

Matrices : (Concept, Order, Equality of Matrices)

SUBJECT : (Mathematics) CHAPTER NUMBER: 03 CHAPTER NAME : Matrices

CHANGING YOUR TOMORROW

Website: www.odmegroup.org Email: info@odmps.org

Toll Free: 1800 120 2316

Sishu Vihar, Infocity Road, Patia, Bhubaneswar- 751024

What we expect to learn?

- Students will learn about finding the order of a given matrix.
- Students will learn about different types of matrices.
- Students will learn about the equality of matrices.
- Students will learn about the multiplication of a matrix by a scalar.
- Students will learn about the transpose of a matrix.
- Students will learn the Addition of matrix and multiplication of matrices, properties, and applications.
- Students will learn about the Symmetric, skew-symmetric matrix.
- Students will Learn about the elementary operation of a matrix.
- Students will learn about the use of elementary operations in finding out the inverse of a matrix.
- Learn about invertible matrix.

Matrices Concept, notation, order, equality, types of matrices

A matrix is a rectangular arrangement of numbers or functions arranged into a fixed number of rows and columns.

The element of a matrix is always enclosed in the bracket [] or (). Matrices are represented by capital letters like A,

B, C, etc.

A matrix having m rows and n columns is called a matrix order m x n (read as m by n matrix). In general, a matrix of order m x n is written as.

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & a_{m3} & \dots & a_{mn} \end{bmatrix}_{m \times n}$$

It can also be written in compact form as a_{ij} represent an element of i th row and j th column.

Write all possible order of matrices having 24 elements

Solution:-

1 x 2, 2 x 12, 3 x 8, 4 x 6, 6 x 4, 8 x 3, 12 x 2, 24 x1

Question – 2

Write the order 2 x 3 where $a_{ij} = 2i - j$

Solution:-

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & -1 \\ 3 & 2 & 1 \end{bmatrix}$$

Equality of Matrices:-

Two matrices are said to be equal if their order is the same and their corresponding elements are equal.

If
$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} 2 & 3 \\ 4 & 5 \end{bmatrix}$$
 Then $a = 2, b = 3, c = 4, d = 5$

Question:-

If
$$\begin{bmatrix} x-y & 2x+z \\ 2x-y & 3z+w \end{bmatrix} = \begin{bmatrix} -1 & 5 \\ 0 & 13 \end{bmatrix}$$
 then find x, y, z and w

Solution:-

x - y = -1 2x + z = 5 2x - y = 03z + w = 13

Solving x = 1, y = 2, z = 3, w = 4

HOME ASSIGNMENT

Q1. For a 2 × 2 matrix, A = $[a_{ij}]$ whose elements are given by $a_{ij} = \frac{i}{j}$, write the value of a_{12}

Q2. Write the value of y if
$$\begin{bmatrix} x & x-y \\ 2x+y & 7 \end{bmatrix} = \begin{bmatrix} 3 & 1 \\ 8 & 7 \end{bmatrix}$$
.

Q3. write the value of x - y + z from the equation $\begin{bmatrix} x + y + z \\ x + z \\ y + z \end{bmatrix} = \begin{bmatrix} 9 \\ 5 \\ 7 \end{bmatrix}$

Types of Matrices, Addition and its Properties

SUBJECT : (Mathematics) CHAPTER NUMBER: 03 CHAPTER NAME : Matrices

CHANGING YOUR TOMORROW

Website: www.odmegroup.org Email: info@odmps.org

Toll Free: 1800 120 2316

Sishu Vihar, Infocity Road, Patia, Bhubaneswar- 751024

Types of Matrices

Row Matrix:-

A matrix is said to be a row matrix if it has only one row.

Example: $A = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$

```
Having order 1 x 3
```

Column Matrix:-

A matrix having any number of rows but only one column is called a column matrix.

Example: $A = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$

Having order 3 x 1

Rectangular Matrix:-

A matrix having m rows and n columns where $m \neq n$ is called a rectangular matrix.

