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What we expect to learn? o o oo

e Students will be able to learn about the continuity of a function.

e Students will learn algebra of continuous functions.

e Students will learn about differentiability.

e Students will able to find derivative of composite functions, implicit functions.

e Students will able to find derivative of trigonometric functions, inverse trigonometric functions.
e Students will able to find derivative of logarithmic and exponential functions.

e Students will learn about finding derivative of functions in parametric form.

e Students will able to find second order derivative.

e Students will learn about Rolle’s theorem and Mean value theorem with verifications.
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In this chapter we will discuss two very important concepts of mathematics continuity and
differentiability of real functions. Also discuss the relation between them. In order to understand these

concepts well one should have the knowledge of the concept of limits which was in Class — XI
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let a € R and ‘f’ be real-valued function in real variable x defined at the points in an open interval

containing ‘a’ except possible at ‘a’. Then we say that limit of the function f(x) is a real number [as x

tends to ‘a’. If the value of f(x) approaches [ as x approaches ‘a’. Which is denoted by lim f(x) = [
x—a

Here x can approach ‘a’ on a real number line in two ways, either from the left or from the right of a. This

leads to two limits as the left-hand limit (LHL) and the Right-hand limit (RHL).

The left-hand limit is the value of f(x) approaches [ as x approaches ‘a’ from the left of a. It is denoted by

Jim £

The right-hand limit is the value of f(x) approaches as x approaches ‘a’ from the right of ‘a’. It is denoted

by lim, f(x)
x—at
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Whenever lim f(x) = lim f(x) =1
x—at x—-a
Then lim f(x) exists and lim f(x) = [
x—-a xX—a
LHL = lim f(x) = lim f(a — h)
x-a~ h—-0

RHL = lim f(x) = lim f(a + h)
x-at h—0



Some Important Results on Limit

a) lim snx _

x-0 X

eX—1

c) lim
x-0 X

. log(1+x
e) lim 283+
x—0 X

sin™1

x:1

g) lim

x—0 X

tan x _

b) lim =1
x-0 X
. a¥-1

d) }Cl_r)r(l) — = loga

. xM—agm _
f) lim =n.q"1!
x-a X—a

tan™

h) lim

x—0 X
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Some Important Results on limit

Ifa € R and f, g be real valued functions then
a) lim k. f(x) = k lim f(x)
xX—a xX—a
b) lim [f(x) + g(x)] = lim f(x) + lim g(x)
x—a xX—a xX—a

c) lim [f(x) X g(x)] = lim f(x) X lim g(x)

fo) _ Hm &)
DI s = im g’ 29 # 0
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Intuitive Idea of continuity EDUCATIONAL GROUR
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Let ‘f’ be a real valued function in any interval and let y = f(x). Then we can represent the function by a
graph in xy —plane. The function ‘f’ is continuous when we try to draw the graph in one stoke, i.e without

lifting pen from the plane of paper. Roughly, a function is continuous if its graph is a single unbroken curve

with no holes or jumps.



Intuitive Idea of Continuity

/N

0

Figure 10.1

9]

Figure 10.2

ol

Figure 10.3

From the above idea the function shown in figure 10.1 is continuous.

The function shown in fig 10.2 has a hole at a point and hence not continuous.

The function shown in fig. 10.3 has a jump at a point and hence is not continuous.
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Different types of Discontinuity

AY
\
‘ & Lim f(x) = exist finitely ’ f(x)
L ]
f(a) — does not exist. I
' |
| et |
L >X 2 >X
I'I'Ii::}SEIlg poinl discﬂminuily atx=1 [solated puint diSCﬂntinUit}‘ ax=a
P ®

Lim f(x)—> does not exIsts

1 X—ra

> X

non-removable discontinuity at x=a
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Lim f(x) = exists finitely
X—=d

f(a) — exists.
But, Lim f(x)# f(a)
X—rd
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A function f: D — R is said to be continuous at x = ¢
ie.if lim f(x) = lim f (x) = f(x)

x—c~ x—ct
i.e. LHL = RHL = Functional value

Otherwise the function will be discontinuous at x = ¢
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Conclusion

As the function f(x) is continuousatx = a if LHL = RHL = f(a)
But we know that when LHL = RHL =1 (say)

