

Integration By Partial Fractions

SUBJECT : MATHEMATICS CHAPTER NUMBER:7 CHAPTER NAME : INTEGRALS

CHANGING YOUR TOMORROW

Website: www.odmegroup.org Email: info@odmps.org

Toll Free: 1800 120 2316

Sishu Vihar, Infocity Road, Patia, Bhubaneswar- 751024

Integration of Rational Algebraic Functions by Using Partial Fraction

Partial Fractions: if P(x) and Q(x) are polynomials, then $\frac{P(x)}{Q(x)}$ defines a rational algebraic function or a rational function of x.

If the integrand of the form $\frac{P(x)}{Q(x)}$, where P(x) and Q(x) are polynomials in x and $Q(x) \neq 0$.

To write $\frac{P(x)}{Q(x)}$ as a sum of simpler rational functions by a method which is known as partial

fraction decomposition. Each such fraction is called a partial fraction and it has the simplest factor of Q(x).

Integration of Rational Algebraic Functions by Using Partial Fraction

Working Rule

Step – I Suppose the given integral is in the form $\frac{P(x)}{Q(x)}$, then the first check P(x) and Q(x) are

polynomials $Q(x) \neq 0$. Also for proper and improper.

Step – II If $\frac{P(x)}{Q(x)}$ is a proper fraction, then we go to the next step directly.

If $\frac{P(x)}{Q(x)}$ is an improper fraction then we divide P(x) by Q(x), then $\frac{P(x)}{Q(x)}$ is expressed in the form of

 $T(x) + \frac{P_1(x)}{Q(x)}$, T(x), $P_1(x)$ are a polynomial in x and $\frac{P_1(x)}{Q(x)}$ proper factional function using division Algorithm.

Step – 3 Now the decomposition of the proper fraction $\frac{P(x)}{Q(x)}$ or $\frac{P_1(x)}{Q(x)}$ into partial fractions depends mainly upon the nature of the factors Q(x).

Different Rational Functions and Their Corresponding Partial Fraction

Form of the rational Function	Form of the partial fraction
(a) $\frac{Px+q}{(x-a)(x-b)}$; $a \neq b$	$\frac{A}{x-a} + \frac{B}{x-b}$
(b) $\frac{Px^2 + qx + r}{(x-a)(x-b)(x-c)}$	$\frac{A}{x-a} + \frac{B}{x-b} + \frac{C}{x-c}$
(c) $\frac{Px+q}{(x-a)^2}$	$\frac{A}{x-a} + \frac{B}{(x-a)^2}$
(d) $\frac{Px^2+qx+r}{(x-a)^2.(x-b)}$	$\frac{A}{x-a} + \frac{B}{(x-a)^2} + \frac{C}{x-b}$
(e) $\frac{px^2+qx+r}{(x-a)(x^2+bx+c)}$	$\frac{A}{x-a} + \frac{Bx+C}{x^2+bx+c}$

Example

Resolve $\frac{1}{(x+1)(x+2)}$ into Partial fractions.

Example

Resolve $\frac{3x-2}{(x+1)^2(x+3)}$ into Partial fractions.

Example

Resolve $\frac{x^2+x+1}{(x+2)(x^2+1)}$ into Partial fractions.

Assignments

1. Resolve into partial fractions

$$(a) \frac{x-1}{(x+1)(x-2)}$$

$$(b) \frac{2x-1}{(x-1)(x+2)(x-3)}$$

$$(c) \frac{2x-1}{(x+1)(x^2+2)}$$

$$(d) \frac{3x-2}{(x-1)^2(x+1)(x+2)}$$

THANKING YOU ODM EDUCATIONAL GROUP