		[CLASS-X] MATH	HEMATICS HHW		
1.	Let $x = \frac{7}{20 \times 25}$ be a rational number. Then x has decimal expansion, which terminates :				
	(a) after two places of decimal	(b) after three places	of decimal		
	(c) after four places of decimal	(d) after six places of	decimal		
2.	The decimal expansion of $\frac{63}{72 \times 175}$ is				
	(a) terminating	(b) non-terminating			
	(c) non termination and repeating	(d) an irrational number			
3.	HCF and LCM of two numbers are 4 and 9696 respectively, then the product of the umbers is:				
	(a) 38924 (b) 78385	(c) 28785	(d) 38784		
4.	If a and b are positive integers, then HCF ($(a,b)\times LCM(a,b)=$			
	(a) a×b (b) a²b	(c) a+b	(d) a÷b		
5.	If the HCF of two numbers is 1, then the ty	HCF of two numbers is 1, then the two numbers are called:			
	(a) composite (c) perfect	(b) relatively prime or co-prime (d) irrational numbers			
6.	If α , β are the zeroes of the polynomials f	$(x)=x^2+x+1$, then	$\frac{1}{\alpha} + \frac{1}{\beta}$ is:		
	(a) 0 (b) 1	(c) -1	(d) 2		
7.	A quadratic polynomial whose sum and pr	oduct of zeroes are –	3 and 2 is		

- (a) $x^2 3x + 2$
- (b) $x^2 + 3x + 2$
- (c) $x^2 + 2x 3$ (d) $x^2 + 2x + 3$
- If α and β are the zeroes of the polynomial $px^2 2x + 3p$ and $\alpha + \beta = \alpha\beta$, then $p = \alpha\beta$
 - (a) $\frac{3}{2}$
- (b) $\frac{2}{3}$
- (c) 3

- (d) 2
- If one zero of the quadratic polynomial $x^2 + 3x + k$ is 2, then the value of k is
 - (a) 12
- (b) -10
- (c) 15
- (d) 5

- 10. If 19x 17y = 55 and 17x 19y = 53, then the value of X Y is
 - (a) 1

(b) -3

(c) 3

(d) 5

- 11. If $\frac{2}{x} + \frac{3}{y} = 13$ and $\frac{5}{x} \frac{4}{y} = -2$, then x + y equals
 - (a) $\frac{1}{6}$
 - (b) $-\frac{1}{6}$ (c) $\frac{5}{6}$
- (d) $-\frac{5}{6}$
- 12. If the system of equations 2x + 3y = 5, 4x + ky = 10 has infinitely many solution, then k = 10
 - (a) 3
- (b) 6

(c)5

- (d) 8
- 13. If the system of equations kx 5y = 2, 6x + 2y = 7 has no solution, then k = 1
 - (a) -10
- (b) -5

- (c) 6
- (d) -15
- 14. The pair of equations x + 2y + 5 = 0 and -3x 6y + 1 = 0 have
 - (a) a unique solution

- (b) exactly two solutions
- (c) infinitely many solutions
- (d) no solution
- 15. If a pair of linear equations is consistent, then the lines will be
 - (a) parallel

- (b) always coincident
- (c) intersecting or coincident
- (d) always intersecting Changing your Tomorrow
- 16. If in two triangles ABC and PQR, $\frac{AB}{OR} = \frac{BC}{PR} = \frac{CA}{PO}$, then:
 - (a) $\triangle PQR \sim \triangle CAB$
- (b) $\triangle PQR \sim \triangle ABC$
- (c) \triangle CBA $\sim \triangle$ PQR
- (d) \triangle BCA $\sim \triangle$ PQR
- 17. In a \triangle ABC, AD is the bisector of \angle BAC. If AB = 6 cm, AC = 5 cm and BD = 3cm, then DC =
 - (a) 11.3 cm
- (b) 2.5 cm
- (c) 3.5 cm
- (d) 4:5 cm
- 18. If $\triangle ABC$ is an equilateral triangle such that $AD \perp BC$, then $AD^2 =$
 - (a) $\frac{3}{2}DC^{2}$
- (b) 4DC²
- (c) 3CD²
- (d) 2CD²
- 19. A ladder is placed against a wall such that its food is at distance of 2.5 m from the wall and its top reaches a window 6 cm above the ground. The length of the ladder is

