EXERCISE - 1 - **Q.1** Show that the angles of an equilateral triangle are 60° each. - Q.2 Show that of all line segments drawn from a given point not on it, the perpendicular line segment is the shortest. - **Q.3** Two sides AB and BC and median AM of one triangle ABC are respectively equal to sides PQ and QR and median PN of \triangle PQR (fig. Q.3) Show that (i) \triangle ABM \cong \triangle PQN (ii) \triangle ABC \cong \triangle PQR Figure Q.3 Figure Q.5 Figure Q.7 - **Q.4** In triangle ABC, the external bisector of vertical angle A is parallel BC. Prove that the triangle APQ is an isosceles. - **Q.5** In Quadrilateral ABCD, AC = AD and AB bisects \angle A (figure Q.5). Show that \triangle ABC \cong \triangle ABD. What can you say about BC and BD? - **Q.6** Show that in a right angled triangle, the hypotenuse is the longest side. - Q.7 In figure (Q.7), AB = AC and $\angle B = 58^{\circ}$ then find $\angle A$. - **Q.8** ABCD is a square. E and F are points on sides AD and BC respectively such that AF = BE. (i) $\angle BAF = \angle ABE$ (ii) $\angle BF = \angle AE$ - **Q.9** In \triangle ABC and \triangle DEF, AB = DF, BC = DE, AC = EF and \angle D = 55°. Find \angle B. - **Q.10** In a triangle, if one angle is greater then the sum of other two angles, prove that it is an obtuse angled triangle. - **Q.11** In a \triangle ABC, AM \perp BC and AN is the bisector of \angle A. If LB = 65° and \angle C = 33°. Find \angle MAN. - Q.12 In each angle of a triangle is less than the sum of the other two, prove that the triangle is acute triangle. - Q.13 From the adjoining figure, prove that (i) BD = AC (ii) DO = CO Figure Q.13 Figure Q.14 **Q.14** In the diagram, P, Q and R are the mid-points of AB, AC and BC respectively and AB = AC. Prove that— (i) \triangle PBR and \triangle QRC are congruent. (ii) \angle APR = \angle AQR (iii) AR and PQ bisect each other at right angles. Figure Q.1 Figure Q.2 Figure Q.3 - **Q.1** In figure Q.1, AC = AE, AB = AD and $\angle BAD = \angle EAC$. Show that BC = DE. - Q.2 ABCD is a quadrilateral in which AD = BC and \angle DAB = \angle CBA (figure Q.2). Prove that (i) \triangle ABD \cong \triangle BAC (ii) BD = AC (iii) \angle ABD = \angle BAC - Q.3 In an isosceles triangle ABC with AB = AC, D and E are points on BC such that BE = CD (figure Q.3). Show that AD = AE. Figure Q.4 Figure Q.5 Figure Q.7 - **Q.4** In figure Q.4, BA \perp AC and DE \perp EF such that BA = DE and BF = DC. Prove that AC = EF. - **Q.5** In figure Q.5, O is any point in the interior of \triangle ABC. Show that AB + AC > OB + OC. - Q.6 Prove that the sum of three alitutdes of a triangle is less than the perimeter of the triangle. - Q.7 In the triangle ABC given (figure Q.7), BD bisects angle B and is perpendicular to AC. If the lengths of the sides of the triangle are expressed in terms of x and y as shown, find the values of x and y. Figure Q.9 Figure Q.10 - **Q.8** AD is a median of triangle ABC. Prove that AB + AC > 2AD. - Q.9 ABCD is a square (figure Q.9) and EF is parallel to BD. R is the mid point of EF. Prove that (i) BE = DF (ii) AR bisects angle BAD (iii) If AR is produced it will pass through C. - **Q.10** P is any point on the bisector of exterior angle A of a triangle ABC (figure Q.10). If AD is cut off, from BA produced, prove that (i) PD = PC (ii) BP + PC > BD (iii) PB + PC > AB + AC. ### **EXERCISE - 3** #### Fill in the blanks - Q.1 In \triangle ABC, \angle A \geq \angle B and \angle B \geq \angle C, then smallest side is - **Q.2** If \angle C is right angle in \triangle ABC, then larger side is - Q.3 The angles opposite of equal sides of a triangle are - **Q.4** Sum of the angles of a quadrilateral is equal to right angles. - **Q.5** Two circles of the same radii are - Q.7 Angles opposite to equal sides of a triangle are - **Q.8** In a triangle, angle opposite to the longer side is - **Q.9** Sum of any two sides of a triangle is greater than the side. ### True-False statements - - Q.10 If the sides of triangle are 3, 4 and 5, and 5, then are greatest angle is opposite to the side 5 untis. - Q.11 If two sides of a triangle are unequal, the greater side has the greater angle opposite to it. - **Q.12** Scalene triangle may be an acute-angled triangle. - **Q.13** An isosceles triangle may be a right angled triangle. - **Q.14** An obtuse angled triangle may be an equilateral triangle. - **Q.15** A right angled triangle may be a scalene triangle. - **Q.16** The angles of a triangle are in the ratio 2 : 1 : 3 triangle is a right angled triangle. - Q.17 In a triangle ABC, right angled at B, BD is drawn perpendicular to AC. \angle ABD = \angle C. - Q.18 O is a point inside the triangle ABC. $\angle BOC = \angle BAC + \angle ABO + \angle ACO$. | EXERCISE - 4 | | | | | | | | | | | | |--------------|---|------------------|----------------------|------------------------------|--|--|--|--|--|--|--| | Q.1 | If the perpendiculars drawn from the midpoint on one side of a triangle to its other two sides are equal, ther triangle is— | | | | | | | | | | | | | (A) Equilateral | (B) Isosceles | (C) Equi angular | (D) Scalene | | | | | | | | | Q.2 | In a isosceles triangle AB = AC and BA is produced to D, such that AB = AD then \angle BCD is – | | | | | | | | | | | | | $(A) 70^{\circ}$ | $(B) 90^{\circ}$ | (C) 60° | (D) 45° | | | | | | | | | Q.3 | If two sides of a triangle are unequal then opposite angle of larger side is – | | | | | | | | | | | | | (A) greater | (B) less | (C) equal | (D) half | | | | | | | | | Q.4 | The sum of altitudes of a triangle is then the perimeter of the triangle – | | | | | | | | | | | | | (A) greater | (B) equal | (C) half | (D) less | | | | | | | | | Q.5 | In ABC, BD \perp AC and CE \perp AB. If BD and CE intersect at O, then \angle BOC = | | | | | | | | | | | | | $(A) \angle A$ | (B) $90 + A$ | (C) $180 + \angle A$ | (D) $180 - \angle A$ | | | | | | | | | Q.6 | If the three altitudes of a Δ are equal then triangle is | | | | | | | | | | | | | (A) isosceles | (B) equilateral | (C) right angled | (D) none | | | | | | | | | Q. 7 | In a \triangle XYZ, LM YZ and bisectors YN and ZN of \angle Y and \angle Z respectively meet at N on \angle M then | | | | | | | | | | | | | YL+ZM= | | | | | | | | | | | | | (A)YZ | (B) XY | (C)XZ | (D) LM | | | | | | | | | Q.8 | If D is any point on the side BC of a Δ ABC, then – | | | | | | | | | | | | | (A)AB+BC+C | CA > 2 AD | (B) $AB+BC+CA < 2AD$ | | | | | | | | | | | (C)AB + BC + C | 2A > 3AD | (D) None | (D) None | | | | | | | | | Q.9 | In a right angled triangle. One acute angle is double the other then the hypotenuse is— | | | | | | | | | | | | | (A) Equal to small | lest side | (B) Double the sma | (B) Double the smallest side | | | | | | | | | | (C) Triple the sma | llest side | (D) None of these | (D) None of these | | | | | | | | - O.10 P and Q are the mid-points of the sies AB and BC respectively of the triangle ABC, right angled at B. Then – - (A) $AO^2 + CP^2 = AC^2$ - (B) $AQ^2 + CP^2 = (4/5) AC^2$ - (C) $AO^2 + CP^2 = (4/3) AC^2$ - (D) $AQ^2 + CP^2 = (5/4) AC^2$ - Q.11 Each angle of an equilateral triangle is – - $(A) 60^{\circ}$ - $(B) 45^{\circ}$ - $(C) 90^{\circ}$ - $(D) 30^{\circ}$ Figure Q.12 Figure 0.13 Figure 0.14 - Q.12In the figure, AB = AC, \angle A = 48 and \angle ACD = 18°. BC equal to – - (A) AC - (B) CD - (C) BD - (D) AB - Q.13 x, in figure, shown is - $(A) 25^{\circ}$ - (B) 45° - (C) 32° - (D) 38° - **Q.14** In figure, value y, if $x = 5^{\circ}$ is - (A) 50° - (B) 60° - $(C) 65^{\circ}$ - (D) 45° - In a triangle ABC, $\angle A + \angle B = 144^{\circ}$ and $\angle A + \angle C = 124^{\circ} \angle B = ?$ Q.15 - $(A) 56^{\circ}$ - (B) 60° - $(C) 65^{\circ}$ - (D) 45° # **EXERCISE - 5** **Match the column**–Statements (A,B,C,D) in **column I** have to be matched with statements (p,q,r,s) in **column II**. In right triangle ABC, right angled at C, M is the mid-point of hypotenuse AB. C is joined to M and produced **Q.1** to a point D such that DM = CM. Point D is joined to point B (fig.), match them correctly. ## Column I ## Column II $(A) \Delta AMC$ (p) congruent \triangle BMD $(B) \angle DBC$ (q) a right angle (C) \triangle DBC (r) congruent \triangle ACB (D) CM - (s) (1/2) AB - **Q.2** \triangle ABC and \triangle DBC are two isosceles triangles on the same base BC and vertices A and D are on the same side of BC (fig). If AD is extended to intersect BC at P. #### Column I ## Column II $(A) \Delta ABD$ (p) congruent \triangle ACD (B) \triangle AMP (q) congruent \triangle ACP (C) AP bisects - $(r) \angle A$ - (D) AP is the perpendicular bisector - (s) BC # **ANSWERKEY** - EXERCISE 1:(7) 64° - $(11) 16^{\circ}$ $(9)55^{\circ}$ - **EXERCISE 2:** (7) x = 4, y = 3 - **EXERCISE 3:(1)** AB - **(2)** AB - (3) Equal - (4) 4 (5) Congruent (6) Congruent (7) equal $(C) \rightarrow r$ - (8) larger - (13) True - (9) third - (10) True - (11) True - (12) True $(C) \rightarrow r$ $(D) \rightarrow s$; (2) $(A) \rightarrow p$ $(B) \rightarrow q$ - (14) False - (15) True - (16) True - (17) True - (18) True | EXERCISE - 4 | | | | | | | | | | | | | | | | |--------------|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----| | Q | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | Α | В | В | Α | D | D | В | D | Α | В | D | Α | В | С | Α | Α | **EXERCISE 5:(1)** $(A) \rightarrow p (B) \rightarrow q$ MATHEMATICS FOUNDATION - IX $(D) \rightarrow s$