

PERIOD 4

MATHEMATICS

CHAPTER NUMBER :~ 6 CHAPTER NAME :~ LINES AND ANGLES

CHANGING YOUR TOMORROW

Website: www.odmegroup.org Email: info@odmps.org

Toll Free: **1800 120 2316** Sishu Vihar, Infocity Road, Patia, Bhubaneswar- 751024

Previous Knowledge Test

1.If 2 lines intersect each other then 2 pairs of vertically opposite angles are produced. If one of the angles measures 60°, then find the measurements of other angles.

LEARNING OUTCOME:~

1. Students will be able to know the relationship between pairs of corresponding angles and interior opposite angles.

2. Students will be able to learn about the co-interior angles.

Parallel Lines and a Transversal: A line which intersects two or more lines at distinct points is called a transversal.

Here, line I is a transversal of the lines m and n, respectively.

Line I intersects m and n at P and Q respectively, then four angles are formed at each of the points P and Q namely

 $\angle 1, \angle 2, \angle 3, ..., \angle 8$

- $\angle 1$, $\angle 2$, $\angle 7$ and $\angle 8$ are called exterior angles.
- $\angle 3$, $\angle 4$, $\angle 5$ and $\angle 6$ are called interior angles.

We classify these eight angles in the following groups

- (i) Corresponding angles.
- •∠1 and ∠5
- •∠2 and ∠6
- •∠4 and ∠8
- • $\angle 3$ and $\angle 7$

(ii) Alternate interior angles

∠4 and ∠6 ∠3 and ∠5 (iii) Alternate exterior angles

 $\angle 1$ and $\angle 7$

 $\angle 2$ and $\angle 8$

(iv) Interior angles on the same side of the transversal

 $\angle 4$ and $\angle 5$

 $\angle 3$ and $\angle 6$

Note: Interior angles on the same side of the transversal are also referred to as consecutive interior angles or allied angles or co-interior angles.

Theorem 6.2 :-

If a transversal intersects two parallel lines, then each pair of alternate interior angles are equal.

Given :- Two parallel lines AB and CD.

Let PS be the transversal intersecting AB at Q and CD at R.

From (1) and (2)

 \angle BQR = \angle CRQ

Similarly we can prove

 $\angle AQR = \angle QRD$

Hence, pair of alternate interior angles are equal.

Hence proved.

Theorem 6.3~ If a transversal intersects two lines such that a pair of interior opposite angles is equal then the two lines are parallel.

In the given figure, lines AB and CD intersect at O. If $\angle AOC + \angle BOE = 70^{\circ}$ and $\angle BOD = 40^{\circ}$ find $\angle BOE$ and reflex $\angle COE$.

Also, $\angle AOC + \angle BOE = 70^{\circ}$ (Given) $40^{\circ} + \angle BOE = 70^{\circ}$ $\angle BOE = 70^{\circ} - 40^{\circ}$ $\angle BOE = 30^{\circ}$

$$\angle POX + \angle POY = 180^{\circ}$$
 (Linear
 $a + b + 90^{\circ} = 180^{\circ}$
 $a + b = 180^{\circ} - 90^{\circ}$
 $2x + 3x = 90^{\circ}$
 $5x = 90^{\circ}$
 $x = \frac{90^{\circ}}{5} = 18^{\circ}$

We need to find c,

Since MN is a line, we can use linear pair

 $\angle MOX + \angle XON = 180^{\circ}$ (Linear pair) b + c = 180° 54° + c = 180° c = 180° - 54° c = 126°

In the given figure, $\angle PQR = \angle PRQ$, then prove that $\angle PQS = \angle PRT$.

Now,

 $\angle PQS + \angle PQR = 180^{\circ}$ (Linear pair) $\angle PQS = 180^{\circ} - \angle PQR$ $\angle PQS = 180^{\circ} - x$...(1)

Also, we can say

 $\angle PRT + \angle PRQ = 180^{\circ}$ (Linear pair)

 $\angle PRT = 180^{\circ} - \angle PRQ$

 $\angle PRT = 180^{\circ} - x$...(2)

In the given figure, if x + y = w + z, then prove that AOB is a line.

Since,

w + z = x + y w + z = 180°

From Axiom 6.2: If the sum of two adjacent angles is 180°, then non-common arms form a line *(Reverse Linear Pair)*

∴ AOB is a straight line Hence proved

In the given figure, POQ is a line. Ray OR is perpendicular to line PQ. OS is another ray lying between rays OP and OR. Prove that

 $\angle ROS = \frac{1}{2} (\angle QOS - \angle POS)$

We can say that

 $\angle \text{ROP} = \angle \text{ROQ}$ $\angle \text{POS} + \angle \text{ROS} = \angle \text{ROQ}$ $\angle \text{POS} + \angle \text{ROS} = \angle \text{QOS} - \angle \text{ROS}$ $\angle \text{SOR} + \angle \text{ROS} = \angle \text{QOS} - \angle \text{POS}$ $2(\angle \text{ROS}) = \angle \text{QOS} - \angle \text{POS}$ $\angle \text{ROS} = \frac{1}{2} (\angle \text{QOS} - \angle \text{POS})$

It is given that $\angle XYZ = 64^{\circ}$ and XY is produced to point P. Draw a figure from the given information. If ray YQ bisects $\angle ZYP$, find $\angle XYQ$ and reflex $\angle QYP$.

Since YQ bisects
$$\angle$$
 ZYP
 \angle ZYQ = \angle QYP = $\frac{1}{2} \angle$ ZYP
= $\frac{1}{2} \times 116^{\circ}$
= 58°

Reflex $\angle QYP = 360^{\circ} - \angle QYP$

= 302°

Reflex $\angle QYP = 360^{\circ} - 58^{\circ}$

HOMEWORK ASSIGNMENT

EXERCISE 6.2 Q No 1,2,3

AHA

1. The exterior angles obtained on producing the base of a triangle both ways are 100° and 120°. Find the angles.

THANKING YOU ODM EDUCATIONAL GROUP

