

COMPONENTS OF A VECTOR IN A PLANE

SUBJECT : MATHEMATICS CHAPTER NUMBER:10 CHAPTER NAME :VECTORS

CHANGING YOUR TOMORROW

Website: www.odmegroup.org Email: info@odmps.org Toll Free: **1800 120 2316** Sishu Vihar, Infocity Road, Patia, Bhubaneswar- 751024

Components of a Vector

Let us consider a point P(x, y, z) in space with position vector OP as shown in the figure. $\hat{i}, \hat{j}, \hat{k}$ are unit vectors along the x – axis, y-axis, and z-axis respectively. Let D be the foot of the perpendicular from P on the XOY plane. Thus PD is parallel to the z-axis.

So $\overrightarrow{DP} = \overrightarrow{OC} = z\hat{k}$ similarly $\overrightarrow{AD} = \overrightarrow{OB} = y\hat{j}$ and $\overrightarrow{OA} = x\hat{i}$. Now $\overrightarrow{OP} = \overrightarrow{OD} + \overrightarrow{DP} \implies \overrightarrow{OP} = \overrightarrow{OA} + \overrightarrow{AD} + \overrightarrow{DP} = x\hat{i} + y\hat{j} + z\hat{k}$

This representation of any vector is called the component form.

Thus position vector of the point P(x, y, z) is $\vec{r} = O\vec{P} = x\hat{\imath} + y\hat{\jmath} + z\hat{k}$.

Components of a Vector

Position vector of the point P(x, y, z) is $\vec{r} = \overrightarrow{OP} = x\hat{\imath} + y\hat{\jmath} + z\hat{k}$.

- x, y, and z are called scalar components
- > $x\hat{i}, y\hat{j}$ and $z\hat{k}$ are called vector components of \vec{r} .
- > The magnitude of the vector $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$ is $|\vec{r}| = \sqrt{x^2 + y^2 + z^2}$.

Vector Joining two Points

If $A(x_1, y_1, z_1)$ and $B(x_2, y_2, z_2)$ are any two points then vector joining A and B is

the vector $\overrightarrow{AB} = P.V$ of B - P.V. of $A = (x_2 - x_1)\hat{i} + (y_2 - y_1)\hat{j} + (z_2 - z_1)\hat{k}$

And,
$$\left| \overrightarrow{AB} \right| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

Some Useful Results on DCS and DRS

Let P(x, y, z) be a point in space such that $\overrightarrow{OP} = \overrightarrow{r}$ has dcs l, m, n. Then

- $x = \ell |\vec{r}|, \ y = m |\vec{r}|, \ z = n |\vec{r}|$
- Unit vector along $\vec{r}is\hat{r} = \ell \hat{\iota} + mj + n\hat{k}$. This scalar components of a unit vector give the dcs of that vector.
- If *a*, *b*, *c* be the drs of the vector whose dcs as *l*, *m*, *n* then $\frac{\ell}{a} = \frac{m}{b} = \frac{n}{c}$. Here $\ell^2 + m^2 + n^2 = 1$

but,
$$a^2 + b^2 + c^2 \neq 1$$
 and $\ell = \pm \frac{a}{\sqrt{a^2 + b^2 + c^2}}$, $m = \pm \frac{b}{\sqrt{a^2 + b^2 + c^2}}$ & $n = \pm \frac{c}{\sqrt{a^2 + b^2 + c^2}}$

- The dcs of \vec{r} are unique but drs of a vector a not unique. If a, b, c are drs of a vector then ka, kb, kc are also drs.
- If $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$, Here x, y, z can be taken as the drs of \vec{r} . They are its scalar components.

Find the unit vector in the directing \overrightarrow{AB} when A and B are points (-2,4,3) and (-1,-4,6) respectively.

Also find a vector of magnitude 5 units in the direction of \overrightarrow{AB} .

If $\vec{a} = \hat{i} + 2\hat{j} + 3\hat{k}$ and $\vec{b} = 2\hat{i} + 4\hat{j} - 5\hat{k}$, then find a vector of magnitude 6 units in the

direction of $\vec{a} - \vec{b}$.

Find the value of x, y, z so that the vector $3\hat{i} + y\hat{j} - 2\hat{k}$ and $x\hat{i} + 5\hat{j} + z\hat{k}$ are equal.

Hints: If
$$\vec{a} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}$$
 and $\vec{b} = b_1\hat{i} + b_2\hat{j} + b_3\hat{k}$
Then, $\vec{a} = \vec{b}$ iff $a_1 = b_1, a_2 = b_2 \& a_3 = b_3$

Show that the vectors $2\hat{i} - 3\hat{j} + 4\hat{k}$ and $-4\hat{i} + 6\hat{j} - 8\hat{k}$ are collinear.

Find the direction cosines and direction ratios of the vector $\hat{i} + 2\hat{j} + 3\hat{k}$

Assignments

- 1. Show that the vector $\hat{i} + \hat{j} + \hat{k}$ is equally inclined to the axes *OX*, *OY*, and *OZ*
- 2. Find the diction cosines of the vector joining the points A(1,2,-3) and B(-1,-2,1) directed from A to B.

THANKING YOU ODM EDUCATIONAL GROUP