Then lim f(x)exists and lim f(x) =1
x—-a x—a

Thus the function f(x) will be continuous atx = a if lim f(x) = f(a)

i.e. Limiting value = Functional value.
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Examine the continuity of the function f(x) = 2x? —1atx =3
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3x +5, ifx =2

. atx =2
x?, ifx <2

Check the continuity of the function f(x) = {
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1. Find the value of k so that the function continuous at x = 2

2x+1,x<2
f(x) =1k, x=2.
3x—1,x>2

2. Examine the continuity of the function f(x) = 5x —3 at x = —3



0DM=A»

EDUCATIONAL GROUP

I o i ok oo il
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2x%-3x-2 .,
Show that the function f(x) = x—2 ifx # 2

5 ifx =2

is continuous at x = 2
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1—cos 2x

o if x+0
Discuss the continuity of f(x) when f(x) =1¢ L ifx=0 atx = 0.
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2x+2 — 16

Find the value of k so that the function f() = { 7 —16 Y *#*2 jscontinuous at x = 2.
k, if x=2
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A real function ‘f’ is said to be continuous if it is continuous at every point in the domain of ‘f”.
Suppose ‘f’ is a function defined on a closed interval [a, b],then for ‘f’ to be continuous, it

needs to be continuous at every point in [a, b], including the end points a and b.

Example:- Prove that the constant function f(x) = k is continuous.



List of Some Continuous Functions

NSCI) Function f(x) Interval in which f(x) is continuous
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- Constant function f(x) =

x™ nis an integer >0
~™.nis a positive integer
lx —al
P(x) = apx™ + a;x" 1 +... +a,

p—) where p(x) and q(x) are polynomial in x

sinx
CcoS X

tan x

cotx
secx
cosec x
ex
log, x

(=00, )
(=00, )
(=00, 0) — {0}
(=00, )

(—00, 00)

(—,0) —{x; q(x) = 0}

(_00! 00)

(—OO, OO)

(—oo,oo)—{(2n+1)g:nel}

(—,00) —{nm:n €I}

(—00,0) —{(2n + 1)}

(—00,00) — {nm:n € I}
(—00, 00)

(0, 0)
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Suppose f and g be two real functions which are continuous at x = ¢ then
» f 4+ giscontinuousatx =c
» f — giscontinuous at x=c

» f.giscontinuousatx =c

> (g) is continuous at x = ¢, provided g(c) # 0

» |If f and g be two functions such that fog is defined at ¢ and if f is continuous at g(c). Then

fog is continuous at x = ¢
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Show that the function defined by f(x) = |cosx| is a continuous function.
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elx -1,
Show that the function f given by f(x) = {el/x 1 if x#0

-1, ifx=0

is discontinuous atx = 0
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3ax+ b,if x > 1

If the function f(x) =< 11, if x =1 iscontinuous at x = 1, find the values of a and b.
S5ax —2b,if x <1
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ksin%(x +1),ifx<0
1. Find k, if f(x) =3 tanx—sinx is continuous at x = 0.
—, if x>0
X
2. Show that the function defined by g(x) = x — [x] is discontinuous at all integral points.
Here [x] denotes the greatest integer less than or equal to x.
1,if x <3
3.If f(x) =< ax + b,if 3 <x <5, Determine the values of a and b so that the function f(x) is continuous.
7,if 5<«x
4. Determine the value k so that the function f(x) is continuous at x = 0, Where
\/1+kx;\/1 —kx f —1<x<0
Iff(x) - 2x+1 . )
, ifo<x<1

x—-1
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flath)—-f(a)
h

A function f is said to have a derivative at x = a or differentiable atx = a iff ’llirr(l)
-

exists finitely.
The value of this limit is called the derivative of f at ‘a’ and is denoted by f’(a).

A functiony = f(x)is differentiableatx = aif LH.D.=R.H.D.atx = a.

ie. lim L@ T@ _ ;p, f@)-f(@)
h—0 —h h—0 h



Differentiable Function

We define the derivative of the function f(x) at x = a as:

flath)—f(a)
h

f'(a) = lim

h-0
Or f'(a) = lim LY@ exists finitely.
x—a x—a
Now the question in our mind when does not exists ?

