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STUDY  MATERIAL : MATHEMATICS

APPLICATION OF DERIVATIVES

6
TANGENT & NORMAL

SLOPES OF THE TANGENT & THE NORMAL
Slope of the tangent : Let y = f (x) be a continuous curve,

and let P (x1, y1)  be a point on it. Then,
p

dy
dx
 
  

 is the

slope of the tangent to the curve y = f (x) at point P i.e. ;

p

dy
dx
 
   = tan= slope of the

tangent at P, where  is  the
angle which the tangent at P

O

 y

 x

P(x  ,y )1     1

Normal

Tangent

(x1, y1) makes with the posi-
tive direction of x-axis.

(i) The inclination of tangent with x–axis. = 1 dytan
dx

  
  

(ii) Slope of the tangent =
dy
dx

(iii) If the tangent at P(x1,y1) of the curve y = f (x) is parallel to
the x–axis ( or perpendicular to y-axis) then  = 0 i.e. its
slope will be zero.

(x ,y )1 1

dym 0
dx
    

The converse is also true. Hence the tangent at (x1,y1) is
parallel to  x– axis.

(x ,y )1 1

dy 0
dx
    

(iv) If the tangent at P(x1,y1) of the curve y = f (x) is parallel to
y– axis (or perpendicular to x-axis) then / 2    ,and its
slope will be infinity i.e.

 x ,y1 1

dym
dx
     

The converse is also true. Hence the tangent at (x1,y1) is
parallel to y–axis

 x y,1 1

dy
dx
     

(v) If at any point P(x1,y1) of the curve y = f (x), the tangent
makes equal angles with the axes, then at the point P,
 = /4 or  3/4, Hence at P,  tan =dy/dx =±1.

The converse of the result  is also true. thus at (x1,y1) the
tangent line makes equal angles with the axes.

 x ,y1 1

dy 1
dx
     

Slope of the normal : The normal to a curve at P (x1, y1) is
a line perpendicular to the tangent at P and passing
through P. Slope of the normal at

P  =
1

slope of tangent at P
  =

p

p

1 dx
dy dy
dx

 
     
  

Note: If normal makes an angle of    with positive direc-
tion of x-axis then

dx tan
dy
   or

dy cot
dx
  

Example 1 :
The tangent to a given curve is perpendicular to x-axis if
dy/dx = ?

Sol.
dy
dx

 = 
dx
dy

 = 0

Example 2 :
Find the slope of the tangent to the hyperbola
2x2 – 3y2 = 6 at (3, 2).

Sol. Differentiating the given equation of the curve
4x – 6y. dy/dx = 0 dy/dx = 2x / 3y

(3,2)

dy
dx
 
    =

2 3.
3 2

 = 1

Example 3 :
Find the point on the curve y2 = x2 + ax + 25 touches the
axis of x.

Sol.
dy
dx

 = 0 as tangent is x - axis

 2x + a = 0    or  x = – a/2.
But point lies on the curve.

 y2 = x2 + ax + 25 =
2100 a

4


 = 0

as it lies on x - axis.  a = ± 10.
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Example 4 :
Find the point at the curve y = 12 x - x3 where the slope of
the tangent is zero.

Sol.
dy
dx

 = 12 – 3 x2.   Now, slope of the tangent = 0
dy
dx

 = 0

 12 – 3x2 = 0 x = 2, – 2.
Then from the equation of the curve y = 16, -16
 Required points are (2, 16); (– 2, – 16)

Example 5 :
Find the slope of the tangent to the curve x = t2 + 3t – 8,
y = 2t2 – 2t – 5 at the point t = 2.

Sol. We have,
dx
dt

 = 2 t + 3 and
dy
dt

 = 4 t – 2.


dy dy / dt 4t 2
dt dx / dt 2t 3


 



Thus, slope of the tangent to the curve at the point t = 2

is
t 2

dy 4(2) 2 6
dx 2(2) 3 7

   

Example 6 :
Find the tangent of the curve y = 2x2 – x + 1 is parallel to
the line y = 3 x + 9 at the point.

Sol. We have
dy
dx

 = 4 x – 1 = 3 as tangent is parallel to y=3x+ 9.

  x = 1 and hence y = 2.

Example 7 :
Find the points on the curve y = x3 + 5 at which the tangents
are perpendicular to the line x + 3y = 2.

Sol. Slope of the given line is –1/3 and hence of perpendicular
tangent is 3.

dy
dx

 = 3 x2 = 3  x = 1, –1  and hence y = 6 and 4 resp.

EQUATIONS OF TANGENT AND NORMAL
We know that the equation of a line passing through a
point (x1, y1) and having slope m is  y – y1 = m (x – x1)
Slopes of the tangent and the normal to the curve y = f (x)

at a point P (x1, y1) are
P

dy
dx
 
    and

P

1
dy
dx


 
  

resp.

