

Linear magnification XII- SCIENCE

SUBJECT : PHYSICS CHAPTER NUMBER: 9 CHAPTER NAME : RAY OPTICS

CHANGING YOUR TOMORROW

Website: www.odmegroup.org Email: info@odmps.org

Toll Free: **1800 120 2316**

Sishu Vihar, Infocity Road, Patia, Bhubaneswar- 751024

First Principal Focus:

First Principal Focus is the point on the principal axis of the lens at which if an object is placed, the image would be formed at infinity.

Second Principal Focus:

Second Principal Focus is the point on the principal axis of the lens at which the image is formed when the object is kept at infinity.

Thin Lens Formula (Gaussian Form of Lens Equation): For Convex Lens:

.

Linear Magnification:

Linear magnification produced by a lens is defined as the ratio of the size of the image to the size of the object.

 $m = \frac{1}{O}$ $\frac{A'B'}{AB} = \frac{CB'}{CB}$

According to new Cartesian sign conventions,

A'B' = + I, AB = - O, CB' = + v and CB = - u.

Magnification in terms of v and f:

Magnification in terms of u and f:

Power of a Lens:

Power of a lens is its ability to bend a ray of light falling on it and is reciprocal of its focal length. When f is in metre, power is measured in Dioptre (D).

$$P = \frac{1}{f}$$

Image formation by convex lens:

Position of object		Position of image	Nature of Image	Magnification
а.	At ∞	At F	Real and inverted	Highly diminished
а.	Beyond -2F	Between F and 2F	Real and inverted	diminished
а.	On -2F	On 2F	Real and inverted	Same size
а.	Between -2F and F	Beyond 2F	Real and inverted	magnified
а.	On F	At ∞	Real and inverted	Highly magnified
а.	Between F and lens	In the same side of object	Virtual and erect	magnified

Image formation by concave lens:

Position of object		Position of image	Nature of Image	Magnification
а.	At ∞	At - F	Virtual and erect	Highly diminished
a.	At any finite position	Between – F and lens	Virtual and erect	diminished

Numerical: A beam of light converges at a point P. Now a lens is kept in the path of the convergent beam 12 cm from P. At what point does the beam converge if the lens is (a) a convergent lens of focal length 20 cm ? (b)a concave lens of focal length 16 cm ? (NCERT)

Numerical: A beam of light converges at a point P. Now a lens is kept in the path of the convergent beam 12 cm from P. At what point does the beam converge if the lens is (a) a convergent lens of focal length 20 cm? (b)a concave lens of focal length 16 cm? (NCERT)

Solution: This is the case of virtual object.

(a)
$$u = 12 \text{ cm}$$
, $f = 20 \text{ cm}$
As; $\frac{1}{v} = \frac{1}{u} + \frac{1}{f} = \frac{1}{12} + \frac{1}{20} = \frac{5+3}{60} = \frac{8}{60cm} \Rightarrow v = \frac{60}{8} \text{ cm} = 7.5 \text{ cm}$

(b) u = 12 cm, f = -16 cm
As;
$$\frac{1}{v} = \frac{1}{u} + \frac{1}{f} = \frac{1}{12} - \frac{1}{16} = \frac{4-3}{48} = \frac{1}{48cm} \Rightarrow v = 48cm$$

Numerical

Numerical: Show that minimum distance between object and its real image by a convex lens is 4F. OR Show that maximum focal length to keep the object and real image distance at L is L/4.

Numerical

Numerical: Show that minimum distance between object and its real image by a convex lens is 4F. OR Show that maximum focal length to keep the object and real image distance at L is L/4.

Solution: Let u = -x and v = ySo distance between object and its real image is L = x + yHence y = L - xBy lens formula ; $\frac{1}{v} - \frac{1}{u} = \frac{1}{f} \Rightarrow \frac{1}{L - x} + \frac{1}{x} = \frac{1}{f}$ $\Rightarrow \frac{L}{Lx - x^2} = \frac{1}{f} \Rightarrow x^2 - Lx + Lf = 0$

To have real solution of the equation condition to be satisfied is ;

$$(-L)^{2} \ge 4Lf \Longrightarrow L \ge 4f \Longrightarrow f \le \frac{L}{4}$$

So $L_{\text{minimum}} = 4f$ OR $f_{\text{maximum}} = \frac{L}{4}$

Numerical: An object is placed at a distance D from a screen. A convex lens is placed in between the object and screen. It is observed that for two positions of lens separated by a distance d. Find expression for the focal length of the lens.

Numerical: An object is placed at a distance D from a screen. A convex lens is placed in between the object and screen. It is observed that for two positions of lens separated by a distance d. Find expression for the focal length of the lens.

Solution: Let for a position of lens at distance x from object image be formed on the screen.

So by sign convention, u = -x and v = D - xBy lens formula; $\frac{1}{v} - \frac{1}{u} = \frac{1}{f} \Rightarrow \frac{1}{D - x} + \frac{1}{x} = \frac{1}{f}$ $\Rightarrow \frac{D}{Dx - x^2} = \frac{1}{f} \Rightarrow x^2 - Dx + Df = 0$

Solutions of this quadratic equation represents two positions (x_1 and x_2) of lens for producing image on the screen. As given , $x_2 - x_1 = d$

$$\Rightarrow 2\frac{\sqrt{(-D)^2 - 4Df \cdot 1}}{2 \times 1} = d \Rightarrow D^2 - 4Df = d^2 \Rightarrow f = \frac{D^2 - d^2}{4D}$$
$$\therefore x = \frac{D \pm \sqrt{D^2 - 4D(D^2 - d^2)}/4D}{2 \times 1} = \frac{D \pm d}{2}$$

So image distance ; v = D-x = (D-d)/2 if x = (D+d)/2 and v = (D+d)/2 if x = (D-d)/2. So magnification ; m = (D-d)/(D+d) or m = (D+d)/(D-d)

THANKING YOU ODM EDUCATIONAL GROUP