For this let us consider:

Y 4

Lefi secant
through A

(a—h, fla-h)y Q
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y— 1 (x)

Right secant (ath, flath))

throwgh A

Tangent at A,

Slope of the right hand secant = w ash—-0,P - Aand

the secant (AP) — tangent at A

flath-f(@ _

= The right hand derivative = lim
h—0 h

Slope of tangent at A (wWhen approached fromright) = f' (a™)

a-h



Differentiable Function

Slope of the left hand secant = f(a%)h_f@ ash - 0,Q - Aand

the secant (AQ) — tangent at A

= The left hand derivative = ’llir%m%)h_f@ _

Slope of tangent at A (When approached from left) = f' (a™)

Y,

Lefi secant
through A

(a-h, f{a—h)y Q
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Right secant
throwgh A

y—fix)

(a+h, fath))

Tangent at A.

If the lim w does not exist, then f is not differentiable at x = a

h—0

a—h

In other words, we say that the function f is differentiable at the point ‘a’ if both Left-hand derivative(LHD)

and Right-hand derivative (RHD) are finite and equal

l.e. When LHD = RHD

o lim fla—h)—f(a)_ lim fla+h)-f(a)
h—-0 —h h-0 h
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EXAMPLE

1+x,if x <2

5—x,if x> 2 is not differenttiable at x = 2.

Prove that the functionf (x) = {
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EXAMPLE

12x — 13, if x < 3

2x% +5, if x >3 is differenttiable at x = 3.

Show that the function f(x) = {

NOTE: Differentiable functions are continuous but every continuous functions

may or may not be differentiable.
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EXAMPLE

x? if x <2

ax,+ b, if x> 2 is differenttiable at x = 2.

For what choice of a and b is the function f(x) = {



Rules of Differentiation ODMH&&
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For any two differentiable functions u and v, the following rules are as a part of algebra of derivatives
= (ku)' = ku', where k is a constant
= (uxv) =u +v

* (uv)' =u'v+ v'u(Product rule)

. (u)' _uv—w’
v v2




Some formulas on Derivatives U]M%
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d .
- (k) = 0,where k is a constant

i ny — n—-1
= () =nx

(u)’ u'v—uv’
| | —_— =
v V2
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1. % = 0, where k is constant.
aix™) n-1
2. ol (P
dWx) _ 1
3. dx 2%

4 L) _ ox

dx
da*) _
5. o @ loga

dx x’
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d(sin x)
. = C0S X
dx
d(cos x) ]
" =—Sinx
dx
d(tan x
o MO o2y
dx
d(cot x
o Y osec?x
dx
d(sec x
. ( ) =secx.tanx
dx
d(sec x
. ( ) =secx.tanx
dx
d(cosecx)

—cosecx.cotx
dx
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x2+3x+pifx<1

1. Find the value of p and q so that the function f(x) = {qx 42 ifx>1

is differentiable at x = 1

2. Let f(x) = x|x|, forall x € R. Discuss the derivability of f(x) atx = 0.
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DERIVATIVE OF COMPOSITION FUNCTIONS

CHAIN RULE

Let f be the real-valued function which is the composition of two functions u & v. i.e. f = uov.
Where u & v are differentiable functions and uov is also a differentiable function?

d duov duov  dv . . . . .
 _ = X —, Provided all the derivatives in the statement exists.
dx dx dv dx

Soppose we want to find the derivative of f where f(x) = (2x + 1)3.

df(x) _ d(2x+1)3 d(8x +12x2+6x+1)
dx dx dx

We observe that, if we take g(x) = 2x + 1 and h(x) = x3

Now = 24x% +24x + 6 = 6(2x + 1)?

dhog(x) ., dg(x)
dg(x) dx

Then f(x) = hog(x) = 2x + 1)3 = df(x) =fl(x) =

e, X2 dCxHD) oy £/(5) = 3 x (2x + 1)2 X 2 = 6(2x + 1)3

d(2x+1) dx
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I Y oW
Find dx,lfy—sm(x +1)
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. dy . _
Find e if y = log(tanx)
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LAy e sin(x?)
Find dx,lf y=e
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Find %,if y=((x%+x+1)*
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. dy . _
Find = if y= =
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L ody oo .3
Fmddx,lfy—smx
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Find Z—i’ ,if y =log(secx + tanx)



