

Adjoint and inverse of a square matrix

SUBJECT : (Mathematics)
CHAPTER NUMBER: 04

CHAPTER NAME: Determinant

CHANGING YOUR TOMORROW

Website: www.odmegroup.org

Email: info@odmps.org

Toll Free: **1800 120 2316**

Sishu Vihar, Infocity Road, Patia, Bhubaneswar- 751024

Adjoint and Inverse of a Matrix:-

Adjoint of a matrix is the transpose of the matrix of cofactors of the given matrix

Matrix formed by the cofactors are $\begin{bmatrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \\ A_{31} & A_{32} & A_{33} \end{bmatrix}$

adj A = Transpose of
$$\begin{bmatrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \\ A_{31} & A_{32} & A_{33} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{21} & A_{31} \\ A_{12} & A_{22} & A_{32} \\ A_{13} & A_{23} & A_{33} \end{bmatrix}$$

Note:-

For a square matrix of order 2, given by

$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$$

The adj A can also obtained by interchanging a11 and a22 and by changing signs of a12 and a21 i.e

$$adjA = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} = \begin{bmatrix} a_{22} & -a_{12} \\ -a_{21} & all 1 \end{bmatrix}$$

Theorem - 1

If A be any given square matrix of order n, then A (adj A) = (adj A) A = |A| I, where I is the identity matrix of order n.

Verification:-

Let
$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$
, then adj $A = \begin{bmatrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \\ A_{31} & A_{32} & A_{33} \end{bmatrix}$

Since sum of product of elements of a row (or a column) with corresponding cofactors is equal to |A| and otherwise zero, we have

$$A(adjA) = \begin{bmatrix} |A| & 0 & 0 \\ 0 & |A| & 0 \\ 0 & 0 & |A| \end{bmatrix} = |A| \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = |A|I$$

Similarly, we can show (adjA)A = |A|I

Hence A (adj A) = (adj A) A = AI

Singular and No singular matrix

A square matrix a is said to be singular if |A| = 0

A square matrix A is said to be non-singular if $|A| \neq 0$

Theorem - 2

If A and B are non-singular matrices of the same order, then AB and BA are also non singular matrices of the same order.

Theorem - 3

The determinant of the product of matrices is equal to product of their respective determinants, that is |AB| = |A| |B|, where A and B are square matrices of the same order.

Remark

We know that,
$$(adjA)A = |A|I = \begin{bmatrix} |A| & 0 & 0 \\ 0 & |A| & 0 \\ 0 & 0 & |A| \end{bmatrix}$$

Writing determinants of matrices on both sides, we have

$$|(adjA)||A|=|A^3|\begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix}$$

$$|(adj A)|| A = |A^3|(1)$$

$$|(adjA)| = |A|^2$$

In general, if A is a square matrix of order n, then $|adj(A)| = |A|^{n-1}$

Theorem – 4

EDUCATIONAL GROUP

A square matrix a is invertible if and only if A is non-singular matrix

Verification:-

Let A be invertible matrix of order n and I be the identity matrix of order n. Then, there exists a square matrix b of order n such that AB = BA = I

Now AB = I, So |AB| = I or |A| |B| = 1 (since |I|, |AB| = |A| |B|). This gives $|A| \neq 0$. Hence A is non-singular.

Conversely, let a be non-singular. Then $|A| \neq 0$

Now A(adj A) = (adj A) A = |A| I (Theorem 1)

$$A\left(\frac{1}{|A|}adjA\right) = \left(\frac{1}{|A|}adjA\right)A = I$$

$$AB = BA = I$$
, where $B = \frac{1}{|A|} adj A$

A is invertible and $A^{-1} = \frac{1}{|A|} adj A$

Properties:-

1.
$$A.(adj(A)) = adj(A).A = |A|.I_n$$

2.
$$\left| \operatorname{adj}(A) \right| = |A|^{n-1}$$

3.
$$\operatorname{adj}(\operatorname{adj}(A)) = |A|^{(n-1)^2}$$

4.
$$\operatorname{adj}(A^{T}) = (\operatorname{adj}(A))^{T}$$

5.
$$adj(AB) = adj(B).adj(A)$$

6.
$$adj(A^m) = (adj(A))^m$$

7.
$$adj(KA) = K^{n-1}adj(A)$$

8. If A is singular then
$$|adj(A)| = 0$$

9.
$$(A^T)^{-1} = (A^{-1})^T$$

10.
$$(AB)^{-1} = B^{-1}.A^{-1}$$

11.
$$(A^K)^{-1} = (A^{-1})^K, K \in N$$

12.
$$adj(A^{-1}) = (adj(A))^{-1}$$

13.
$$(A^{-1})^{-1} = A$$

14.
$$|A^{-1}| = \frac{1}{|A|} = |A|^{-1}$$

15.
$$AB = AC \Rightarrow B = C \text{ iff } |A| \neq 0$$

Example:

If
$$A = \begin{bmatrix} 1 & 3 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 4 \end{bmatrix}$$
, then verify that A adj $A = |A|$ I. Also find A^{-1} .