Square matrix:-

It a matrix in which number of rows is equal to number of columns

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}_{3 \times 3}$$

Diagonal Elements:-

The diagonal elements of a square matrix are the elements for which i = j. i.e. the elements a_{11} , a_{22} , a_{33} ,

The line along which the diagonal elements lie is called the leading diagonal or principal diagonal.

Diagonal Matrix:-

It is a square matrix where diagonal elements are non-zero but the other elements are zero.

Example:- $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$

Scalar matrix:-

It is a diagonal matrix where all the diagonal elements are equal

Example:-
$$\begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}_{3\times 3}$$

Identity matrix:-

It is a diagonal matrix where all diagonal elements are 1 and it is denoted by the symbol I

Example:- $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}_{2 \times 2} = I_2$ and $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}_{3 \times 3} = I_3$

Addition of Matrices:-

Matrix addition is defined only when they are of the same order. The sum of matrices A and B is a matrix whose

elements are obtained by adding the corresponding elements of A and B.

Example:

Let
$$A = \begin{bmatrix} 2 & 3 \\ -4 & 5 \end{bmatrix}, B = \begin{bmatrix} 1 & -2 \\ 0 & 4 \end{bmatrix}$$

 $A + B = \begin{bmatrix} 3 & 1 \\ -4 & 9 \end{bmatrix}, A - B = \begin{bmatrix} 1 & 5 \\ -4 & 1 \end{bmatrix}$

Simple properties of addition

Properties:-

Closure Law: A matrix added with a matrix always gives a matrix. So Closure Law satisfies.

Commutative Law:- A + B = B + A

Associative Law: A + (B+C) = (A+B) + C

Existence of Additive Identity:-

A null matrix of the same order with the given matrix is the additive identity of the matrix.

A + O = O + A = A

Example:-

The additive identity of
$$A_{2\times 3} = \begin{bmatrix} 2 & 3 & 4 \\ 5 & 6 & 7 \end{bmatrix}$$
 is $0_{2\times 3} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$

Existence of additive inverse:-

- A is the additive inverse of A

Example:

If
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$$
, then its additive inverse is $-A = \begin{bmatrix} -1 & -2 & -3 \\ -4 & -5 & -6 \end{bmatrix}$

HOME ASSIGNMENT

Q1. If
$$A = \begin{bmatrix} 2 & 4 \\ 3 & 7 \end{bmatrix}$$
, $B = \begin{bmatrix} 8 & 2 \\ 4 & 3 \end{bmatrix}$, then find the value of $A + B$, $B + A$ and $A - B$

Q2. If
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 5 & 7 & 4 \\ 4 & 2 & 3 \end{bmatrix}$$
, $B = \begin{bmatrix} -2 & 3 & 8 \\ 7 & 3 & -5 \\ 2 & 6 & 3 \end{bmatrix}$ and $C = \begin{bmatrix} 1 & 4 & 2 \\ 0 & 3 & 1 \\ -3 & 2 & 5 \end{bmatrix}$ then compute
 $A + (B - C) = (A + B) - C$

Q3. Compute
$$\begin{bmatrix} \cos^2 x & \sin^2 x \\ \sin^2 x & \cos^2 x \end{bmatrix} + \begin{bmatrix} \sin^2 x & \cos^2 x \\ \cos^2 x & \sin^2 x \end{bmatrix}$$

Scalar multiplication and Multiplication of matrices

SUBJECT : (Mathematics) CHAPTER NUMBER: 03 CHAPTER NAME : Matrices

CHANGING YOUR TOMORROW

Website: www.odmegroup.org Email: info@odmps.org

Toll Free: 1800 120 2316

Sishu Vihar, Infocity Road, Patia, Bhubaneswar- 751024

Multiplication of a matrix by a scalar:-

If a scalar K is multiplied by a matrix A then all elements of matrix A are multiplied by constant K.