Assignment

gAY e xsinx
1. Find s ify=e
__ sin(ax+b)

. ody
2. Find - if y= cos(crtd) "

3. Find %, if y=cos(x3).sin(x3)
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DERIVATIVE OF INVERSE TRIGONOMETRIC FUNCTIONS

FORMULAE
1 dsin"'x) 1
' dx T V1-x2
d(tan™1 x) 1
3. =
dx 1+x2
5 d(sec™! x) 1

dx T xlVxZ-1

2 d(cos™'x) = -1
' dx =
d(cot™1 x) -1
4. = >
dx 1+x
6 d(cosec™x) -1
) dx |x|Vx2-1
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SOME IMPORTANT SUBSTITUTIONS

. a? — x2---mmmmmme- > put x =asinforx=acos6
L Y Ry SR — > put x =atanf orx =acotf
" Vx?Z —a?--eeee- > put x =asecHorx=acosec
. 2x 2x  1-x?3x—x*> > putx=tan9

14x2 ' 1—x2" 14+x2'1-3x2

+
= /axor /ax ------------ > put x =acos26
a+x a—x

= 2x2—1 e > put x =cos8
= 1-2x%2 e >  put x =cos@
= 3x—4x3 = e >  put x =sinf

= 4x3—3x - > put x =cosf
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Example:

Find Z—z, if y=sin"12xvV1—x2
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Example:

12x

. dy . .
Find —, if y = sin
d dx’ y 1+4x2
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Example:

1
2x2-1

L dy _ _
Find o if y=sec
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Example:

. dy . _q V1+x2-1
Find 2 ify = tan 1 22
dx X
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1. Find %’ ify = cot-1 (\/1+sin x+V1-sin x).

Vi+sin x—V1-sin x

LAy o 1 (Vi+x—1—x
2. Find dx,lfy = tan <—'_1+x+ '_1—x)'
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Derivative of Exponential and Logarithmic Functions
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Definition:

Considering x —y—2=0 and x+sin(xy)—y=0

In the first case, we can solve for y and rewrite the relationship y = x — 2.

But in the second case, it does not seem that there is an easy way to solve for y. When a relationship
between x and y is expressed in a way that is easy to solve for y and write y = f(x), we say that y is
given as an explicit function of x. In the 2"d case, it is implicit that y is a function of x and we say that the

relationship of the second type mentioned above gives function implicitly.
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Definition:

Considering x —y—2=0 and x+sin(xy)—y=0

In the first case, we can solve for y and rewrite the relationship y = x — 2.

But in the second case, it does not seem that there is an easy way to solve for y. When a relationship
between x and y is expressed in a way that is easy to solve for y and write y = f(x), we say that y is
given as an explicit function of x. In the 2"d case, it is implicit that y is a function of x and we say that the

relationship of the second type mentioned above gives function implicitly.
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Given that f(x,y) = 0 to find %

Step | Write the given expression.

Step Il Differentiate both sides of the expression with respect to x.

d
Step Ill Bring all the terms containing d_ic] to L.H.S. and the remaining terms on R.H.S.

Step IV Simplify t td—y
ep implify to get — -
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.o dy . _
Flnda,lf x+y=10
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Find Z—z, if 2x2+y2+xy=a
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Fmddx,lf x+sm y=k



0DM=A»

Example EDUCTIONAL GROUE

Find Z—z, if x3+ x2%y + cos(xy) +y3 =81
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1. Find % when (x2 + y2)? = xy.

2.1fx\/14+y+yv1l+x =0,then provethat%= 1

N (1+x)2 "

L . dy _ sin®*(a+y)
3. If siny = x sin(a + y), prove that oo
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We have learned about the derivatives of the functions of the form {f(x)}"*, n/®, where
f(x) is a function of x and n is the constant.

