

Coplanarity of two lines and System of Planes

SUBJECT: MATHEMATICS

CHAPTER NUMBER:11

CHAPTER NAME: THREE DIMENTIONAL GEOMETRY

CHANGING YOUR TOMORROW

Website: www.odmegroup.org

Email: info@odmps.org

Toll Free: **1800 120 2316**

Sishu Vihar, Infocity Road, Patia, Bhubaneswar- 751024

Co-planarity of Two lines

Two given lines be $\vec{r}=\vec{a}_1+\lambda\vec{b}_1$ and $\vec{r}=\vec{a}_2+\mu\vec{b}_2$ are coplanar if $\vec{a}_2-\vec{a}_1$ is perpendicular to $\vec{b}_1\times\vec{b}_2$

i.e. when
$$(\vec{a}_2 - \vec{a}_1) \cdot (\vec{b}_1 \times \vec{b}_2) = 0$$

And the equation of the plane containing them is $(\vec{r}-\vec{a}_1).(\vec{b}_1\times\vec{b}_2)=0$

In Cartesian form for two lines $\frac{x-x_1}{a_1} = \frac{y-y_1}{b_1} = \frac{z-z_1}{c_1} \& \frac{x-x_2}{a_2} = \frac{y-y_2}{b_2} = \frac{z-z_2}{c_2}$ are coplanar if

$$\begin{vmatrix} x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{vmatrix} = 0 \text{ and equation of the plane containing them is } \begin{vmatrix} x - x_1 & y - y_1 & z - z_1 \\ a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{vmatrix} = 0$$

Note:- If the two lines are parallel then the two lines will be coplanar.

Show that the lines $\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4}$ and $\frac{x-2}{4} = \frac{y-4}{6} = \frac{z-5}{8}$ are coplanar.

Plane Passing Through the Intersection of two Planes

The **vector equation** of the plane passing through the intersection of the planes $\vec{r}.\vec{N}_1=d_1$ and $\vec{r}.\vec{N}_2=d_2$ is $\vec{r}.\left(\vec{N}_1+\lambda\vec{N}_2\right)=d_1+\lambda d_2$ for the different real value of λ representing a family (system) of planes through the line of intersection of planes $\vec{r}.\vec{N}_1=d_1$ and $\vec{r}.\vec{N}_2=d_2$.

The **Cartesian equation** of the plane through the line of intersection of planes $a_1x + b_1y + c_1z = d_1$ and $a_2x + b_2y + c_2 = d_2$ is $(a_1x + b_1y + c_1z - d_1) + \lambda(a_2x + b_2y + c_2 - d_2) = 0$.

Find the equation of the plane through the intersection of the planes x + y + z + 1 = 0 and 2x - 3y + 5z - 2 = 0 and the point (-1,2,1).

Find the equation of the plane through the line of intersection of the planes $\vec{r} \cdot \left(2\hat{i} - 3\hat{j} + 4\hat{k}\right) = 1$ and $\vec{r} \cdot \left(\hat{i} - \hat{j}\right) + 4 = 0$ and perpendicular to $\vec{r} \cdot \left(2\hat{i} - \hat{j} + \hat{k}\right) + 8 = 0$

Find the equation of the plane through the line of intersection of the planes x + y + z = 1 and 2x + 3y + 4z = 5 which is perpendicular to the plane x - y + z = 0.

Assignments

1. Find the vector and Cartesian equation of the plane passing through the intersection of the planes

$$\vec{r} \cdot (\hat{i} + \hat{j} + \hat{k}) = 6$$
 and $\vec{r} \cdot (2\hat{i} + 3\hat{j} + 4\hat{k}) = -5$ and the point $(1, 1, 1)$.

2. Find the equation of the plane passing the line of intersection of the planes 2x + y - z = 3

and
$$5x - 3y + 4z + 9 = 0$$
, and parallel to the line $\frac{x-1}{2} = \frac{y-3}{4} = \frac{z-5}{5}$.

- **3.** Show that the line of intersection of the planes x + 2y + 3z = 8 and 2x + 3y + 4z = 11 is coplanar with the line $\frac{x+1}{1} = \frac{y+1}{2} = \frac{z+1}{3}$. Also, find the equation of the plane containing them.
- **4.** Question no 9,10, 11 from Exercise 11.3 from NCERT book.

THANKING YOU ODM EDUCATIONAL GROUP