

PERIOD 6

MATHEMATICS

CHAPTER NUMBER:~6

CHAPTER NAME:~ LINES AND ANGLES

CHANGING YOUR TOMORROW

Website: www.odmegroup.org

Email: info@odmps.org

Toll Free: **1800 120 2316**

Sishu Vihar, Infocity Road, Patia, Bhubaneswar- 751024

PREVIOUS KNOWLEDGE TEST

- 1. What do mean by transversal of lines?
- 2. Can there be a transversal for non parallel lines?

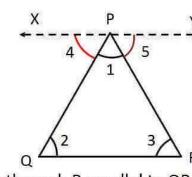
LEARNING OUTCOME:~

- 1. Students will be able to learn and prove angle sum property of triangles.
- 2. Students will develop a relation between interior angles and exterior angles of a triangle.

Theorem 6.7:-

The sum of all angles are triangle is 180°.

Given :- \triangle PQR with angles ∠1, ∠2 and ∠3



Construction:- Draw a line XY passing through P parallel to QR

Proof:

For lines XY & QR,

with transversal PQ

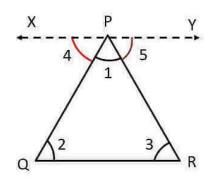
$$\angle 2 = \angle 4$$
 (Alternate angles)

For lines XY & QR,

with transversal PR

 $\angle 3 = \angle 5$ (Alternate angles)

(Alternate angles)



Also, for line XY

$$\angle 1 + \angle 4 + \angle 5 = 180^{\circ}$$
 (Linear pair)

$$\angle 1 + \angle 2 + \angle 3 = 180^{\circ}$$
 (From (1) and (2))

Hence, sum of all angle of a triangles are equal.

Hence proved

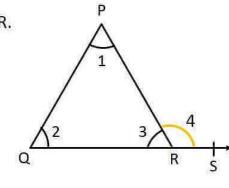
Theorem 6.8 :-

If a side of a triangle is produced, then the exterior angle so formed is equal to the sum of the two interior opposite angles.

Given :- A ΔPQR ,QR is produced to point S.

where
$$\angle$$
PRS is exterior angle of \triangle PQR.

To Prove :-
$$\angle 4 = \angle 1 + \angle 2$$



For line QS

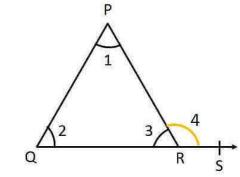
$$\angle 3 + \angle 4 = 180^{\circ}$$
 (Linear pair)..(1) $\angle 1 + \angle 2 + \angle 3 = 180^{\circ}$ (Angle sum property of triangle)..(2)

In **APQR**

$$\angle 3 + \angle 4 = \angle 1 + \angle 2 + \angle 3$$

$$\angle 4 = \angle 1 + \angle 2$$

$$\angle$$
PRS = \angle RPQ + \angle PQR

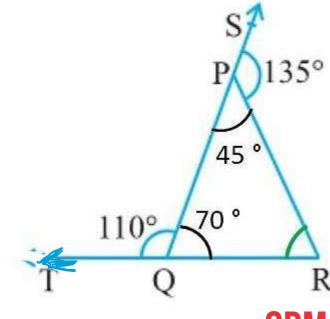


Hence, exterior angle is sum of two opposite interior angles.

Hence proved

Ex 6.3, 1

In the given figure, sides QP and RQ of \triangle PQR are produced to points S and T respectively. If \angle SPR = 135° and \angle PQT = 110°, find \angle PRQ.



