ given by $R = \{(1, 3), (3, 1)\}$ not to be transitive.
- 6. Let W denotes the words in the English dictionary. Define the relation R by $R = \{(x,y) \in W \times W : the words x and y have at least one letter in common\}$. Prove that R is reflexive and symmetric.

Equivalence Relations & Equivalence Classes

SUBJECT : MATHEMATICS CHAPTER NUMBER:1 CHAPTER NAME :RELATIONS AND FUNCTIONS

CHANGING YOUR TOMORROW

Website: www.odmegroup.org Email: info@odmps.org Toll Free: 1800 120 2316

Sishu Vihar, Infocity Road, Patia, Bhubaneswar- 751024

Equivalence Relation and Equivalence Class

Equivalence Relation:- A relation R on a set A is called equivalence relation if R is reflexive, symmetric and transitive.

Equivalence Class: - Let R be an equivalence relation on A set a and let ... Then we define the equivalence

class of 'a' as $[a] = \{b \in A: bisrelated to a\} = \{b \in A: (b, a) \in R\}$

Example:-

```
A = \{1,2,3\}. Define the relations R_1, R_2, R_3 and R_4 on A as.
```

(i) $R_1 = \{(1,1), (1,2), (2,1), (2,2)\}$ (ii) $R_2 = \{(1,1), (2,2), (3,3), (1,2), (2,3), (1,3)\}$

(iii) $R_3 = \{(1,1), (2,2), (3,3), (1,2), (2,1), (1,3), (3,1)\}$

(iv) $R_4 = \{(1,1), (2,2), (3,3), (1,2), (2,1)\}$

Check whether R_1 , R_2 , R_3 and R_4 are equivalence relations or not, if yes, then find the equivalence classes of all elements of set A.

EXAMPLE:

 $A = \{1,2,3\}$. Define the relations R_1 , R_2 , R_3 , and R_4 on A as.

(i) $R_1 = \{(1,1), (1,2), (2,1), (2,2)\}$

(ii) $R_2 = \{(1,1), (2,2), (3,3), (1,2), (2,3), (1,3)\}$

(iii) $R_3 = \{(1,1), (2,2), (3,3), (1,2), (2,1), (1,3), (3,1)\}$

(iv) $R_4 = \{(1,1), (2,2), (3,3), (1,2), (2,1)\}$

Check whether R_1 , R_2 , R_3 , and R_4 are equivalence relations or not, if yes, then find the equivalence classes of all elements of set A.

Prove that the relation R on Z, defined by $(a, b) \in R \Leftrightarrow a - b$ is divisible by 5 is an equivalence

relation on Z.

Show that the relation R on IR defined as $R = \{(a, b): a \le b^2\}$ is neither reflexive not symmetric

nor transitive.

Show that the relation R defined by $(a, b)R(c, d) \Rightarrow a + b = b + c$, in $A \times A$ where $A = \{1, 2, 3, \dots, 10\}$

is an equivalence relation. Hence write the equivalence class [(3,4)]; $a, b, c, d \in A$.

Assignments

- 1. Write the smallest and largest equivalence relation on the set $A = \{1,2,3\}$.
- 2. For the set $A = \{1,2,3\}$, define a relation R on the set A as follows.

 $R = \{(1,1), (2,2), (3,3), (1,3)\}$ write the ordered pair(s) to be added to R to make it the smallest equivalence relation.

3. Show that the relation R on the set Z, given by $R = \{(a, b): |a - b| \text{ is a multiple of } 4\}$ is an equivalence relation.

Types of Functions

SUBJECT : MATHEMATICS CHAPTER NUMBER:1 CHAPTER NAME :RELATIONS AND FUNCTIONS

CHANGING YOUR TOMORROW

Website: www.odmegroup.org Email: info@odmps.org

Toll Free: 1800 120 2316

Sishu Vihar, Infocity Road, Patia, Bhubaneswar- 751024

Function

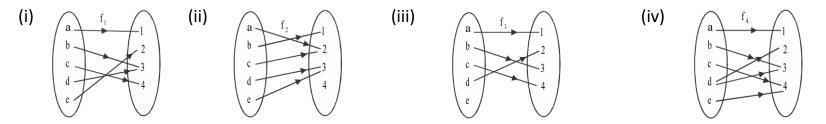
Function from set A to set B:- Let A and B be two non empty sets, then a function f from set A to set B is a rule (or

map or correspondence) which associates each element of set A to exactly one element of set B. If f is a function

from set A to set B, then we denote it by f:A+B

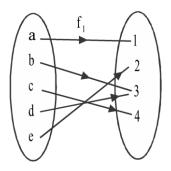
Example:-

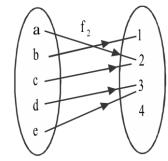
Check whether the maps in following diagram are functions or not.