Question:

If
$$A = \begin{bmatrix} 3 & 4 \\ -5 & 1 \end{bmatrix}$$
 Then Find 5A

Solution:

$$5A = \begin{bmatrix} 15 & 20 \\ -25 & 5 \end{bmatrix}$$

Question:

If
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & -1 & 2 \\ 3 & 4 & 0 \end{bmatrix}$$
, $B = \begin{bmatrix} 2 & -1 & 0 \\ 3 & 0 & 1 \\ 0 & 0 & 4 \end{bmatrix}$ Then find 3A + 4B

$$3A + 4B = \begin{bmatrix} 3 & 6 & 9 \\ 0 & -3 & 6 \\ 9 & 12 & 0 \end{bmatrix} + \begin{bmatrix} 8 & -4 & 0 \\ 2 & 0 & 4 \\ 0 & 0 & 16 \end{bmatrix} = \begin{bmatrix} 11 & 2 & 9 \\ 12 & -3 & 10 \\ 9 & 12 & 16 \end{bmatrix}$$

Multiplication of Matrices

If A and B be any two matrices, then their product AB will be defined only when the number of columns in A is equal to the number of rows in B. if $A = \begin{bmatrix} a_{ij} \end{bmatrix}_{m \times n}$ and $B = \begin{bmatrix} b_{ij} \end{bmatrix}_{n \times p}$ Then their product $AB = C = \begin{bmatrix} c_{ij} \end{bmatrix}_{m \times n}$

Example:-

If
$$A = \begin{bmatrix} 1 & 4 & 2 \\ 2 & 3 & 1 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & 2 \\ 2 & 2 \\ 1 & 3 \end{bmatrix}$
Then $AB = \begin{bmatrix} 1.1+4.2+2.1 & 1.2+4.2+2.3 \\ 2.1+3.2+1.1 & 2.2+3.2+1.3 \end{bmatrix}$
 $AB = \begin{bmatrix} 11 & 16 \\ 9 & 13 \end{bmatrix}$

If
$$A = \begin{bmatrix} 8 & 0 \\ 4 & -2 \\ 3 & 6 \end{bmatrix}$$
, $B = \begin{bmatrix} 2 & -2 \\ 4 & 2 \\ -5 & 1 \end{bmatrix}$

Find the matrix x, such that 2A + 3X = 5B

Find the value of x + y from the matrix equation

$$2\begin{bmatrix} x & 5\\ 7 & y-3 \end{bmatrix} + \begin{bmatrix} 3 & -4\\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 7 & 6\\ 15 & 14 \end{bmatrix}$$

Question - 4

Compute
$$\begin{bmatrix} 2 & 1 \\ 4 & 7 \\ 2 & 3 \end{bmatrix} \times \begin{bmatrix} 2 & 3 & 4 \\ 1 & 2 & 4 \end{bmatrix}$$

If
$$A = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$$
 and $A^2 - 4A - nI = 0$ then find the value of n.

If
$$A = \begin{bmatrix} -1 & 2 \\ 3 & -4 \end{bmatrix}$$
 then find the element a_{21} of A^2

Find the value of
$$x$$
: $\begin{bmatrix} 1 & 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 0 \\ 2 & 0 & 1 \\ 1 & 0 & 2 \end{bmatrix} \begin{bmatrix} 0 \\ 2 \\ x \end{bmatrix} = 0$

If
$$F(x) = \begin{bmatrix} cosx & -sinx & 0\\ sinx & cosx & 0\\ 0 & 0 & 1 \end{bmatrix}$$
, Show that $F(x)F(y) = F(x+y)$.

HOME ASSIGNMENT

Q1. If
$$\begin{bmatrix} 1 & 3 \\ 0 & x \end{bmatrix} + \begin{bmatrix} y & 0 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 5 & 6 \\ 1 & 8 \end{bmatrix}$$
, then find the value of $x + y$.