	(a) 9.5 m	(b) 7.5 m	(c) 8.5 m	(d) 6.5 m		
20.	The lengths of the crhombus is	Then the perimeter of the				
	(a) 5 cm	(b) 10 cm	(c) 15 cm	(d) 20 cm		
21.	1. A vertical stick 30 m long casts a shadow 15 m long on the ground. At the same t tower casts a shadow 75 m long on the ground. The height of the tower is					
	(a) 150 m	(b) 130 m	(c) 125 m	(d) 120 m		
22.	. If ABC and DEF are similar triangles such that $\angle A = 47^{\circ}$ and $\angle E = 83^{\circ}$, then $\angle C =$					
	(a) 50°	(b) 40°	(c) 60°	(d) 70°		
23.	The fourth vertex and $C(8,3)$ is	D of a parallelogram	ABCD whose three ve	ertices are $A(-2,3)$, $B(6,7)$		
	(a) <mark>(0,</mark> 1)	(b) (0, -1)	(c) (-1, 0)	(d) (1, 0)		
24.	If the distance between the points (8, p) and (4, 3) is 5, then value of p is					
	(a) 6	(b) 3	(c) 5	(d) -6		
25.	The point P(1, 2) divides the join of $A(-2,1)$ and $B(7,4)$ in the ratio is					
	(a) 3 : 2	(b) 2 : 3 Chang	(c) 2 : 1	(d) 1 : 2		
26.	. If $A(5,1),B(1,5)$ and $C(-3,-1)$ are the vertices of ΔABC , then length of median AD is					
	(a) $\sqrt{35}$ units	(b) $\sqrt{37}$ units	(c) $\sqrt{33}$ units	(d) $\sqrt{31}$ units		
27.	The distance between the points $A(2a, 6a)$ and $B(2a + \sqrt{3a}, 5a)$ is					
	(a) a	(b) 2a	(c) 3a	(d) 4a		
28.	The distance between	en the points (a, b) and	(-a,-b) is :			

(b) 2(a+b)

29. If $\sin A + \sin^2 A = 1$, then the value of the expression $\left(\cos^2 A + \cos^4 A\right)$ is

(c) $2\sqrt{a^2+b^2}$ (d) $2\sqrt{a+b}$

(a) 2ab

(b)
$$\frac{1}{2}$$

30. If $\sec\theta + \tan\theta = m$, then $\tan\theta$ is equal to

(a)
$$\frac{m^2 - 1}{2m}$$

(b)
$$\frac{m^2+1}{2m}$$

(a)
$$\frac{m^2 - 1}{2m}$$
 (b) $\frac{m^2 + 1}{2m}$ (c) $\frac{m^2 - 1}{m}$

(d)
$$\frac{m^2 + 1}{m}$$

31. $\frac{\sin \theta}{1 + \cos \theta}$ is equal to

(a)
$$\frac{1+\cos\theta}{\sin\theta}$$

(b)
$$\frac{1-\cos\theta}{\sin\theta}$$

(a)
$$\frac{1+\cos\theta}{\sin\theta}$$
 (b) $\frac{1-\cos\theta}{\sin\theta}$ (c) $\frac{1+\cos^2\theta}{\sin\theta}$ (d) $\frac{1-\sin^2\theta}{\sin\theta}$