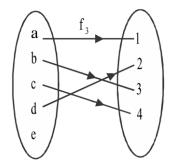


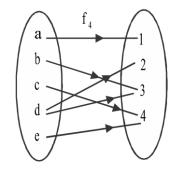
Example:-

Check whether the maps in the following diagrams are functions or not.









Domain, Co-domain and Range of a Function:-

Let $f: A \rightarrow B$ be function, then

(i) The set A is called domain of function 'f'.

(ii) The set B is called co-domain of 'f'.

(iii) The set of all images of elements of set A under f is called range under f.

Notes:-

- (1) The range of A under f is denoted by f(A).
- (2) If f(a) = b then, b is called as image of f under f and a is called pre-image of b.
- (3) Range is always subset of the co-domain.
- (4) If n(A) = p, n(B) = q, then number of functions from A to B is $(q)^p$

Types of Functions

(1) One-one function or Injective function: A function $f: A \rightarrow B$ is said to be one-one if no two

elements of A have same image. i.e. if $a \neq b \Rightarrow f(a) \neq f(b)$ for all $a, b \in A$

Or, $f(a) = f(b) \Rightarrow a = b$ for all $a, b \in A$.

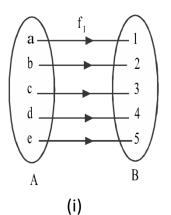
Note:-

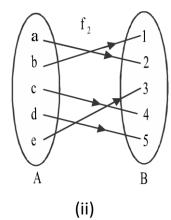
(i) If a function $f: A \rightarrow B$ is not one-one then it is called many-one function

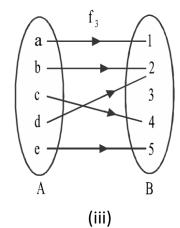
(ii) if a function $f: A \to B$ is one-one then $n(A) \le n(B)$

(iii) If n(A) = p, n(B) = q, then no of one-one functions from A to B = $\begin{cases} 0, & \text{if } p > q \\ qP_p = \frac{q!}{(q-p)}, & \text{if } p \le q \end{cases}$

Check whether the functions in the diagram are one-one or not.







(2) Onto Function or Surjective Function

A function $f: A \to B$ is said to be onto if, for each $b \in B$, there exists $a \in A$ such that f(a) = b, we say that 'a' is pre-image of 'b'.

In other words, f is onto if Range of f = Co-domain of f

i.e if every element in B has a pre-image in A.

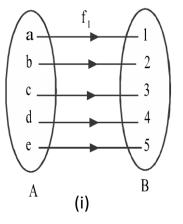
Note:-

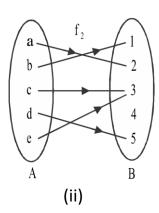
(i) If a function $f: A \rightarrow B$ is not onto then it is called into function.

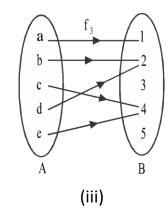
(ii) If a function $f: A \to B$ is onto then $n(A) \ge n(B)$

(iii) Let A be any finite set n(A) = p then no of onto function from A to A is p!

Check whether functions in the figure are onto?







(3) Bijective Function

A function $f: A \rightarrow B$ is said to be bijective if it is both one-one and onto

Example:-

Let $A = \{1,2,3,4\}$ and $B = \{5,6,7,8\}$ let $f: A \to B$ be defined by $f = \{(1,5), (2,6), (3,7), (4,8)\}$. Show that f is one-one and onto (bijective).

EXAMPLE:

Show that the function $f: Z \to Z$ defined by f(x) = |x| is not a Bijective function?

EXAMPLE:

Let the function $f: R - \{3\} \rightarrow R - \{1\}$ defined by $f(x) = \frac{x-2}{x-3}$. Is f one-one and onto?

Justify your answer.

Assignments

- 1. Show that the greatest integer function $f: R \to R$, given by f(x) = [x] is neither one-one nor onto.
- 2. Show that the function $f: N \to N$ defined by f(n) = 2n + 3, for all $n \in N$ is not Bijective.

Inverse of a Function

SUBJECT : MATHEMATICS CHAPTER NUMBER:1 CHAPTER NAME :RELATIONS AND FUNCTIONS

CHANGING YOUR TOMORROW

Website: www.odmegroup.org Email: info@odmps.org

Toll Free: 1800 120 2316

Sishu Vihar, Infocity Road, Patia, Bhubaneswar- 751024

Inverse of a Function

DEFINITION:

Let f be a one-one and onto function from A to B. Let y be an arbitrary element of B. Then f being onto, there exists an element $x \in A$. Such that f(x) = y, Also f being one-one this x must be unique. Thus for each $y \in B$, there exists a unique element $x \in A$ such that f(x) = y. So we may define a function denoted by f^{-1} as $f^{-1} : B \to A$. Such that $f^{-1}(y) = x \Leftrightarrow f(x) = y$.