Answer:

We have
$$|A| = 1(16-9)-3(4-3)+3(3-4)=1 \neq 0$$

Now
$$A_{11} = 7$$
, $A_{12} = -1$, $A_{13} = -1$, $A_{21} = -3$, $A_{22} = 1$, $A_{23} = 0$, $A_{31} = -3$, $A_{32} = 0$, $A_{33} = 0$, $A_{34} = 0$, $A_{35} = 0$, A_{35}

$$A_{33} = 1$$

Therefore
$$adj A = \begin{bmatrix} 7 & -3 & -3 \\ -1 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix}$$

Now
$$A (adj A) = \begin{bmatrix} 1 & 3 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 4 \end{bmatrix} \begin{bmatrix} 7 & -3 & -3 \\ -1 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 7-3-3 & -3+3+0 & -3+0+3 \\ 7-4-3 & -3+4+0 & -3+0+3 \\ 7-3-4 & -3+3+0 & -3+0+4 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = (1) \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = |A| \cdot I$$

Also
$$|A|^{-1} = \frac{1}{|A|} adj A - \frac{1}{1} \begin{bmatrix} 7 & -3 & -3 \\ -1 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix} - \begin{bmatrix} 7 & -3 & -3 \\ 1 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix}$$

Example:

If
$$A = \begin{bmatrix} 2 & 3 \\ 1 & -4 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & -2 \\ -1 & 3 \end{bmatrix}$, then verify that $(AB)^{-1} = B^{-1}A^{-1}$.

Answer:

We have AB =
$$\begin{bmatrix} 2 & 3 \\ 1 & -4 \end{bmatrix} \begin{bmatrix} 1 & -2 \\ -1 & 3 \end{bmatrix} = \begin{bmatrix} -1 & 5 \\ 5 & -14 \end{bmatrix}$$

Since, $|AB| = -11 \neq 0$, $(AB)^{-1}$ exists and is given by

$$(AB)^{-1} = \frac{1}{|AB|} adj (AB) = -\frac{1}{11} \begin{bmatrix} -14 & -5 \\ -5 & -1 \end{bmatrix} = \frac{1}{11} \begin{bmatrix} 14 & 5 \\ 5 & 1 \end{bmatrix}$$

Further, $|A| = -11 \neq 0$ and $|B| = 1 \neq 0$. Therefore, A^{-1} and B^{-1} both exist and are given by

$$A^{-1} = -\frac{1}{11} \begin{bmatrix} -4 & -3 \\ -1 & 2 \end{bmatrix}, B^{-i} = \begin{bmatrix} 3 & 2 \\ 1 & 1 \end{bmatrix}$$

Therefore
$$B^{-1}A^{-1} = -\frac{1}{11}\begin{bmatrix} 3 & 2 \\ 1 & 1 \end{bmatrix}\begin{bmatrix} -4 & -3 \\ -1 & 2 \end{bmatrix} = -\frac{1}{11}\begin{bmatrix} -14 & -5 \\ -5 & -1 \end{bmatrix} = \frac{1}{11}\begin{bmatrix} 14 & 5 \\ 5 & 1 \end{bmatrix}$$

Hence $(AB)^{-1} = B^{-1} A^{-1}$

Show that the matrix
$$A = \begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix}$$
 satisfies the equation $A^2 - 4A + I = O$,

where I is 2×2 identity matrix and O is 2×2 zero matrix. Using this equation, find A^{-1} .

Answer:

Now

We have
$$A^2 = A \cdot A = \begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 7 & 12 \\ 4 & 7 \end{bmatrix}$$

 $A^2-4A+I=0$

Hence
$$A^2 - 4A + I = \begin{bmatrix} 7 & 12 \\ 4 & 7 \end{bmatrix} - \begin{bmatrix} 8 & 12 \\ 4 & 8 \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} = O$$

Therefore
$$AA - 4A = -I$$

A $A(A^{-1})$ AAA^{-1} AAA^{-1} AA^{-1} Dest multiplying by A^{-1} because $|A| + 4$

or
$$A A (A^{-1}) - 4 A A^{-1} = -I A^{-1}$$
 (Post multiplying by A^{-1} because $|A| \neq 0$) or $A (A A^{-1}) - 4I = -A^{-1}$

or
$$AI - 4I = -A^{-1}$$

or
$$A^{-1} = 4I - A = \begin{bmatrix} 4 & 0 \\ 0 & 4 \end{bmatrix} - \begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 2 & -3 \\ -1 & 2 \end{bmatrix}$$

Hence
$$A^{-1} = \begin{bmatrix} 2 & -3 \\ -1 & 2 \end{bmatrix}$$

THANKING YOU ODM EDUCATIONAL GROUP