Therefore the equation of the tangent at P (x1, y1) to the

curve y = f (x) is   y - y1 =
P

dy
dx
 
   (x – x1) ......(1)

Since the normal at P (x1, y1) passes through P and has

slope

P

1
dy
dx


 
  

, therefore the equation of the normal at P

(x1, y1) to the curve y = f (x) is

y – y1 =

P

1
dy
dx


 
  

 (x – x1) .........(2)

Note :

1. If
P

dy
dx
 
   = , then the tangent at (x1, y1) is parallel to

y-axis and its equation is  x = x1.

2. If
P

dy
dx
 
    = 0, then the normal at (x1, y1) is parallel to

y-axis and its equation is   x = x1.

Example 8 :
Find the equation of tangent to the curve y = sin x at the
point (, 0).

Sol. y = sin x
dy
dx

= cos x 
( ,0)

dy
dx 

 
    = –1

Therefore the equation of tangent at ( , 0) is given by
y – 0 = –1 (x – ) x + y = 

Example 9 :
Find the equation of tangent at the point 't' to the curve
x = a cos3 t, y = a sin3t.

Sol. dx/dt = – 3a cos2 t sin t
dy/dt = 3a sin2 t cos t

 dy/dx =
2

2
3a sin t cos t
3a cos t sin t

  = –
sin t
cos t

(slope of tangent at point 't')
Therefore the equation of tangent at the point 't' is written

as   y – a sin3 t = –
sin t
cos t

 (x – a cos3 t)


y

sin t
 – a sin2 t = –

x
cos t

 + a cos2 t

 x sec t + y cosec t = a

Example 10 :
Find the equation of tangent at those points where the
curve y = x2 – 3x + 2 meets x-axis.

Sol. Putting y = 0 in the given equation we get x2 – 3x + 2 = 0
which gives x = 1, 2. So the given curve meets x-axis at
(1, 0) and (2, 0). Now

dy
dx

 = 2x – 3
(1, 0)

dy
dx
 
    = – 1,

(2,0)

dy
dx
 
    = 1

 eqn. of tangent at (1, 0) is
y = –1 (x – 1)x + y – 1 = 0

eqn. of tangent at (2, 0) is
y = 1 (x – 2)x – y – 2 = 0
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Example 11 :

Find the equation of the tangent to the curve y = 29 2x
at the point where the ordinate and the abscissa are equal.

Sol. Putting y = x in y = 29 2x , we get

x = 29 2x x2 = 9 – 2x2  x 3, 3 

Since y > 0, therefore , the point is ( 3, 3) .
Now, we have, y2 = 9 – 2x2

Differentiating with respect to x, we get

2y
dy
dx

 = – 4x
dy
dx

 = –
2x
y


( 3, 3)

dy
dx

   = –

2 3
3

 = – 2

So, the equation of tangent at ( 3, 3)  is

(y – 3 ) = – 2 (x – 3 ) i.e. 2x + y – 3 3  = 0

Example 12 :
Find the equation of the normal to the curve
y (x – 2) (x – 3) – x + 7 = 0 at the point where it cuts the
x-axis.

Sol. x

y

fdy y(2x 5) 1 1
dx f (x 2)(x 3) 20

 
    

 
 at (7, 0)

 Slope of normal is – 20 and its equation is
y – 0 = – 20 (x – 7)

Example 13 :
Find the equation of normal to the curve y = x (2 – x) at the
point (2, 0).

Sol. y' = 2 – 2x = – 2 at (2, 0)

 y – 0 =
1
2

 (x – 2)  x – 2y = 2

LENGTH OF INTERCEPTS MADE ON AXES BY THE
TANGENT

Equation of tangent at any point (x1,y1) to the curve

y = f (x) is
 

1 1
x y1, 1

dyy y (x x )
dx
     

.........(1)

Equation of x–axis  y = 0   ......... (2)
Equation of y–axis x = 0    ......... (3)

P(x ,y )1 1

X

Y

A

B

O

Solving (1) and (2) , we get.

1
1

(x ,y )1 1

y
x x

(dy / dx)

     
  

 x– intercept  : OA = 1
1

(x ,y )1 1

y
x

(dy / dx)

    
  

Similarly solving (1) and (3), we get

y–intercept,
 

1 1
x ,y1 1

dyOB y x
dx
     

The length of intercept made by normal on x–axis is

1 1
dyx y
dx
    

 and length of  intercept on y–axis is 1 1
dxy x
dy
 

   

Example 14 :
The tangent at any point on the curve x4 + y4 = a4  cuts
off intercepts p and q on the coordinate axes then find the
value of p – 4/3 + q– 4/3.