The function f^{-1} is called the inverse of f.

Properties of Inverse of a function

- If the inverse of a function f exists then f is called an invertible function.
- A function f is invertible if and only if f is one-one and onto.
- ♦ The domain of f^{-1} =Range of f and range of f^{-1} =domain of f.

♦ $(f^{-1})^{-1} = f$

• If f is one-one and onto then f^{-1} is also one-one and onto.

Algorithm to find Inverse of a function

Let $f: A \rightarrow B$ be a bijective function. To find the inverse f of we the following steps:

Step-I

```
Put f(x) = y, where y \in B and x \in A.
```

Step-II

```
Solve f(x) = y to obtain x in terms of y.
```

Step-III

In the relation obtained in the step-II replace x by $f^{-1}(y)$ to obtain the required inverse of f.

Consider $f: R \to R$ given by f(x) = 4x + 3. Show that f is invertible, find the inverse of f.

Consider $f: \{1,2,3\} \rightarrow \{a, b, c\}$ given by f(1) = a, f(2) = b and f(3) = c. Show that f is

invertible, find f^{-1} and show that $(f^{-1})^{-1} = f$

Consider $f: \{1,2,3\} \rightarrow \{a, b, c\}$ given by f(1) = a, f(2) = b and f(3) = c. Show that f is

invertible, find f^{-1} and show that $(f^{-1})^{-1} = f$

Assignments

- 1. Prove that the function $f: [0, \infty] \to [-5\infty]$, given by $f(x) = 9x^2 + 6x 5$ is invertible and find f^{-1} .
- 2. Show that the function $f: R \to R$ defined by $f(x) = \frac{x}{x^2+1}$, for all $x \in R$ is neither one-one nor onto.
- 3. Write the total no of functions from $\{1,2\}$ to $\{x, y, z\}$.
- 4. Write the total no of one-one functions from $\{1,2\}$ to $\{x, y, z\}$.
- 5. Write the total no of onto functions from $\{x, y, z\}$ to $\{1, 5, 25, 125\}$.
- 6. Write the total no of bijective functions from $\{1,2,3\}$ to $\{x, y, z\}$.

Composition of Functions

SUBJECT : MATHEMATICS CHAPTER NUMBER:1 CHAPTER NAME :RELATIONS AND FUNCTIONS

CHANGING YOUR TOMORROW

Website: www.odmegroup.org Email: info@odmps.org

Toll Free: **1800 120 2316**

Sishu Vihar, Infocity Road, Patia, Bhubaneswar- 751024

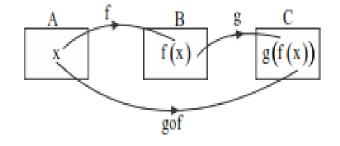
Composition of Function

The composition of two functions is a chain process in which the output of the first function becomes the input of the 2^{nd} function.

Let $f: A \to B$ and $g: B \to C$ be two functions. Exactly one element for every $x \in A$, there is exactly one element $f(x) \in B$. For $f(x) \in B$, there is exactly one element $g(f(x)) \in C$. This result is a new function from A to C as shown in the figure.

Definition:-

Let $f: A \to B$ and $g: B \to C$ be any two functions. Then the composition of f and g is a function $gof: A \to C$ defined as (gof)(x) = g(f(x)).



Some Useful Observations

- ▶ The composition gof exists if the range of $f \subseteq$ domain of g.
- ▶ The composition $f \circ g$ exists if the range of $g \subseteq$ domain of f.
- \blacktriangleright gof and fog may or may not be equal.
- \blacktriangleright It may be possible *gof* exists but *fog* does not exist.

Find *gof* and *fog* when $f: R \to R$ and $g: R \to R$ are defined by f(x) = 5x + 2and $g(x) = x^2 + 6$.

Note:-

Is *fog* defined?

Are fog and gof are equal you observe from this example.

Let $f: \{2,3,4,5\} \rightarrow \{3,4,5,9\}$ and $g: \{3,4,5,9\} \rightarrow \{7,11,15\}$ defined as $f = \{(2,3), (3.4), (4,5), (5,5)\}$ and $g = \{(3,7), (4,7), (5,11), (9,11)\}$, Find *gof*. Is *fog* defined?

