

Scalar Triple Product of Vectors

SUBJECT : MATHEMATICS CHAPTER NUMBER:10 CHAPTER NAME :VECTOR ALGEBRA

CHANGING YOUR TOMORROW

Website: www.odmegroup.org Email: info@odmps.org

Toll Free: 1800 120 2316

Sishu Vihar, Infocity Road, Patia, Bhubaneswar- 751024

Scalar Triple Product

The scalar triple product of three vectors \vec{a} , \vec{b} and \vec{c} is defined as the number \vec{a} . $(\vec{b} \times \vec{c})$ and is denoted by $[\vec{a} \quad \vec{b} \quad \vec{c}]$.

Hence $\begin{bmatrix} \vec{a} & \vec{b} & \vec{c} \end{bmatrix} = \vec{a} \cdot \begin{pmatrix} \vec{b} \times \vec{c} \end{pmatrix}$

Geometrical Interpretation Scalar Triple Product

The scalar triple product $\begin{bmatrix} \vec{a} & \vec{b} & \vec{c} \end{bmatrix}$ represents the volume of the parallelepiped whose coterminous edges \vec{a}, \vec{b} and \vec{c} .

Properties of Scalar Triple Product

♦ If
$$\vec{a} = a_1\hat{\imath} + a_2\hat{\jmath} + a_3\hat{k}$$
, $\vec{b} = b_1\hat{\imath} + b_2\hat{\jmath} + b_3\hat{k}$ and $\vec{c} = c_1\hat{\imath} + c_2\hat{\jmath} + c_3\hat{k}$, then

$$\begin{bmatrix} \vec{a} & \vec{b} & \vec{c} \end{bmatrix} = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}.$$

If three vectors are cyclically permitted then the scalar triple product remain the same

i.e. $\begin{bmatrix} \vec{a} & \vec{b} & \vec{c} \end{bmatrix} = \begin{bmatrix} \vec{b} & \vec{c} & \vec{a} \end{bmatrix} = \begin{bmatrix} \vec{c} & \vec{a} & \vec{b} \end{bmatrix}$.

• If \vec{a} , \vec{b} , \vec{c} be any three vectors then $\begin{bmatrix} \vec{a} & \vec{b} & \vec{c} \end{bmatrix} = -\begin{bmatrix} \vec{a} & \vec{c} & \vec{b} \end{bmatrix}$

Properties of Scalar Triple Product

> In scalar triple product the position of dot and cross can be interchanged provided cyclic

order of vector remains the same. i.e. $\vec{a} \cdot (\vec{b} \times \vec{c}) = (\vec{a} \times \vec{b}) \cdot \vec{c}$

> The scalar triple product of three vectors is zero, If any two of the given vector are equal

i.e. for any three vectors $\vec{a} \quad \vec{b} \quad \vec{c}$ with $\vec{a} = \vec{b}$ or $\vec{b} = \vec{c}$ or $\vec{c} = \vec{a}$ then $\begin{bmatrix} \vec{a} & \vec{b} & \vec{c} \end{bmatrix} = 0$.

- > The scalar triple product of three vectors is zero if any two of them are parallel (or collinear)
- ▶ If $\vec{a} = \vec{b} = \vec{c}$ are coplanar then $[\vec{a} = \vec{b} = \vec{c}] = 0$. As the volume of parallelopiped vanishes.

If $\vec{a} = 4\hat{\imath} - 5\hat{\jmath} + 3\hat{k}$, $\vec{b} = 2\hat{\imath} - 10\hat{\jmath} - 7\hat{k}$ and $\vec{c} = 5\hat{\imath} + 7\hat{\jmath} - 4\hat{k}$ then find $[\vec{a} \quad \vec{b} \quad \vec{c}]$.

Show that the vectors $\vec{a} = \hat{\imath} - 2\hat{\jmath} + 3\hat{k}$, $\vec{b} = -2\hat{\imath} - 3\hat{\jmath} - 4\hat{k}$ and $\vec{c} = \hat{\imath} - 3\hat{\jmath} + 5\hat{k}$ are coplanar?

Find the volume of the parallelepiped where three coterminous edges are represented by vectors $\hat{i} + \hat{j} + \hat{k}$, $-\hat{i} + \hat{j} - \hat{k}$ and $2\hat{i} + 2\hat{j} - \hat{k}$.

Prove that $\begin{bmatrix} \vec{a} + \vec{b} & \vec{b} + \vec{c} & \vec{c} + \vec{a} \end{bmatrix} = 2 \begin{bmatrix} \vec{a} & \vec{b} & \vec{c} \end{bmatrix}$.

Assignments

- 1. Find λ if the vectors $\vec{a} = \hat{\imath} + 3\hat{\jmath} + \hat{k}$, $\vec{b} = 2\hat{\imath} \hat{\jmath} \hat{k}$ and $\vec{c} = \lambda\hat{\imath} 3\hat{k}$ are coplanar.
- 2. Show that the four points A(4,5,1), B(0,-1,-1), C(3,9,4) and D(-4,4,4) are coplanar.
- 3. Prove that $\begin{bmatrix} \vec{a} + \vec{b} & \vec{b} + \vec{c} & \vec{c} + \vec{a} \end{bmatrix} = 2\begin{bmatrix} \vec{a} & \vec{b} & \vec{c} \end{bmatrix}$. If \vec{a}, \vec{b} and \vec{c} are coplanar, then show that $\vec{a} + \vec{b}, \vec{b} + \vec{c}$ and $\vec{c} + \vec{a}$ are also coplanar.
- 4. Find the value of λ , if four points with position vectors $3\hat{i} + 6\hat{j} + \lambda\hat{k}$, $\hat{i} + 2\hat{j} + 3\hat{k}$, $2\hat{i} + 3\hat{j} + \hat{k}$ and $4\hat{i} + 6\hat{j} + \lambda\hat{k}$ are coplanar.
- 5. Prove that $\vec{a} \cdot (\vec{b} + \vec{c}) \times (\vec{a} + 2\vec{b} + 3\vec{c}) = [\vec{a} \ \vec{b} \ \vec{c}].$

THANKING YOU ODM EDUCATIONAL GROUP