In this section, we will mainly discuss derivatives of the functions of the form {f (x)}9®where

f(x) and g(x) are functions of x.
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To find out the derivative
Let y = f(x)g(x)
Taking logarithm on both sides we get

= logy = g(x).log{f (x)}

Differentiating w. r. t. x we get

:ld_y: (x)xfo/(x)+lo {f ()} x g’ (x)
ydx g f () I g

d 1
= d—z = y{g(x) X oy XS @) + loglf ()} X g/(x)}

d 1
> = = (f()IW {g(x) X2 X0 + log{f (0} x o/ (x)}
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Find the derivative of y = x*
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i d_y i — 1 log x
Find — if y = (sinx)
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1. Differentiate the following function with respect to x .

. -1 .. i —
l) xCOS X ll) logxlogx lll) xsmx Cos x
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Find the derivative of y = (log x)* + x!°9*
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ind & if xY 4 oyx =
Find dx,lfx +y* = 2.
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Find‘;—zif (cos x)¥ = (siny)*.
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Cody o (I ea-3) /3
Find T if y= it
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Find ay when .
dx

1
1.y =x*+xx
2. %7 +y% = (x4 )

3.y = eSI"¥ 4 (tanx)*

d _
4.If e* + e¥ = e*tY, prove thatd—i +e¥ ¥ =0.
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Derivatives of Functions in Parametric Forms
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Definition
If x and y are two functions of a third variable t , say x = f(t) and y = g(t) the functions
x and y are called parametric functions and t is called the parameter.

Here x = f(t) and y = g(t) is called parametric form.

Tofind ¥ =% 2t _ e
dx dt dx /4
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Working Rule for finding d—z when the function in parametric form
To find the derivative of a function in parametric form, we have the working rule
Step | Write the given parametric form of the equation say x = f(t) and y = g(t)

Step Il Find % and %

dy
ind 2 usi Y% ovided &
Step Il Find -, using the formulae T % , provided ” #* 0
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Example:

If x =acos30 and y = asin3 8 find Z—z
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Example:

Ifx =logt+sint,y =et +cost findZ—z
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Problems based on derivative of a function w.r.t other function

Working Rule:

1. If the derivative of f(x) w.r.t g(x) is to be determined, then let u = f(x) and v = g(x)

. du dv
2. Find aand =

du

du _ gx
3. Now E_E
dx
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Example:

Find the derivative tan x with respect to sin x
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Example:

— = d
If x =+asin™"tandy = +/a®s 't then provethatd—z= —%
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Example:

Ifx =a(@ —sinf),y = a(l — cos0) findz—zat 6 =%.
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1. If sinx = th and tany = th , find v

2.1fx = a(8 — sinf) and y = a(1 + cosh), find % at6 = g

1+logt 3+2logt
3. |fx = tzg , — g

. dy
find —.
, find dx
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Second-Order Derivative

Definition
If a function f(x) is differentiable, then it's derivative f'(x) is called the first-order derivative of f.

If f'(x) is again differentiable, then its derivative is called the second-order derivative of f.

Notations:

(i) First-order derivative of y = f(x) can be denoted by f'(x) or Z—z ory,ory’

2
(ii) Second-order derivative of y = f(x) can be denoted by f"(x) or % ory, or y"
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Working Rule for Computation of Second order derivative

To compute the second-order derivative of any function(except the function in the parametric form) we first

compute the first-order derivative and then differentiate again to get the second-order derivative.

For the function in parametric form:

: : . . e d d ., dy
If x and y are functions of a third variable t (called parameter), then first find d—’; and d—Jt’ then, find d—z using
dy

dy dt
the formula. — =%
dx dx

at

To flnd , use the following

dzy d (dy d (dy\ dt _d (dy\ 1
dx?  dx\dx) dt\dx/) dx _ dt\dx “dy
dx
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Example

Find the second-order derivative of tan™1 x.
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Example

— (0 — i — (1 — g @ ind ¥
If x = a(@ —sinB),y = a(1 — cos 0) find dx'Also’f'ndde'
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Example

If y = tan™! x, then prove that (1 + x2)y, + 2xy, =0
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Example

3 dy _ cos*(a+y)
If x cos(a + y) = cos y, then prove that v e —

) d?y ) dy _
Hence show that sina —z T sin 2(a+y) = 0.
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X —_ —_—
1. Ife*(x + 1) = 1, show that —5 = (—dx) :