Properties of Composition

- ▶ If $f: A \to B$ and $g: B \to C$ are one-one, then $gof: A \to C$ is also one-one.
- ▶ If $f: A \to B$ and $g: B \to C$ are onto, then $gof: A \to C$ is also onto.
- ▶ If $f: A \to B$ and $g: B \to C$ are invertible, then $gof: A \to C$ is also invertible.
- Composition of functions is associative Let f: A → B, g: B → Candg: C → D then (hog)of = ho(gof)

Inverse of a function with help of composition

Let $f: A \to B$ be one-one and onto function, then the function $g: B \to A$ such that $gof = I_A$ and $fog = I_B$, where $I_A and I_B$ are identity functions on A and B respectively, g is called the inverse of f, i.e. $g = f^{-1}$.

Find $f \circ g$ and $g \circ f$ if $f(x) = 8x^3$ and $g(x) = x^{1/3}$

If
$$f(x) = \frac{4x+3}{6x-4}$$
; $x \neq \frac{2}{3}$, Show that $f \circ f(x) = x$ for all $x \neq \frac{2}{3}$, What is the inverse of f ?

Assignments

- 1. Let $f, g: R \to R$ be two functions defined as $f(x) = |x| + xandg(x) = |x| x, \forall x \in R$ then find fog(-3)andgof(-2).
- 2. If the mapping f and g are given by $f = \{(1,2), (3,5), (4,1)\}, g = \{(2,3), (5,1), (1,3)\}$ write $f \circ g$ and $g \circ f$.

3. Let $f: R \to R$ be signum function as $f(x) = \begin{cases} 1 & if \quad x > 0 \\ 0 & if \quad x = 0 \text{ and } g: R \to R$, be the greatest integer $-1 & if \quad x < 0 \end{cases}$

function given by g(x) = [x]. Do fog and gof coincide in (0,1]?

Practice of Problems Based on Functions

SUBJECT : MATHEMATICS CHAPTER NUMBER:1 CHAPTER NAME :RELATIONS AND FUNCTIONS

CHANGING YOUR TOMORROW

Website: www.odmegroup.org Email: info@odmps.org Toll Free: 1800 120 2316

Sishu Vihar, Infocity Road, Patia, Bhubaneswar- 751024

Let
$$f: N \to N$$
 be defined by $f(n) = \begin{cases} \frac{n+1}{2}, & \text{if } n \text{ is odd} \\ \frac{n}{2}, & \text{if } n \text{ is even} \end{cases}$ for all $n \in N$.

State whether the function is bijective justify your answer.

Let f and g be two bijective functions defined as $f\!:\!A\to B$ and $g\!:\!B\to C$, then

prove that composition function $gof: A \rightarrow C$ is bijective.

Equal and Unequal Functions

Two functions $f: A \to B$ and $g: A \to B$ are said to be equal if f(x) = g(x) for every

 $x \in A$, in this case we write f = g.

Two functions $f: A \to B$ and $g: A \to B$ are said to be unequal if $f(x) \neq g(x)$ for

every $x \in A$, in this case we write $f \neq g$.

Example:

Let $A = \{1,2,3,4\}$ and $B = \{5,6,7,8\}$. Let $f: A \to B$ and $g: A \to B$ be defined by $f = \{(1,5), (2,6), (3,7), (4,8)\}$ and $g = \{(2,6), (4,8), (1,5), (3,7), (4,8)\}$ So, f(1) = 5 = g(1), f(2) = 6 = g(2), f(3) = 7 = g(3), f(4) = 8 = g(4)

EXAMPLE:-

Let $A = \{1,2,3\}$ and $B = \{5,6,7\}$ and Let $f: A \rightarrow B$ and $g: A \rightarrow B$ be defined by

 $f = \{(1,5), (2,6), (3,7)\}$ and $g = \{(2,5), (1,6), (3,7)\}$. Show that $f \neq g$.

Let
$$f: R \to R$$
 be signum function as $f(x) = \begin{cases} 1 & if \quad x > 0 \\ 0 & if \quad x = 0 \text{ and } g: R \to R, \text{ be the} \\ -1 & if \quad x < 0 \end{cases}$

greatest integer function given by g(x) = [x]. Do *fog* and *gof* coincide in (0,1]?

Consider $f: N \to N$, $g: N \to R$ and $h: N \to R$ defined as f(x) = 2x, g(y) = 3y + 4 and h(z) = sinz for all $x, y, z \in N$. Show that ho(gof) = (hof)of.

If the function $f(x) = \sqrt{2x - 3}$ is invertible, then find f^{-1} . Hence prove that $(fof^{-1})(x) = x$

If the function $f: R \to R$ be defined by f(x) = 2x - 3 and $g: R \to R$ by $g(x) = x^2 + 5$. Then find $f \circ g$ and show that $f \circ g$ is invertible. Also find $(f \circ g)^{-1}$, Hence find $(f \circ g)^{-1}(9)$.

THANKING YOU ODM EDUCATIONAL GROUP