Q2. Simplify
$$Cos\theta \begin{bmatrix} Cos\theta & Sin\theta \\ -Sin\theta & Cos\theta \end{bmatrix} + Sin\theta \begin{bmatrix} Sin\theta & -Cos\theta \\ Cos\theta & Sin\theta \end{bmatrix}$$

Q3. If
$$\begin{bmatrix} 9 & -1 & 4 \\ -2 & 1 & 3 \end{bmatrix} = A + 2 \begin{bmatrix} 1 & 2 & -1 \\ 0 & 4 & 9 \end{bmatrix}$$
, then find the value of matrix A.

Q4. Write the order of the product of matrix
$$\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \begin{bmatrix} 2 & 3 & 4 \end{bmatrix}$$
.

Simple Properties of Multiplication

SUBJECT : (Mathematics) CHAPTER NUMBER: 03 CHAPTER NAME : Matrices

CHANGING YOUR TOMORROW

Website: www.odmegroup.org Email: info@odmps.org

Toll Free: 1800 120 2316

Sishu Vihar, Infocity Road, Patia, Bhubaneswar- 751024

Properties of Matrix Multiplication:-

If A, B, and C are three matrices such that their product is defined, then

- $\Rightarrow AB \neq BA$ (Generally not commutative)
- \Rightarrow (AB)C = A(BC) (Associative Law)
- \Rightarrow IA = A = AI (I is the Identity Matrix of Matrix Multiplication)
- \Rightarrow A(B+C) = AB + AC (Distributive Law)

 \Rightarrow If AB = AC this not imply that B = C (cancellation Law is not applicable)

 \Rightarrow If AB = O It does not mean that A = O or B = O again product of two non – zero matrices may be zero matrix

Note:-

- The multiplication of two diagonal matrices is again a diagonal matrix.
- The multiplication of two triangular matrices is again a triangular matrix
- The multiplication of two scalar matrices is also a scalar matrix.
- If A and B are two matrices of the same order, then

$$(A+B)^{2} = A^{2} + B^{2} + AB + BA$$

$$(A-B)^{2} = A^{2} + B^{2} - AB - BA$$

$$(A-B)(A+B) = A^{2} - B^{2} + AB - BA$$

$$(A+B)(A-B) = A^{2} - B^{2} - AB + BA$$

$$A(-B) = (-A)B = -(AB)$$

Positive Integral Powers of the matrix:-

The positive integral powers of matrix A are defined only when A is a square matrix. Also then

 $A^2 = A.A, \qquad A^3 = A.A.A. = A^2A$

Also for any positive integers m, n

a) $A^m A^n = A^{m+n}$ b) $(A^m)^n = A^{mn} = (A^n)^m$ c) $I^n = I$ and $I^m = I$

d) $A^0 = I_n$ where A is a square matrix of order n.

Non-Commutative of multiplication of matrices:-

Example:-

If
$$A = \begin{bmatrix} 1 & -2 & 3 \\ -4 & 2 & 5 \end{bmatrix}$$
 and $B = \begin{bmatrix} 2 & 3 \\ 4 & 5 \\ 2 & 1 \end{bmatrix}$, find AB, BA, Show that $AB \neq BA$

Example

If
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
, $B = \begin{bmatrix} 2 & 3 \\ 3 & 1 \end{bmatrix}$ and $C = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{bmatrix}$ then verify associative law of multiplication.

Zero Matrix as a product of two non zero matrices.

Example:-

$$A = \begin{bmatrix} 0 & 1 \\ 0 & 2 \end{bmatrix}, B = \begin{bmatrix} 3 & 5 \\ 0 & 0 \end{bmatrix}, \text{ then } AB = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

If the product of two matrices is a zero matrix, one of the matrices doesn't need to be a zero matrix.

