

Shortest Distance Between Two lines

SUBJECT : MATHEMATICS CHAPTER NUMBER:11 CHAPTER NAME :THREE DIMENTIONAL GEOMETRY

CHANGING YOUR TOMORROW

Website: www.odmegroup.org Email: info@odmps.org Toll Free: 1800 120 2316

Sishu Vihar, Infocity Road, Patia, Bhubaneswar- 751024

Shortest Distance between two lines

Consider two lines L₁ and L₂ whose vector equations are given by $\vec{r} = \vec{a}_1 + \lambda \vec{b}_1$ and $\vec{r} = \vec{a}_2 + \mu \vec{b}_2$

Let \vec{a}_1 be the p.v of point A on L₁ and \vec{a}_2 be the p.v of point B on L₂. Then the following cases arise

Case $- I (L_1 \text{ and } L_2 \text{ are intersecting})$

In this case, the distance between L_1 and L_2 is zero

Shortest Distance between two lines

Case – II (L_1 and L_2 are parallel lines)

In this case, L₁ and L₂ are coplanar and $ec{b}_1 = ec{b}_2 = ec{b}$

The shortest distance between two lines L_1 and L_2 is

$$\frac{\left|(\vec{a}_2 - \vec{a}_1) \times \vec{b}\right|}{\left|\vec{b}\right|}$$

Shortest Distance between two lines

Case – III (L₁ and L₂ are neither intersecting nor parallel)

In this case, L_1 and L_2 are non-coplanar and $\vec{b}_1 \neq \vec{b}_2$

The shortest distance between L₁ and L₂ is $\left|\frac{(\vec{a}_2 - \vec{a}_1).(\vec{b}_1 \times \vec{b}_2)}{|\vec{b}_1 \times \vec{b}_2|}\right|$

Find the shortest distance between two lines $\vec{r} = (\hat{\iota} + 2\hat{j} + 3\hat{k}) + \lambda(2\hat{\iota} + 3\hat{j} + 4\hat{k})$ and

 $\vec{r} = (2\hat{\imath} + 4\hat{\jmath} + 5\hat{k}) + \mu(4\hat{\imath} + 6\hat{\jmath} + 8\hat{k})$

Find the shortest distance between two lines $\vec{r} = (2\hat{j} - 3\hat{k}) + \lambda(\hat{i} + 2\hat{j} + 3\hat{k})$ and

 $\vec{r} = (2\hat{\imath} + 6\hat{\jmath} + 3\hat{k}) + \mu(2\hat{\imath} + 3\hat{\jmath} + 4\hat{k})$. Write the nature of the lines.

Show that the two lines $\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4}$ and $\frac{x-4}{5} = \frac{y-1}{2} = z$

intersect. Also find their point of intersection.

Find the image of the point (1, 6, 3) in the line $\frac{x}{1} = \frac{y-1}{2} = \frac{z-2}{3}$.

Assignments

1. Show that the lines
$$\frac{x-1}{3} = \frac{y-1}{-1} = \frac{z+1}{0}$$
 and $\frac{x-4}{2} = \frac{y-0}{0} = \frac{z+1}{3}$ intersect each other and find

their point of intersection

2. Find the equation of the line passing through (2, -1, 3) and perpendicular to the lines.

$$\vec{r} = (\hat{\imath} + \hat{\jmath} - \hat{k}) + \lambda (2\hat{\imath} - 2\hat{\jmath} + \hat{k}) and \vec{r} = (2\hat{\imath} - \hat{\jmath} - 3\hat{k}) + \mu (\hat{\imath} + 2\hat{\jmath} + 2\hat{k})$$

3. Question no 14 to 17 from Exercise 11.2 from NCERT.

THANKING YOU ODM EDUCATIONAL GROUP