

Derivation of Bayes' theorem

SUBJECT : (MATHEMATICS) CHAPTER NUMBER: 13 CHAPTER NAME : PROBABILITY

CHANGING YOUR TOMORROW

Website: www.odmegroup.org Email: info@odmps.org

Toll Free: 1800 120 2316

Sishu Vihar, Infocity Road, Patia, Bhubaneswar- 751024

Partition of a set.

A family of sets $A_1, A_2, ..., A_n$ is said to form a partition of a set A if

- 1. $A_{1,}A_{2},\dots,A_{n}$ are non-empty.
- 2. $A_i \cap A_j = \phi$ for $i \neq j$

3. $A = A_1 \cup A_2 \cup A_3 \cup ... \cup A_n$

Definition of Bayes' Theorem:

If A_1 , A_2 , A_3 ..., A_n be n mutually exclusive and exhaustive events and A is an event that occurs together in conjunction with either A_i i.e. A_1 , A_2 ,..., A_n from the partition of the sample space S and A be an event then.

$$P\left(\frac{A_k}{A}\right) = \frac{P(A_k) \times P\left(\frac{A}{A_k}\right)}{P(A_1) \times P\left(\frac{A}{A_1}\right) + P(A_2) \times P\left(\frac{A}{A_2}\right) + \dots + P(A_n) \times P\left(\frac{A}{A_n}\right)}$$

Proof:-

Since $A_1, A_2, ..., A_n$ form, a partition of S. Therefore

- 1. $A_1, A_2, \dots A_n$ is non-empty sets.
- **2.** $S = A_1 \cup A_2 \cup \ldots \cup A_n$

Now

$$A = A \cap S = A \cap (A_1 \cup A_2 \cup \dots \cup A_n)$$

= $(A \cap A_1) \cup (A \cap A_2) \cup \dots \cup (A \cap A_n)$ -----(1)

Science $A_1, A_2, ..., A_n$ are disjoint sets

 $A \bigcap A_1, A \bigcap A_2, ..., A \bigcap A_n \qquad \text{are also disjoint.}$

From (1), by addition theorem

$$P(A) = P(A \cap A_1) + P(A \cap A_2) + \dots + P(A \cap A_n)$$
 -----(2)

Now

 $P\left(\frac{A_k}{A}\right) = \frac{P\left(A_k \cap A\right)}{P(A)}$

Because $P(A \cap B) = P(B) \cdot P(A/B)$ Hence, Proved.

THANKING YOU ODM EDUCATIONAL GROUP