(d)
$$\frac{1-\sin^2\theta}{\sin\theta}$$

32. If triangle ABC is right angled at C, then the value of sec(A+B) is

(c)
$$\frac{2}{\sqrt{3}}$$

(d) not defined

33. sin2A = 2sinAcos A is true when A =

34. If $sin A = \frac{1}{2}$, then the value of $3cos A - 4cos^3 A$ is

(c) -1 (d)
$$\frac{3}{2}$$
Changing your Tomorrow

35. If $a \cot \theta + b \csc \theta = p$ and $b \cot \theta + a \csc \theta = q$, then $p^2 - q^2 =$

(a)
$$a^2 - b^2$$

(b)
$$b^2 - a^2$$

(c)
$$a^2 + b^2$$

36. If $x = a\cos\theta$ and $y = b\sin\theta$, then $b^2x^2 + a^2y^2 =$

(a)
$$a^2b^2$$

(c)
$$a^4 + b^4$$

(d)
$$a^2 + b^2$$

37. $(1 + \tan^2 \theta)(1 - \sin \theta)(1 + \sin \theta) =$

38.
$$\sqrt{\frac{\sec \theta - 1}{\sec \theta + 1}} + \sqrt{\frac{\sec \theta + 1}{\sec \theta - 1}} =$$

			[CLASS-X] MA	THEMATICS HHW	
	(a) 2sinθ	(b) 2cosecθ	(c) 2tanθ	(d) 2secθ	
39.	If the circumference circle is	cumference and the area of circle are numerically equal, then diameter of the			
	(a) 2	(b) 4	(c) $\frac{\pi}{2}$	(d) 2π	
40.	If the length of minute hand of a watch is $\sqrt{7}\text{cm}$, then the area swept by it between a.m. to 9 : 10 a.m. is				
	(a) 3cm ²	(b) 3.5cm ²	(c) 3.6cm ²	(d) 4.2cm ²	
41.	If an arc subtends as the arc is (a) $\frac{\pi}{6}$ a cm			f radius a cm, then length of (d) $\frac{\pi}{2}$ a cm	
42.	If the circumference	of a circle is equal to	the perimeter of a s	quare, then the ratio of their	

of their

- (a) 22:7
- (b) 14:11
- (c) 7:22
- (d) 7:11

43. The area of the circle that can be inscribed in a square of side 6 cm is

- (a) $36\pi \text{cm}^2$
- (b) $18\pi \text{cm}^2$
- (c) $12\pi \text{cm}^2$

44. The angle subtended by an arc of length 4π cm at the centre of the circle of radius 4 cm is

- (a) 30°
- (b) 45°
- (c) 60°
- (d) 90°

45. A card is drawn from a pack of 52 playing cards. The probability that it is a queen is

- (a) $\frac{1}{10}$
- (b) $\frac{1}{26}$
- (b) $\frac{1}{13}$

46. Two dice are thrown simultaneously. The probability of getting a prime number on both dice is

- (a) $\frac{1}{2}$
- (b) $\frac{1}{3}$
- (c) $\frac{1}{4}$

- 47. The probability of drawing a green coloured ball from a bag containing 6 red and 5 black balls is
 - (a) 1
- (b) 0

- (c) $\frac{1}{11}$
- (d) $\frac{5}{11}$
- 48. The probability of guessing the correct answer to a question is $\frac{p}{12}$. If the probability of not guessing the correct answer the same question is $\frac{3}{4}$, then the value of p is
 - (a) 1
- (b) 2

(c) 3

- (d) 4
- 49. A dice is thrown once. The probability of getting a number less than 3 and greater than 2 is
 - (a) 1
- (b) $\frac{1}{2}$ (c) $\frac{1}{6}$
- (d) 0
- 50. A card is drawn at random from an ordinary pack of 52 playing cards. The probability that the card is a black king is
 - (a) $\frac{1}{52}$
- (b) $\frac{1}{26}$
- (c) $\frac{1}{13}$ (d) $\frac{12}{13}$

- Which of the following is not a polynomial? 51.