Since TR is a line

$$\angle$$
 PQT + \angle PQR = 180°
110° + \angle PQR = 180°

$$\angle PQR = 180^{\circ} - 110^{\circ}$$

$$\angle$$
 PQR = 70°

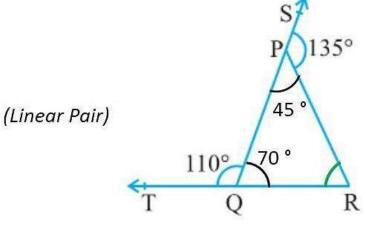
Since QS is a line

 \angle SPR + \angle QPR = 180°

(Linear Pair)

$$\angle$$
 QPR = 180° – 135°

$$\angle$$
 QPR = 45°



In Δ PQR,

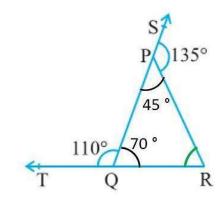
$$\angle$$
 QPR + \angle PQR + \angle PRQ = 180°

(Angle sum property of triangle)

$$45^{\circ} + 70^{\circ} + \angle PRQ = 180^{\circ}$$

$$\angle$$
 PRQ = 180° - 115°

$$\angle$$
 PRQ = 65°



Ex 6.3, 2

In the given figure, $\angle X = 62^{\circ}$, $\angle XYZ = 54^{\circ}$. If YO and ZO are the bisectors of $\angle XYZ$ and $\angle XZY$ respectively of $\triangle XYZ$, find $\angle OZY$ and $\angle YOZ$.

...(1)

OY is the angle bisector of ∠XYZ

So,
$$\angle XYO = \angle OYZ = \frac{1}{2}(\angle XYZ)$$

$$\angle XYO = \angle OYZ = \frac{1}{2} (54^{\circ})$$

$$\angle$$
XYO = \angle OYZ = 27°

Also,

OZ is the angle bisector of ∠XZY

So,
$$\angle XZO = \angle OZY = \frac{1}{2}(\angle XZY)$$
 ...(2)

$$\angle$$
 YXZ + \angle XYZ + \angle XZY = 180°

$$62^{\circ} + 54^{\circ} + \angle XZY = 180^{\circ}$$

(Angle sum property of triangle)

From (2)

$$\angle XZO = \angle OZY = \frac{1}{2}(\angle XZY)$$

$$\angle XZO = \angle OZY = \frac{1}{2} \times 64^{\circ}$$

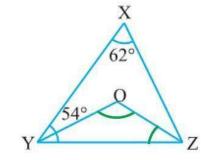
 $\angle XZO = \angle OZY = 32^{\circ}$

In ∆ OYZ

$$\angle$$
 OYZ + \angle OZY + \angle YOZ = 180°
27° + 32° + \angle YOZ = 180°

59° + ∠ YOZ = 180°

$$\angle$$
YOZ = 180° - 59°



Ex6.3, 3
In the given figure
∠DCE.

In the given figure, if AB $| | DE, \angle BAC = 35^{\circ}$ and $\angle CDE = 53^{\circ}$, find $\angle DCE$.

A

B

35°

Since AB || DE and AE is a transversal.

$$\angle BAC = \angle CED$$
 (Alternate interior angles)

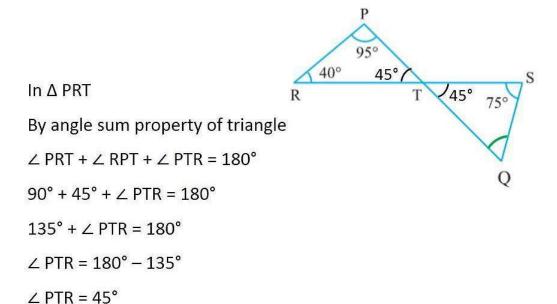
In \triangle CDE, \angle CDE + \angle CED + \angle DCE = 180° (Angle sum property of a triangle)

53°

35°/

Ex 6.3, 4

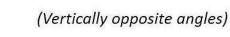
In the given figure, if lines PQ and RS intersect at point T, such that \angle PRT = 40°, \angle RPT = 95° and \angle TSQ = 75°, find \angle SQT.



