

Mass defect, BINDING energy per nucleon and its variation with mass number.

SUBJECT : PHYSICS CHAPTER NUMBER: 13 CHAPTER NAME : NUCLEI

CHANGING YOUR TOMORROW

Website: www.odmegroup.org Email: info@odmps.org Toll Free: **1800 120 2316** Sishu Vihar, Infocity Road, Patia, Bhubaneswar- 751024

MASS DEFECT

If M = mass of the nucleus, then mass defect of the nucleus of an atom is

$$\Delta m = \left[Z m_{P} + (A - Z) m_{N} \right] - N$$

 $m_{\rm P} =$ mass of protons $m_{\rm N} =$ mass of the neutron

BINDING ENERGY

Binding energy $E_{\rm b} = \Delta mc^2$

Where Δm is the mass defect. E_b is the binding energy

And c= velocity of light

$$\mathbf{E}_{\mathrm{b}} = \left\{ \left[\mathbf{Z}\mathbf{M}_{\mathrm{P}} + \left(\mathbf{A} - \mathbf{Z}\right)\mathbf{M}_{\mathrm{N}} \right] - \mathbf{M} \right\} \times \mathbf{C}^{2}$$

BINDING ENERGY CURVE

- DISCUSSON OF GRAPH RELATED TO NUCLEAR STABILITY.
- HOW B.E CURVES DECIDES NUCLEAR FUSION AND FISSION REACTION

NUMERICALS

What is the nuclear radius of $\stackrel{125}{\text{Fe}}$, if that of $\stackrel{27}{\text{Al}}$ is 3.6 fermi.

:- Boron has two stable isotopes, ${}_{5}B^{10}$ and ${}_{5}B^{11}$. Their respective masses are 10.01294 am and 11.00931 am and the atomic weight of boron is 10.811 amu. Find the abundances of ${}_{5}B^{10}$ and ${}_{5}B^{11}$.

NUMERICALS

:- Find mass defect of ${}_{8}O^{16}$ also find binding energy per nucleon of ${}_{8}O^{16}$ the nucleus. Given $M_{p} = 1.00727$ and $M_{N} = 1.00866$ amu and mass of ${}_{8}O^{16} = 15.99053$ amu.

THANKING YOU ODM EDUCATIONAL GROUP