Sol. (X – x) fx + (Y – y) fy = 0
(X – x) 4x3 + (Y – y) 4y3 = 0

or Xx3 + 4Yy3 = x4 + y4 = a4 ....(1)
If intercepts are p and q then (p, 0) and (0, q) lie on (1)
 px3 = a4, qy3 = a4

p –4/3 + q – 4/3 = (a4) –4/3 (x4 + y4) = a –16/3. a4 = a – 4/3

Example 15 :
At a point (a/8, a/8) on the curve x1/3 + y1/3 = a1/3 (a > 0)
tangent is drawn. If the axes be of length 2 , then find
the value of a.

Sol. Slope of tangent is

= –
2/32/3

x
2/3

y

f x y
f xy




      

 = –1 at (a/8, a/8)

Tangent is y – a/8 = – 1 (x – a/8) or x + y =
a
4

Its intercepts on axes are A =
a
4

, B =
a
4

Portion of tangent intercepted between the axes

is 2 2A B 2   (given)


2 2a a

16 16
  = 2   or a2 = 16 a = 4

Example 16 :
The triangle formed by the tangent to the curve
f (x) = x2 + bx – b at the point (1, 1) and the coordinate
axes, lies in the first quadrant. If its area is 2, then find the
value of b.

Sol.
dy
dx

 = 2x + b = 2 + b at (1, 1)

Equation of tangent is y – 1 = (2 + b) (x – 1)
Its intercepts A and B on the axes are obtained by putting
y = 0 and then x = 0

 A = 1 –
1 b 1

2 b b 2



 

B = 1 – (2 + b) = – (b + 1)
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 =
1
2

 AB = 2AB = 4

– (b + 1) (b + 1) = 4 ( b + 2)
or b2 + 6b + 9 = 0   or   (b + 3)2 = 0
therefore b = – 3

LENGTH OF PERPENDICULAR FROM ORIGIN TO THE
TANGENT

The equation of tangent at point P(x1,y1) of the given

curve  1 1
p

dyy y x x
dx
     

The length of perpendicular from origin (0,0) to the tangent
drawn at the point (x1,y1) of the curve y = f (x) is

1 1

2

dyy x
dxp

dy1
dx

    


    

The length of perpendicular from origin to normal is

1 1

2

dyx y
dxP

dy1
dx

    


    

Example 17 :
Find the distance between the origin and the tangent to
the curve y = e2x + x2 drawn at the point x =  0.

Sol. Putting x = 0 in the given curve, we obtain y = 1.
So, the given point is (0, 1).

Now, y = e2x + x2
dy
dx

 = 2e2x + 2x
(0,1)

dy
dx
 
    = 2

The equation of the tangent at (0, 1) is
y – 1 = 2 (x – 0)2x – y + 1 = 0 ..(i)

Required distance = length of the from (0,0) on (i) =
1
5

Example 18 :
If p1 and p2 be the length of perpendiculars from the
origin on the tangent and normal to the curve
x2/3 + y2/3 = a2/3 respectively, then find 4p1

2 + p2
2.

Sol. Take the parametric equation as  x = a sin3, y = a cos3 
Tangent is x cos + y sin = (a/2) sin2.
Normal is y cos – x sin = acos 2

 p1 =
2 2

(a / 2)sin 2 a
2(cos sin )




  
 sin 2

P2 =
2 2

a cos 2

(cos sin )



  
 = a cos2

4p1
2 + p2

2 = a2 (sin22 + cos2 2) = a2

Example 19 :
Find the distance between the point (1, 1) and the tangent
to the curve y = e2x + x2 drawn from the point x = 0.

Sol. Putting x = 0 in y = e2x + x2 ....... (1)
We get y = 1
 the given point is P (0, 1)

From (1),
dy
dx

 = 2e 2x = 2x
P

dy
dx
 
    = 2

 equation of tangent at P to (1) is
y – 1 = 2 (x – 0)2x – y + 1 = 0 ....... (2)

 Required distance = Length of from (1, 1) to (2)

   =
2 1 1 2

4 1 5
 




ANGLE OF INTERSECTION OF TWO CURVES
The angle of intersection of two curves is defined to be
the angle between the tangents to the two curves at their
point of intersection.
Let C1 and C2 be two curves having equations y = f (x)
and y = g(x) respectively. Let PT1 and PT2 be tangents to
the curves C1 and C2 respectively at their common point
of intersection. Then the angle between PT1 and PT2 is
the angle of intersection of C1 and C2 . Let 1 and 2 be
the angles made by PT1 and PT2 with the positive direction
of x-axis in anticlockwise sense.
Then,  m1 = tan 1 = slope
of the tangent to y = f (x) at

P =
C1

dy
dx
 
   .

P

X

Y

C1

C2

O
12

and m2 = tan 2 = slope of the
tangent to y = g(x) at

P =
C2

dy
dx
 
   .