Also,

$$\angle$$
 STQ = \angle PTR

$$\angle$$
 STQ = 45°



In Δ SQT

By angle sum property of triangle

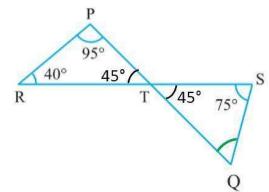
$$\angle$$
 SQT + \angle STQ + \angle TSQ = 180°

$$\angle$$
 SQT + 75° + 45° = 180°

$$\angle SQT + 120^{\circ} = 180^{\circ}$$

$$\angle SQT = 180^{\circ} - 120^{\circ}$$

$$\angle$$
 SQT = 60°



Ex 6.3, 5

In the given figure, if PQ \perp PS, PQ || SR, \angle SQR = 28° and \angle QRT

= 65°, then find the values of
$$x$$
 and y . P_____O

$$\angle PQR = \angle QRT$$
 (Alternate interior angles)

$$x + 28^{\circ} = 65^{\circ}$$

$$x = 65^{\circ} - 28^{\circ}$$

$$x = 37^{\circ}$$

In
$$\triangle SPQ$$
,
 $\angle SPQ + x + y = 180^{\circ}$ (Angle sum property of a triangle)

90° + 37° + y = 180° (Given
$$\angle SPQ = 90^\circ$$
 as $PQ \perp PS$)

 $y = 180^\circ - 127^\circ$
 $y = 53^\circ$

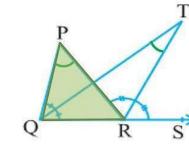
Ex 6.3,6

In the given figure, the side QR of \triangle PQR is produced to a point S. If the bisectors of \angle PQR and \angle PRS meet at point T, then prove that \angle QTR= $\frac{1}{2}$ \angle QPR

Given

TQ is the bisector of \angle PQR.

So,
$$\angle PQT = \angle TQR = \frac{1}{2} \angle PQR$$



...(1)

Also,

TR is the bisector of ∠ PRS

So,
$$\angle$$
 PRT = \angle TRS = $\frac{1}{2}$ \angle PRS

In Δ PQR,

$$\angle$$
 PRS = \angle QPR + \angle PQR

∠ TRS is the external angle

In Δ TQR,

 \angle TRS = \angle TQR + \angle QTR

′External angle is sumof two\

interior opposite angles

...(2)

Putting $\angle TRS = \frac{1}{2} \angle PRS \& \angle TQR = \frac{1}{2} \angle PQR$

 $\frac{1}{2} \angle PRS = \frac{1}{2} \angle PQR + \angle QTR$

 $\frac{1}{2} \angle PRS = \frac{1}{2} \angle PQR + \angle QTR$

 $\frac{1}{2}$ (\angle QPR + \angle PQR) = $\frac{1}{2}$ \angle PQR + \angle QTR

 $\frac{1}{2} \angle QPR + \frac{1}{2} \angle PQR = \frac{1}{2} \angle PQR + \angle QTR$

 $\frac{1}{2}$ \angle QPR + $\frac{1}{2}$ \angle PQR - $\frac{1}{2}$ \angle PQR = \angle QTR

 $\frac{1}{2}$ \angle QPR = \angle QTR

 $\angle QTR = \frac{1}{2} \angle QPR$

Hence proved

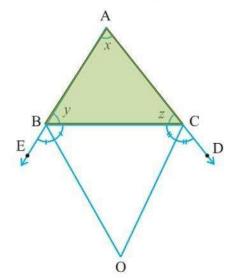
Putting $\angle PRS = \angle QPR + \angle PQR$ from (1)

HOMEWORK ASSIGNMENT

EXERCISE 6.3

AHA

In figure, the sides AB and AC of \triangle ABC are produced to points E and D respectively. If bisectors BO and CO of \angle CBE and \angle BCD respectively meet at point O, then prove that \angle BOC = 90° $-\frac{1}{2}\angle$ BAC.



THANKING YOU ODM EDUCATIONAL GROUP

