

DIRECTION RATIOS AND DIRECTION COSINES OF A VECTOR

SUBJECT : MATHEMATICS CHAPTER NUMBER:10 CHAPTER NAME :VECTORS

CHANGING YOUR TOMORROW

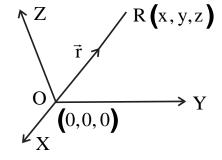
Website: www.odmegroup.org Email: info@odmps.org Toll Free: **1800 120 2316** Sishu Vihar, Infocity Road, Patia, Bhubaneswar- 751024

Position Vector

Definition:

Let R be any point in space having co-ordinates (x, y, z) with reference to the origin (0,0,0,). Then vector \overrightarrow{OR} is called position vector of the point R, with reference to the origin.

The position vector of R is denoted by \vec{r} .

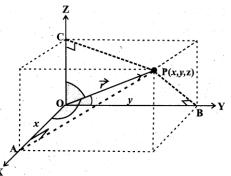


Here $\overrightarrow{OR} = \overrightarrow{r}$.

- The magnitude of \overrightarrow{OP} is $\left|\overrightarrow{OP}\right| = \left|\overrightarrow{r}\right| = \sqrt{x^2 + y^2 + z^2}$
- in practice, the position vectors of the points A, B, C, etc with respect to origin O one denoted by $\vec{a}, \vec{b}, \vec{c}$, etc respectively.

Direction Cosines

Let us consider a point R(x, y, z) whose position vector as \overrightarrow{OR} or \vec{r} . The angle α, β, γ made by the vector \vec{r} with the positive directions of x, y and z-axes respectively are called its direction angles. The cosine values of these angles, i.e. $\cos \alpha$, $\cos \beta$, $\cos \gamma$ are called direction cosines (dcs) of \vec{r} .



- Direction cosines are denoted by *l*, *m*, *n*
- $\cos \alpha = \frac{x}{|r|} \Rightarrow \ell = \frac{x}{r}$, $\cos \beta = \frac{y}{|r|} \Rightarrow m = \frac{y}{r}$, $\cos \gamma = \frac{z}{|r|} \Rightarrow n = \frac{z}{r}$

Direction Ratios

The number $\ell r, mr$ and nr proportional to the direction cosines are called direction ratios (drs) of \vec{r} . They are denoted by a, b and c respectively.

Note :

(1)
$$\ell^2 + m^2 + n^2 = 1$$
 But $a^2 + b^2 + c^2 \neq 1$
(2) $\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1$ But $\sin^2 \alpha + \sin^2 \beta + \sin^2 \gamma = 2$

Addition of Vectors

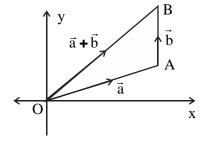
The sum or resultant of more than two vectors is called the **composition** of vectors.

Triangle law of addition If $\vec{a} \otimes \vec{b}$ are two vectors represented by directed line segments \overrightarrow{OA} and \overrightarrow{AB} , i.e., $\overrightarrow{OA} = \vec{a}$ and $\overrightarrow{AB} = \vec{b}$. Then the sum or resultant of \vec{a} and \vec{b} is defined as the vector represented

by the line segment \overrightarrow{OB} . i.e. $\overrightarrow{OB} = \vec{a} + \vec{b}$ or $\overrightarrow{OA} + \overrightarrow{AB} = \overrightarrow{OB}$.

Parallelogram Law of Addition :

If two vector \vec{a} and \vec{b} is represented by the two adjacent sides of a parallelogram in magnitude and direction, then the sum $\vec{a} + \vec{b}$ is represented in magnitude and direction by the diagonal of the parallelogram through their common point.

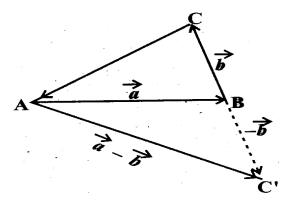


Properties of Addition

- **D** For any two vectors \vec{a} and \vec{b} , $\vec{a} + \vec{b} = \vec{b} + \vec{a}$ (commutative)
- **D** For any three vectors \vec{a}, \vec{b} and $\vec{c}, (\vec{a} + \vec{b}) + \vec{c} = \vec{a} + (\vec{b} + \vec{c})$ (Associative)
- **D** For any vector $\vec{a} + \vec{0} = \vec{0} + \vec{a} = \vec{a}$
- **D** For any vector, \vec{a} there exists another vector \vec{a} such that $\vec{a} + (-\vec{a}) = \vec{0} = (-\vec{a}) + \vec{a}$.

Subtraction of two vectors :

If \vec{a} and \vec{b} are any two vectors then subtraction of \vec{b} from \vec{a} is defined as the sum of \vec{a} and $-\vec{b}$. It is written as $\vec{a} - \vec{b}$. In process of subtracting \vec{b} from \vec{a} , we find $-\vec{b}$ (by reversing the direction) and add to \vec{a} .



Multiplication of a vector by a scalar:

Let \vec{a} be a given vector and k be a scalar. Then multiplication of the vector \vec{a} by a scalar, k is

defined as a vector denoted by $k\vec{a}$. Such that.

- The magnitude of $k\vec{a}$ is |k| times of the magnitude of \vec{a} . i.e., $|k\vec{a}| = |k||\vec{a}|$
- Direction of $k\vec{a}$ is the same as that of \vec{a} if k is positive and direction of $k\vec{a}$ is opposite to

that of \vec{a} if k is negative.

If $|\vec{a}| = 3$ and $-4 \le k \le 1$, then what can you say about $|k\vec{a}|$?

Can $\frac{-1}{2\sqrt{3}}, \frac{1}{\sqrt{2}}, \frac{-1}{\sqrt{3}}$ be the direction cosines of any vector ? Justify your answer.

If a vector makes angles α , β , with the positive directions of x, y and z-axes respectively. then prove that

 $sin^2\alpha + sin^2\beta + sin^2\gamma = 2$

What are the direction cosines of a line which is equally inclined to coordinate axes.

Assignments

1. If a vector makes angles 60° and 45° to positive direction of *x*-axis and *y*-axis

respectively. Find angle at which it inclined to *z*-axis.

2. What is the direction cosines of a line whose direction ratios are 3, 4, 12.

THANKING YOU ODM EDUCATIONAL GROUP