From figure it follow that  = 1 – 2.
tan= tan (1 – 2)

tan = 1 2

1 2

tan tan
1 tan tan
  

  
=

C C1 2

C C1 2

dy dy
dx dx

dy dy1
dx dx

         

          

The other angle between the tangents is 180° – .
Generally the smaller of these two angles is taken to be
the angle of intersection.
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ORTHOGONAL CURVES
If the angle of intersection of two curves is a right angle,
the two curve are said to intersect of orthogonal and the
curves are called orthogonal curves.

I f  t h e  c u r v e s  a r e  o r t h o g o n a l ,  t h e n  =
2


.

 m1 m2 = – 1
C1

dy
dx
 
  

.
C2

dy
dx
 
  

 = – 1

Example  20 :
Find the angle of intersection between the curves
y = x  and y2 = 4x at (4,4).

Sol. Differentiating  given equations , we have

1

dy 1
dx
       and

2

dy 2
dx y
    

 At (4,4)
1

dy 1
dx
      ;

2

dy 2 1
dx 4 2
     

Angle of intersection = 1 1

11
2tan tan (1/ 3)
11 1
2

 



    

Example 21 :
Find the angle of intersection of the parabola y2 = 4ax and
x2 = 4ay at the origin.

Sol. y2 = 4ax2y
dy
dx

 = 4a  i.e. dy 2a
dx y


At (0, 0),
dy
dx

 =  = tan
2


 = tan1 (say)  1 =
2


Again x2 = 4ay2x = 4a
dy
dx


dy x
dx 2a


A (0, 0),
dy
dx

 = 0 = tan 0 = tan2 (say)  2= 0

Again between the two curves   = |1 – 2 | = /2

Example 22 :
Find the angle between the curves y = sinx, y = cos x.

Sol. Clearly x =
4


 is a common point

 (sinx = cosxtanx =1x = /4y = 1/ 2 )

Now For the first curve
dy
dx

 = cos x = 1
2

 where x =
4


For the second curve
dy
dx

 = – sinx = – 1
2

 tan=

1 1
2 2

1 11 .
2 2

 
   

 
   

  =

2 2
2 2 2 21 11

22

 


 = tan–1 ( 2 2 )

Example 23 :
Find the acute angle between the curves y = | x2 – 1 | and
y = | x2 – 3 | at their points of intersection.

Sol. We have y = | x2 – 1 |

=
2

2

x 1 if x 1 or x 1

1 x if 1 x 1

    

   

The graph of the curve is

A
B

C

D

O

(0,1)

(1,0)

(0,–1)

(–1, 0)

Also we have

y = | x2 – 3 | =
2

2

x 3 if x 3or x 3

3 x if 3 x 3

    

   

The graph of the curve is
Y

G(0,3)

O
X

E

H

F
3

3
(-      , 0)

(-      , 0)

(0, -3)

Combining the two curves, we get
R is the point of intersection of

y = x2 – 1 ..(1)

and y = 3 – x2 for 1 < x < 3 ..(2)
 x2 – 1 = 3 – x2 2x2 = 4

 x2 =2 x = 2  y = 2 – 1 = 1

 R is  ( 2,1 ).  Similarly, S is (– 2,1 )
Y

G (0,3)

C

R

X
O B    FE    A

S

(0, 1)

(–   3, 0) (–1, 0) (1, 0)   (   3, 0)

At R, slope of (1) is 2 2
dy 2x
dx

   


At R, slope of (2) is – 2 2
dy 2x
dx

    


 tan =
2 2 2 2 4 2

1 8 7



   = 1 4 2tan

7
  
  
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LENGTH OF TANGENT, NORMAL, SUB TANGENT & SUB
NORMAL

Let  tangent and normal to the curve y = f (x) at a point
P(x,y) meets the x–axis at point Q and R respectively. Then
PQ and PR are called length of tangent and normal
respectively, at point P. Also if PM  be the perpendicular
from p on x– axis, then QM and MR are called length of
sub tangent and  subnormal respectively at P.  So from
the diagram at P(x,y)

P(X,Y)

MQ

Y

O
XR

(i)  length of tangent   y cosec  =
 
 

21 dy / dx
y

dy / dx


(ii) length of normal = PR = y sec
(iii) length of sub tangent

= QM  = y cot   =
dyy /
dx
 
  

(iv) length of sub normal  = MR = y tan =
dyy
dx
 
  

Example 24 :

Find the length of the tangent at t =
4


 to the curve

x = a (cos t + t sin t)
x = a (sint – cost) (a > 0)

Sol. y at t =
4


 =
1 1 aa 1

4 42 2 2
           

t
2

a cos cos sin
dy 4 4 4 4
dx a sin cos sin

4 4 4 4



       


        

a sin
4 4 tan 1a 4cos
4 4

 


  
 

 Length of the tangent

=
2y dy1dy dx

dx

    

a 1
42 1 1 a 1

1 4

          

Example 25 :
If  x = a ( + sin), y = a (1 – cos), then at  =/2, find the
length of the normal.