Applications of Matrix Multiplication:-

Example – 1

Use matrix multiplication to divide Rupees 30, 000 in two parts such that the total annual interest at 9% on the 1st part and 11% on the second part amount Rupees 3060/-

Example – 2

Let
$$A = \begin{bmatrix} 0 & -\tan\frac{\alpha}{2} \\ \tan\frac{\alpha}{2} & 0 \end{bmatrix}$$
 and I

and I be the identity matrix of order 2. Show that
$$I + A = (I - A) \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix}$$

Example – 3

A =
$$\begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}$$
, Show that $A^2 - 5A + 7I = 0$

Example – 4

If A is a square matrix such that $A^2 = A$ show that $(I + A)^3 = 7A + I$

HOME ASSIGNMENT

Q1. If
$$A = \begin{bmatrix} 0 & 1 \\ 0 & -1 \end{bmatrix}$$
 and $B = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$. Prove that $AB \neq BA$

Q2. If a matrix A =
$$\begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$$
 and $A^2 = kA$, then write the value of k.

Q3. Find the value of *x* from the matrix equation $\begin{bmatrix} 1 & 3 \\ 4 & 5 \end{bmatrix} \begin{bmatrix} x \\ 2 \end{bmatrix} = \begin{bmatrix} 5 \\ 6 \end{bmatrix}$

Q4. If A =
$$\begin{bmatrix} 2 & 0 & 1 \\ 2 & 1 & 3 \\ 1 & -1 & 0 \end{bmatrix}$$
, then prove that $A^2 - 3A + 2I$

Transpose of a matrix and its Properties

SUBJECT : (Mathematics) CHAPTER NUMBER: 03 CHAPTER NAME : Matrices

CHANGING YOUR TOMORROW

Website: www.odmegroup.org Email: info@odmps.org

Toll Free: **1800 120 2316** Sishu Vihar, Infocity Road, Patia, Bhubaneswar- 751024

Transpose of a Matrix:-

The matrix obtained from a given matrix A by changing its rows into columns or columns into rows is called transpose of matrix A and is dented by A^T or A'. From the definition, it is obvious that if the order of A is $m \times n$

Example:- Transpose of Matrix

$$\begin{bmatrix} \mathbf{a}_2 & \mathbf{a}_3 \\ \mathbf{b}_2 & \mathbf{b}_3 \end{bmatrix}_{2\times 3} \mathbf{is} \begin{bmatrix} \mathbf{a}_1 & \mathbf{b}_1 \\ \mathbf{a}_2 & \mathbf{b}_2 \\ \mathbf{a}_3 & \mathbf{b}_3 \end{bmatrix}_{3\times 2}$$

Properties of Transpose:-

a)
$$(A^{T})^{T} = A$$
 b) $(A \pm B)^{T} = A^{T} \pm B^{T}$ c) $(AB)^{T} = B^{T}A^{T}$

 a_1 b_1

Example:

If A =
$$\begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}$$
 and B = $\begin{bmatrix} -2 & 4 & 3 \end{bmatrix}$. Prove that $(AB)^T = B^T A^T$

Symmetric Matrix

A square matrix $A = [a_{ij}]$ is called symmetric matrix if $a_{ij}=a_{ji}$ for all i and j Or $A = A^T$

Example:- $\begin{bmatrix} a & h & g \\ h & b & f \\ g & f & c \end{bmatrix}$

NOTE

- > Every unit matrix and square zero matrix are symmetric matrices.
- Maximum number of different elements in a symmetric matrix is $\frac{n(n+1)}{2}$

Skew-Symmetric Matrix

A square matrix $A = [a_{ij}]$ is called Skew-symmetric matrix if $a_{ij} = -a_{ji}$ for all i and j Or $A = -A^T$

Example:- $\begin{bmatrix} 0 & h & g \\ -h & 0 & f \\ -g & -f & 0 \end{bmatrix}$

NOTE

- > All principal diagonal elements of the skew-symmetric matrix are always zero because for any diagonal element $a_{ij}=-a_{ji}$ so $a_{ij}=0$
- > The diagonal elements of a skew-symmetric matrix are always 0.