2.Ify = (tan 1 x)?, show that (x2 + 1)%y, + 2x(x2 + 1)y, = 2.

tan x

_ 2, 2%y _ in 2% =
3.ify=e , prove that cos X (1 + sin 2x) dx—O
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In this section, we will discuss two important theorems of Calculus, which are Rolle’s and
Lagrange’s Mean Value Theorem. These theorems have some important applications relating to

the behaviour of fand f'.
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Geometrically Representation of Derivatives

We have already discussed that geometrically Z—Z or f'(x) represents the slope of the tangent to
the curve y = f(x) at the point (x,y) or (x,f(x))on the curve as shown in the figure.

y = f(x)

1

I N C)

1
1
!
1
1
1
1

Slope = ()




Rolle’s Theorem

Statement: Rolle’s Theorem state that
Let f: [a, b] = R be a function such that
(i) f is continuous on the closed interval [a, b].

(ii) f is differentiable in open interval (a, b).

(iii) f(a) = f(b).

Then there exists a real number ¢ € (a, b) such that f'(¢) = 0.
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Geometrical Interpretation of Rolle’s Theorem

Let f: [a, b] = R all the three conditions of Rolle’s theorem
Geometrically f(x) is a real-valued function defined on [a, b] such that

(i) The curve y = f(x) is continuous between the points A(a,f(a)) and
B(b,f(b))

(ii) The curve y = f(x) has a unique tangent (with finite slope) at every
point between A and B. And

(iii) The ordinates of the curve y = f(x) at the end points of the
interval [a, b] are equal.

Then there exists at least one point ¢ € (a,b) on the curve between A
and B where the tangent is parallel to the x-axis.

i.e. The slope of the tangent is 0.

In other words, there exists at least one point ¢ € (a,b)such that
f'(c) = 0.

In the figure, there are two points (cl,f(cl)) and (cz,f(cz))on the
curve between A and B where the tangent is parallel to the x —axis.

fler)

0DM=A»
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Verify Rolle’s theorem (If applicable) for the function f(x) = x3 + 3x2 — 24x — 80 on [—4,5].
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1. Verify Rolle’s theorem for f(x) = (x> — 1)(x — 2) on [-1, 2] .
2. Verify Rolle’s theorem for f(x) = x? + 5x + 6 on [—3,—2].

3. Verify Rolle’s theorem for f(x) = sinx + cosx on [O, %]
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Lagrange’s Mean Value Theorem
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Lagrange’s Mean Value Theorem(LMVT)

Statement: Letf: [a, b] = R be a function such that
(i) f is continuous on the closed interval [a, b] and

(ii) f is differentiable in open interval (a, b).

Then, there exists a real number ¢ € (a, b) such that f'(¢) = -

fb)—f(a)
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y = f(z)
Theorem |

Let f: [a, b] = R satisfy both the conditions of Lagrange’s MVT.

Geometrically, f (x) is a real-valued function defined on [a, b] such that Ila) 27

ol
(i) The curve y = f(x) is continuous between the points A(a,f(a)) and B(b,f(b))

And (ii) the curve y = f(x) has a unique tangent ( with finite slope ) at every point between A and B.

Then there exists at least one point (c,f(c)) on the curve between A and B where the tangent is parallel to

the secant AB. i. e. slope of the tangent is equal to the slope of the secant AB given by —f(b;:fl(a) .
In other words, there exists at least one point ¢ € (a, b) such that f'(c) = —f(b;:z(a),

In this figure, we see that there is one point (c,f(c)) on the curve between A and B where the tangent is

parallel to the secant joining the endpoints A and B of the curve.
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Verify Lagrange’s mean value theorem for f(x) = 3x? — 5x + 1 defined in the interval [2,5].
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1. Verify Lagrange’s mean value for the function f(x) = (x — 3)(x — 6)(x — 9) on the
interval 3, 5].

2. Verify Lagrange’s mean value for the function f(x) = x? — 3x + 2 on the interval [—1, 2].

3. Verify Lagrange’s mean value for the function f(x) = x + i on the interval [1, 3].



0DNM=4»

EDUCATIONAL GROUP

I o i ok oo il

THANKING YOU
ODM EDUCATIONAL GROUP