Sol.
dx
d

 = a (1 + cos) ;
dy
d

 = asin 

dy sin
dx 1 cos



 

 =
2

2sin cos
2 2 tan

22cos
2

 





Length of the normal = y
2dy1

dx
    

= a (1 – cos) 21 tan
2


  = a (1 – cos). sec
2


When  = /2

Length = a 1 cos
2
   

. sec
4


 = a (1 – 0). 2  = 2 a

Example 26 :
The square of the subtangent to the curve by2 = (x + a)2

is proportional to
(1) (subnormal)3/2 (2) Subnormal
(3) (subnormal)1/2 (4) None of these

Sol. (2).  by2 = (x + a)3  2by
dy
dx

 = 3 (x + a)2

 y
dy
dx

 =
23(x a)

2b


 i.e.
2dy 3(x a)

dx 2by




Length of the subnormal = y
2dy 3(x a)

dx 2b




Again, subtangent =
2

2 2
y y 2by

dy / dx 3(x a) 3(x a)
2by

 
 

 (sub-tangent)2

=
2 2

4
4b y

9(x a)
=

2 6

4 2
4b (x a) 4.

99(x a) b





 (x + a)2

=
24 2b 3(x a). .

9 3 2b


 =
8b
27

 (subnormal)

 (sub-tangent)2 is proportional to subnormal

Example 27 :
If at any point S of the curve by2 = (x + a)3, the relation
between subnormal SN and subtangent ST be
p (SN) = q (ST)2 then find p/q.

Sol.
2dy 3(x a)

dx 2by


 ;

2

3

dyy /
p y 8bdx

dyq 27dyy
dx dx

 
  
  

         
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POINT OF INFLEXION
If at any point P, the curve is concave on one side and
convex on other side with respect to x–axis, then the point
P is called the point of inflexion. Thus P is a point of

inflexion if at P,
2

2
d y 0
dx
  , but

3

3
d y 0
dx


Also point p is a inflexion

 if n 1'' '''f (x) f (x) f (x) 0    and  nf x 0  for odd   n.

Example 28 :
Prove that origin for the curve y = x3  is a point of inflexion.

Sol.  y = x3


2 3

2
2 3

dy d y d y3x , 6x, 6
dx dx dx
  

Clearly at (0,0),
2

2
d y 0
dx
  and

3

3
d y 0
dx


 There is a point of inflexion at (0,0).

LINEARAPPROXIMATION (DIFFERENTIALS)
In many problems we are interested in the change, or
approximate change, of values f (x) that correspond to
change in x.
If x = x – c represents a change in x, the corresponding
change in f (x) is denoted
f = f (x) – f (c) .............. (1)

If f is differentiable at c, then we know from (1) that
f (x)  f (c) + f ' (c) (x – c), so
f (x) – f (c)  f ' (c) (x – c).

Let us rewrite this last statement as
f  f ' (c) . x .............. (2)

Example  29 :

Use differential to approximate 101.

Sol. Let f (x) x  ;  f (100) = 10 &
1f (x)

2 x


1 1y 0.05
202 100

    f (101) = 10 + 0.05 = 10.05

TRY IT YOURSELF-1
Q.1 A curve in the plane is defined by the parametric equations

x = e2t + 2e–t and y = e2t + et.  An equation for the line
tangent to the curve at the point t = ln 2 is –
(A) 5x – 6y = 7 (B) 5x – 3y = 7
(C) 10x – 7y = 8 (D) 3x – 2y = 3

Q.2 Curve C1 : y = ex ln x and C2 : y = x
ln x
e

 intersect at point P

whose absicssa is less than 1. Find equation of normal to
curve C1 at point P.

Q.3 Tangent at point P on the curve y2 = x3 meets the curve

again at point Q. Find OP

OQ

m
m , where O is origin.

Q.4 If is the angle b/w y = x2 and 6y = 7 – x3 at (a, a). Find .
Q.5 Show that at any point on the hyperbola xy = c2, the

subtangent varies as the abscissa and the subnormal varies
as the cube of the ordinate of the point of contact.

Q.6 Using differentials, find the approximate value of (82)1/4

upto 3 places of decimal.
Q.7 If the sum of the squares of the intercepts on the axes cut

off by tangent to the curve x1/3 + y1/3 = a1/3, a > 0 at
(a/8, a/8) is 2, then a =
(A) 1 (B) 2
(C) 4 (D) 8

Q.8 Tangents are drawn from the origin to the curve y = sin x,
then their point of contact lie on the curve –

(A) 2 2
1 1 1
y x
  (B) 2 2

1 1 1
x y
 

(C) x2 – y2 = 1 (D) x2 + y2 = 1
Q.9 Find the equations of tangents to the curve

x2 + y2 – 2x – 4y + 1 = 0 which are parallel to the x-axis.
Q.10 Prove that every point of the curve y = bsin(x/a) is a point

of inflexion, where it meets the x–axis.
ANSWERS

(1) (C) (2)  x = 1/e (3) –2
(4) /2 (6) 3.009 (7) (C)
(8) (A) (9) y = 0 and y = 4.