Proof:

Let
$$A = \begin{bmatrix} a_{ij} \end{bmatrix}$$
 be the skew-skew symmetric matrix. Then,

$$a_{ij} = a_{ji}$$
 for all i, j

$$\Rightarrow a_{ii}^{a} = -a_{ii}$$
 for all values of i = j

$$\Rightarrow 2a_{ii} = 0$$

$$\Rightarrow a_{ii} = 0$$

$$\Rightarrow a_{11} = a_{22} = a_{33} = \dots = a_{nn} = 0$$

Example:-

If the matrix
$$A = \begin{bmatrix} 0 & a & 5 \\ 3 & b & -1 \\ c & 1 & 0 \end{bmatrix}$$
 is skew-symmetric. Find the value of a, b, c

Example

Let A be a square matrix then prove that A + A' is a symmetric matrix

Example

If A and B are symmetric matrices then show that AB is symmetric if AB = BA

Every square matrix can be uniquely expressed as the sum of a symmetric and skew-symmetric matrix.

Question:-

Express the matrix B = $\begin{bmatrix} 2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3 \end{bmatrix}$ as the sum of a symmetric and skew-symmetric matrix.

HOME ASSIGNMENT

Q1. If A be a square matrix then prove the following

(i) $A - A^T$ is a skew-symmetric matrix

(ii) $AA^T and A^T A$ are symmetric matrices

Q2. Let A and B are symmetric matrices of same order then show that

- (i) A + B is a symmetric matrices
- (ii) AB BA is a skew-symmetric matrix
- (iii) AB + BA is a symmetric matrix

Q3. Express the following matrices as the sum of symmetric and skew symmetric matrix.

$$A = \begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$$
Q4. If A =
$$\begin{bmatrix} -2 \\ 4 \\ 5 \end{bmatrix}$$
, B = [1 3 -6], verify that $(AB)^T = B^T A^T$

Concept of elementary row and column operations.

SUBJECT : (Mathematics) CHAPTER NUMBER: 03 CHAPTER NAME : Matrices

CHANGING YOUR TOMORROW

Website: www.odmegroup.org Email: info@odmps.org

Toll Free: 1800 120 2316

Sishu Vihar, Infocity Road, Patia, Bhubaneswar- 751024

Concept of elementary row and column operations.

Elementary Transformations or elementary operations of a matrix: -

The following three operations applied on the rows (columns) of a matrix are called elementary

row (column) transformation.

- > Interchange of any two rows (columns) denoted by $R_i \Leftrightarrow R_j$ or $C_i \Leftrightarrow C_j$
- > Multiplying all elements of a row (column) of a matrix by a non-zero scalar denoted by $R_i \rightarrow kR_j$ or $C_i = kC_j$
- Adding to the elements of a row (column), the corresponding elements of any other row (column) multiplied by any scalar K, dented by $R_i \rightarrow R_i + kR_j or C_i \rightarrow C_i + kC_j$

Method of finding the inverse of a matrix by Elementary transformation: -

Let A be a non-singular matrix of order n. Then A can be reduced to the identity matrix I_n by a finite sequence of elementary transformation only. As we have discussed every elementary row transformation of a matrix is equivalent to pre-multiplication by the corresponding elementary matrix. Therefore there exist elementary matrices E_1 , E_2 E_4 such that $(E_k E_{k-1} \dots E_2 E_1)A = I_n$

$$\Rightarrow (E_k E_{k-1} \dots E_2 E_1) A A^{-1} = I_n A^{-1} \text{ (post multiplying by } A^{-1}\text{)}$$

$$\Rightarrow (E_k E_{k-1} \dots E_2 E_1) I_n = A^{-1} \qquad (\therefore I_n A^{-1} = A^{-1} and A A^{-1} = I_n)$$

$$\Rightarrow A^{-1} = (E_k E_{k-1} \dots E_2 E_1) I_n$$

Algorithm for finding the inverse of a non-singular matrix by elementary row transformations: -

Let A be a non-singular matrix of order n

Step – I:- Write $A = I_n A$

Step – II:- Perform a sequence of elementary row operations successively on the LHS and the pre-factor I_n on the RHS till we obtain the result $I_n = BA$

Step – III:- Write $A^{-1} = B$.

