

Linear Differential Equation

SUBJECT : Mathematics CHAPTER NUMBER: 09 CHAPTER NAME : Differential Equations

CHANGING YOUR TOMORROW

Website: www.odmegroup.org Email: info@odmps.org

Toll Free: 1800 120 2316

Sishu Vihar, Infocity Road, Patia, Bhubaneswar- 751024

Linear Differential Equations

A differential equation is said to be linear if the dependent variable and its derivative occur

only in the first degree and are not multiplied together.

The general form of a linear differential equation of the first order is

$$\frac{dy}{dx} + Py = Q$$

where P, Q are functions of x or constants.

Solution of Linear Differential Equation

The general solution to the linear differential equation $\frac{dy}{dx} + Py = Q$ is

 $ye^{\int P \, dx} = \int Qe^{\int P \, dx} \, dx + C$,

Here $e^{\int P dx}$ is called as Integrating factor(I.F.).

Thus the solution is $y(I.F.) = \int Q(I.F.) dx + C.$

Solution of Linear Differential Equation

Another form of linear differential equation is $\frac{dx}{dy} + P_1 x = Q_1$,

where P_1 , Q_1 are functions of y only or constants.

The integrating factor in this case is $e^{\int P_1 dy}$ and its general solution is

 $x(I.F.) = \int Q_1(I.F.) dy + C$, Here $I.F. = e^{\int P_1 dy}$

Solution of Linear Differential Equation

Steps involved to solve first order linear differential equation:

Step-1 Write the given differential equation in the form $\frac{dy}{dx} + Py = Q$ where *P*, *Q* are functions of *x* or constants.

Step-2 Find the integrating factor $(I.F.) = e^{\int P dx}$

Step-3 Write the solution of the given differential equation as $y(I.F.) = \int Q(I.F.) dx + C$.

In case, the first order linear differential equation is in the form $\frac{dx}{dy} + P_1 x = Q_1$, where P_1, Q_1 are functions of y only or constants. Then $I.F. = e^{\int P_1 dy}$ and the solution of the differential equation is given by $x(I.F.) = \int Q_1(I.F.) dy + C$.

Find the integrating factor of the differential equation $x \frac{dy}{dx} - y = 2x^2$.

Solve
$$\frac{dy}{dx} + \frac{4x}{x^2+1}y = -\frac{1}{(x^2+1)^3}$$
.

Find the general solution of the differential equation $\frac{dy}{dx} - y = cosx$.

Find the general solution of the differential equation $\frac{dy}{dx} + 2y \tan x = \sin x$.

Solve the differential equation $(x + 2y^2)\frac{dy}{dx} = y$; given that when x = 2, y = 1.

Find the equation of a curve passing through the point (0, 1), if the slope of the tangent to the curve at any point (x, y) is equal to the sum of x coordinate and the product of the x coordinate and y coordinate of that point.

THANKING YOU ODM EDUCATIONAL GROUP