MONOTONICITY
INTRODUCTION

In this section, we shall study the nature of a function
which is governed by the sign of its derivative. If the
graph of a function is in upward  going direction or in
downward coming direction then it is called as
monotonic function, and this property of the function is
called Monotonicity. If a function  is defined  in any
interval, and if in some part of the interval, graph moves
upwards and in the remaining part moves downward then
function is not monotonic in that interval.

MONOTONIC FUNCTION
These are of two types
Monotonic Increasing :
A function f (x) defined in a domain D is said to be
monotonic increasing function if the value of (x) does not
decrease (increase) by increasing (decreasing ) the value
of x or
We can say that the value of f (x) should increase (decrease)
or remain equal by increasing (Decreasing) the  value x.

If  1 2 1 2
1 2 1 2

x x f (x ) f (x )
or x x f (x ) / f (x )
  
   , 1 2x , x D 

or  1 2 1 2
1 2 1 2

x x f (x ) f (x )
or x x f (x ) / f (x )
  
   , 1 2x , x D 
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X

Y

O X

Y

O

Monotonic Decreasing :  A function f (x) defined in a
domain D is said to be monotonic decreasing function if
the value of (x) does not  increase (decrease) by increasing
(decreasing ) the value of x or We can say that the value
of f (x) should increase (decrease) or remain equal by
increasing (Decreasing)  the value of x.

If  1 2 1 2
1 2 1 2

x x f (x ) f (x )
or x x f (x ) / f (x )
  
   , 1 2x , x D 

or  1 2 1 2
1 2 1 2

x x f (x ) f (x )
or x x f (x ) / f (x )
  
   , 1 2x , x D 

X

Y

O X

Y

O

A function is said to be  monotonic function in a domain
if it is either monotonic increasing or monotonic
decreasing in that domain.
Note : If 1 2 1 2 1 2x x f (x ) f (x ) x , x D     , then f (x)
is called strictly increasing in domain D.

X

Y

O

Similarly if 1 2 1 2 1 2x x f (x ) f (x ) x , x D      then it
is called strictly decreasing in domain D.

X

Y

O

For Example
(i) f (x) = ex  is a monotonic increasing function where as

g (x)=1/x is monotonic decreasing function.
(ii) f (x) = x2 and g(x)=| x | are monotonic increasing for

x > 0 and  monotonic decreasing for  x < 0. In general
they are not monotonic functions.

(iii) sinx, cosx are not monotonic function whereas tanx,
cotx are monotonic.

METHOD OF TESTING MONOTONICITY
(i) At a point :  A function f (x) is said to be monotonic

increasing (decreasing ) at a point x = a of its domain if it
is monotonic increasing (decreasing) in the interval
(a–h, a+h) where h is a small positive number. Hence we
may observe that f (x) is monotonic increasing at x = a,
then at this  point tangent to its graph will make an acute
angle with the x– axis where as if the function is monotonic
decreasing these tangent will make  an obtuse angle with
x–axis. Consequently f '(a) will be positive or negative
according as f (x) is monotonic increasing or decreasing
at x = a.

P

X

Y

O
2/

P

X

Y

O

2

So at x = a, function  f (x) is
Monotonic increasingf ' (a) > 0
Monotonic decreasingf ' (a) < 0

Example 30 :
The function f (x)=cosx is decreasing at x = /3 and
increasing at x = 4/3 since

f ( / 3) 3 / 2 0     and f ( / 3) 3 / 2 0   

(ii) In an interval  : A function f (x) defined in the interval
[a,b] will be
Monotonic increasingf ' (x)  0
Monotonic decreasingf ' (x)  0

constant f ' (x) = 0  x a,b 

Strictly increasing f ' (x) > 0
Strictly decreasing f ' (x) < 0

Note :
(i) In the above result f ' (x) should not be zero for all value

of x otherwise f (x) will be a constant function.
(ii) If in [a,b], f ' (x) < 0, for atleast one value of x and

f '(x) > 0 for atleast one value of x then f (x) will not be
monotonic in [a,b]. For example,

(1) Function f (x) = sinx is monotonic increasing in [0, /2]

because  'f (x) cos x 0 x 0, / 2    

(2) Function f (x) = e–x is monotonically decreasing in
[–1, 0], since f ' (x) = – e–x < 0,x(–1, 0)

(3) Function f (x) = | x |  is not a monotonic functions in the
interval [–1, 1] because

f (x) = x ; x 0
x ; x 0


 

  ; f ' (x) = 1; x 0
1; x 0


 

(4) f (x) = sin–1 x + cos–1 x is constant function in [–1, 1]
because f (x) = /2 f ' (x) = 0x (–1, 1)



222

STUDY  MATERIAL : MATHEMATICS

EXAMPLES OF MONOTONIC FUNCTION
If a function is monotonic increasing (decreasing) at every
point of its domain ,then it is said to be monotonic
increasing (decreasing) function.
In the following table we have examples of some
monotonic/ not monotonic functions.