The following steps will be helpful to find the inverse of a square matrix of order 3 by using Elementary row transformations.

Step – I: - Introduce unity at the intersection of the first row and first column either by interchanging two rows or by adding a constant multiple of elements of some other row to the first row.

- Step II: After introducing unity at (1, 1) place introduce zeros at all other places in the first column.
- Step –III: Introduce unity at the intersection 2nd row and 2nd column with the help of the 2nd and 3rd row.

Step – IV: - Introduce zeros at all other places in the second column except at the intersection of 2nd and 2nd Column.

Step – V: - Introduce unity at the intersection of 3^{rd} row and third column.

Step – VI: - Finally introduce zeros at all other places in the third column except at the intersection of the third row and third column.

Example - 1 Find the inverse of the matrix $A = \begin{bmatrix} 1 & 3 \\ 2 & 7 \end{bmatrix}$ using elementary row transformation.

EDUCATIONAL GROUP

Example-2

Using elementary transformation find the inverse of following matrices.

HOME ASSIGNMENT

Q1. Using elementary transformations, find the inverse of each of the matrices, if it exists.

(i)
$$\begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}$$
 (ii) $\begin{bmatrix} 2 & 3 \\ 5 & 7 \end{bmatrix}$ (iii) $\begin{bmatrix} 2 & 1 \\ 4 & 2 \end{bmatrix}$

Invertible matrices and proof of the uniqueness of inverse if it exists

SUBJECT : (Mathematics) CHAPTER NUMBER: 03 CHAPTER NAME : Matrices

CHANGING YOUR TOMORROW

Website: www.odmegroup.org Email: info@odmps.org

Toll Free: 1800 120 2316

Sishu Vihar, Infocity Road, Patia, Bhubaneswar- 751024

Invertible matrices and proof of the uniqueness of inverse if it exists

The inverse of a square matrix, if it exists, is unique

Let $A = (a_{ij})_{n \times n}$ be any square matrix

If possible, A has two inverses B and C

 $\Rightarrow AB = I = BA....(1)$

AC = I = CA.....(2)

Now, B = BI = B(AC) = (BA)C = IC = C

Example - 1
Find the inverse of
$$A = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 0 \end{bmatrix}$$

Example -2

Find the inverse of the matrix $A = \begin{bmatrix} 1 & 2 & -2 \\ -1 & 3 & 0 \\ 0 & -2 & 1 \end{bmatrix}$ by using elementary row transformation.

Example -3

 $A = \begin{bmatrix} 3 & -1 & -2 \\ 2 & 0 & -1 \\ 3 & -5 & 0 \end{bmatrix}$ find A^{-1} using elementary row transformation.

HOME ASSIGNMENT

Find A^{-1} , of the following matrices using elementary row transformation.

(a)
$$A = \begin{bmatrix} 2 & -1 & 3 \\ 1 & 2 & 4 \\ 3 & 1 & 1 \end{bmatrix}$$
 Answer: $-\frac{1}{30} \begin{bmatrix} -2 & 4 & -10 \\ 44 & -7 & -5 \\ -5 & -5 & 5 \end{bmatrix}$

(b)
$$A = \begin{bmatrix} 2 & -1 & 4 \\ 4 & 0 & 2 \\ 3 & -2 & 7 \end{bmatrix}$$
 Answer :-
$$\begin{bmatrix} -2 & \frac{1}{2} & 1 \\ 11 & -1 & -6 \\ 4 & -\frac{1}{2} & -2 \end{bmatrix}$$

(c)
$$A = \begin{bmatrix} 3 & 0 & -1 \\ 2 & 3 & 0 \\ 0 & 4 & 1 \end{bmatrix}$$

Answer:
$$\begin{bmatrix} 3 & -4 & 3 \\ -2 & 3 & -2 \\ 8 & -12 & 9 \end{bmatrix}$$

THANKING YOU ODM EDUCATIONAL GROUP