- (c) $x^2 + \frac{1}{x^2} + 7$
- (d) $2x^3 + 3x^2 5x 6$ Changing your Tomorrow
- Which of the following is a polynomial. 52.
- (a) $x^2 + \frac{1}{x^2}$ (b) $2x^2 3\sqrt{x} + 1$ (c) $3x^3 + x^2 + x^2 7$ (d) $3x^2 3x + 1$

- The degree of the polynomial $x^3 + x + 7$ is: 53.
 - (a) 2

(b) 3

- (c) 1
- (d) Not known
- If α,β be the zeros of the quadratic polynomial $2x^2 + 5x + 1$, then value of $\alpha + \beta + \alpha\beta =$ 54.
 - (a) -2

(b) -1

- (c) 1
- (d) None of these
- If α, β be the zeros of the quadratic polynomial $2-3x-x^2$, then $\alpha+\beta=$ 55.
 - (a) 2

(b) 3

- (c) 1
- (d) None of these
- A quadratic polynomial, whose zeros are -3 and 4, is 56.

[CLASS-X] | MATHEMATICS | HHW

(a)
$$x^2 - x + 12$$
 (b) $x^2 + x + 12$ (c) $\frac{x^2}{2} - \frac{x}{2} - 6$ (d) $2x^2 + 2x - 24$

57. A real number α is called a zero of the polynomial $f(x)$ if
(a) $f(\alpha) = -1$ (b) $f(\alpha) = 1$ (c) $f(\alpha) = 0$ (d) None of these

58. If the sum of the zeros of the quadratic polynomial $3x^2 - kx + 6$ is 3, then the value of k is
(a) 9 (b) 3 (c) -3 (d) 6

59. The quadratic polynomial, sum and product of whose zeros are respectively -1 and -12 is
(a) $x^2 + x - 12$ (b) $x^2 - x - 12$ (c) $x^2 - 12x + 1$ (d) $x^2 - 12x - 1$

60. Given that one of the zeros of the cubic polynomial $ax^3 + bx^2 + cx + d$ is zero, the product of the other two zeros is

(a) $-\frac{c}{a}$ (b) $\frac{c}{a}$ (c) 0 (d) $-\frac{b}{a}$

61. $\triangle ABC$ and $\triangle PQR$ are similar triangles such that $\triangle A = 32^\circ$ and $\triangle R = 65^\circ$ then $\triangle B$ is

- If $\triangle ABC \sim \triangle DEF$, BC = 4cm, EF = 5cm and $ar(\triangle ABC) = 80$ cm², the $ar(\triangle DEF)$ is (a) 100 cm² (b) 125cm² (c) 150 cm² (d) 200 cm²
- ABC and DEF are similar triangles such that $\angle A = 47^{\circ}$ and $\angle E = 83^{\circ}$, then $\angle C$ is. $(a)60^{0}$ (b) 70^{0} (c) 50^{0}
- $\Delta ABC \sim \Delta PQR$. M is the midpoint of BC and N is the midpoint of QR. If the area of 66. $\Delta ABC = 100 \text{sq.cm}$ and the area of $\Delta PQR = 144 \text{sq.cm}$. If AM = 4 cm then PN is
 - (a)4.8 cm (d) 5.6 cm (b) 12 cm (c) 4 cm
- 67. If a vertical pole of length 6 cm casts a shadow 4m long on the ground and at the same time a tower casts a shadow 28 m long, then the height of the tower is.
 - (d) 45 m (a)42 m (b) 21 m (c) 12 m

- 68. $\triangle ABC \sim \triangle PQR$. If $ar(ABC) = 2.25m^2 ar(PQR) = 6.25m^2$, PQ = 0.5m then length of AB is
 - a) 30 cm
- (b) 0.5 m
- (c) 50 cm
- (d) 3 m
- 69. If $x = 3 \sec^2 \theta 1$, $y = \tan^2 \theta 2$ then x 3y is equal to
 - (a) 3

(b) 4

(c) 8

(d) 5

- 70. If $\cos \theta + \cos^2 \theta = 1$, the value of $(\sin^2 \theta + \sin^4 \theta)$ is
 - (a) 0
- (b) 1

(c) -1

(d) 2