Monotonic     Monotonic          Not Monotonic
Increasing     Decreasing

x3          1/x              x2

x | x |         1 – 2 x            | x |
ex          e–x         ex + e–x

loga x, a > 1      loga x, a > 1            sin x
tan x       cot x         cos x
[x]

Example 31:
For all values of x, function f (x) = 2x3 + 6x2 + 7x – 19 is
(1) Monotonic increasing (2) Monotonic decreasing
(3) Not monotonic (4) None of these

Sol. (1).f ' (x) = 6x2 + 12x + 7 = 6 (x2 +2x) +  7 = 6 (x +1)2 + 1
which is positive for all value of x. Hence f (x) is monotonic
increasing function.

Example 32 :
Function f (x) = x3 – 27x + 5 is monotonic increasing when
(1) x < – 3 (2) | x | > 3
(3) x – 3 (4) | x | 3

Sol. (2). f (x) will be monotonic increasing if
f ' (x) > 03x2 – 27 > 0x2 > 9| x | > 3

Example 33 :
The function f (x) = x – log (1 + x), x > –1 is increasing in
the interval
(1) (0,) (2) (–1, 0)
(3) (–, 0) (4) None of these

Sol. (1). We have, f (x) = x – log (1 + x) ,x > – 1

f ' (x) = 1 – 2
1 x x(1 x)

1 x 1 x (1 x)


 
  

Sign scheme for 2
x(1 x)
(1 x)




-  +ve  +ve-1  -ve 0
f ' (x) > 0 if x < –1 or x > 0
But x > –1.  f ' (x) > 0 if x > 0.
Thus, f (x) is increasing in the interval (0, ).

Example 34 :
Let f ' (x) < 0 and g' (x) > o for all real x, then
(1) f (g(x + 1)) > g(g (x + 5)) (2) f (g(x)) < f (g (f(x +2))
(3) g (f (x)) < g (f (x +2)) (4) g (f (x)) > g(f (x – 2))

Sol. (1). Given, f ' (x) < 0 and g' (x) > 0 therefore g (x) is an
increasing function and f ' (x) is a decreasing function

 x + 1 < x + 5g (x + 1) < g (x + 5)

 f (g (x + 1)) > f (g (x + 5))
Again x < x + 1g (x + 1)

 f (g (x)) > f(g (x + 1))
x < x + 2f (x) > f(x + 2)

 g (f (x)) > g (f (x + 1))
x > x – 2f (x) < f(x – 2)

 g (f (x)) < g (f (x – 2))

PROPERTIES OF MONOTONIC FUNCTIONS
(i) If f (x) is strictly increasing  function on an interval [a, b],

then f–1 exists and it is also a strictly increasing function.
(ii) If f (x) is strictly increasing function on an interval [a, b]

such that it is continuous, then f–1 is continuous on
[f (a), f(b)].

(iii) If f (x) is continuous on [a, b] such that f ' (c)  0 (f ' (c) >
0) for each c (a, b), then f (x) is monotonically (strictly)
increasing function on [a, b].

(iv) If f (x) is continuous on [a, b] such that f ' (c)  0 (f '(c) < 0)
for each c (a, b), then f (x) is monotonically (strictly)
decreasing function on [a, b].

(v)  If f (x) and g(x) are monotonically (or strictly) increasing
(or decreasing) function on  [a, b], then gof (x) is a
monotonically (or strictly) increasing function on [a, b].

(vi) If one of the two functions f (x) and g(x) is strictly (or
monotonically) increasing and other a  strictly
(monotonically) decreasing, then gof (x) is strictly
(monotonically) decreasing on [a, b].

Example 35 :
Let f (x) = cot–1 [g (x)], where g(x) is an increasing function
for 0 < x < . Then (x) is
(1) increasing in (0, )

(2) decreasing in (0, )

(3) increasing in 0,
2
 

    and decreasing in ,
2
   

(4) None of these
Sol. (2). We have, f (x) = cot–1 (g (x))

f ' (x) = 2
1

1 [g(x)]



 × g' (x)

< 0 for 0 < x < 
[ g(x) is increasing for 0 < x < ,g'(x) > 0]
Thus, f (x) is decreasing in (0, )

GREATEST AND  LEAST VALUE  OF  FUNCTION
1. Case I : If a continuous function y = f (x) is strictly

increasing in the closed inveral [a, b] then f (a) is the least
value and f (b) is greatest value.

2. Case II : If f (x) is decreasing in [a, b] then f (b) is the least
and f (a) is the greatest value of f (x) in [a, b].

3. Case III : If f (x) is non-monotonic in [a, b] and is
continuous then the gratest and least value of f (x) in [a,
b] are those f (x) = 0 or f ' (x) does not exist or at the extreme
values.
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Example 36 :

Find least and greatest value of 2x 4x 3f (x) e    in [–5,5]

Sol. 2x 4x 3f (x) e  
x

y

2
1 3 55

For f (x) maxx2 – 4x + 3 be maximum in [–5, 5].
x2 – 4x + 3 will be maximum at x = –5 in the given interval.
i.e.,  25 + 20 + 3 = 48
 Max f (x) = e48 at x = –5

x2 – 4x + 3 will be minimum at x = 2 i.e., 4 – 8 + 3 = –1
 Min f (x) = e–1 at x = 2.

TRY IT YOURSELF-2

Q.1 Find intervals of monotonicity of f (x) =
x

ln x
.

Q.2 If the function f (x) = (a + 2) x3 – 3ax2 + 9ax – 1 is always
decreasing  xR, find a.

Q.3 Find the set of values of x for which ln (1 + x) >
x

1 x
.

Q.4 The function f (x) = 2
| x 1|

x


(A) increases in (– ,0)(1, 2)
(B) increases in (0, 1)(2,)
(C) decreases in (0, 1)(2,)
(D) decreases in (–,)(1, 2)

Q.5 Find the intervals in which the given function increases or

decreases f (x) =
2

2
x x 1
x x 1
 

 
.

Q.6 Function f (x) = cos x – 2x is monotonic decreasing when
(A)  > 1/2 (B) < 1/2
(C) < 2 (D)  > 2

ANSWERS
(1) (0, 1)(1, e) (2) a –3
(3) f (x) > 0  x(–1, 0)(0,) (4) (AC)
(5) Strictly increases in (–1, 1) ; Strictly decreases in (1,)
(6) (A)

MAXIMAAND MINIMA
MAXIMUM AND MINIMUM VALUE OF A FUNCTION IN ITS
DOMAIN

MAXIMUM : Let f (x) be a function with domain D R.
Then f (x) is said to attain the maximum value at a point
 aD. If f (x)  f (a) for all xD.
In such a case, a is called the point of maximum and f (a) is
known as the maximum value or the greatest value or the
absolute maximum value of f (x).
Consider the function

f (x) = – (x – 1)2 + 10 for all xR

 – (x –1)2  0 for all x R
 – (x – 1)2 + 10  10 for all xR
 f (x)  10 for all x R
Thus, 10 is the maximum value of f (x). Clearly f (x) attain
this value at x = 1. So x = 1 is the point of maximum or the
point of absolute maximum.
MINIMUM: Let f (x) be a function with domain D R.
Then f (x) is said to attain minimum value at a point a  D
if f (x)  f (a) for all xD.
In such a case the point a is called the point of minimum
and f (a) is known as the minimum value or the least value
or the absolute minimum value of f (x).

Consider the function
f (x) = (3x –1)2 + 5 for all xR

 (3x – 1)2 0 for all x R
(3x – 1)2 + 5  5 for all xR

Thus, 5 is the minimum value or the least value or the
absolute minimum value of f (x) in its domain. Clearly, f (x)

attains this value at x =
1
3

. So, x =
1
3

 is the point of minimum

or the point of absolute minimum.

Example 37 :
Find the maximum and the minimum values of the function
f (x) = sin (sin x).

Sol. We have f (x) = sinx, x R  –1  sinx  1 for all x R
 sin (–1)  sin (sinx)  sin 1 for all x R

[ sinx is an increasing function on [–1, 1]]
– sin1  f (x)  sin1 for all x R
This shows that the maximum value of f (x) is sin 1 and the
minimum value is – sin 1.

Example 38 :
Find the maximum and the minimum values of the  function
f (x) = 3x2 + 6x + 8, x R

Sol. We have, f (x) = 3x2 + 6x + 8
=  3 (x2 + 2x + 1) + 5 = 3 ( x + 1)2 + 5.

 3 (x + 1)2  0 for all x R
 3 (x + 1)2 + 5  5 for all x R
or f (x)  5 for all x R.   Thus, 5 is the minimum value of
f (x) which it attains at  x = – 1.
Since f (x) can be made as large as we please, therefore the
maximum value does not exist.

Example 39 :
Find the maximum and the minimum values of the function
f (x) = – | x – 1 | + 5 for all x R

Sol. We have f (x) = – | x – 1| + 5 for all x R
 | x – 1 |  0 for all x R
 – | x – 1 |  0 for all xR
 – | x – 1| + 5 5 for all x R f (x)  5 for all xR
So, 5 is the maximum value of f (x).
Now, f (x) = 5– | x – 1| + 5 = 5| x – 1 | = 0x = 1.
Thus, f (x) attains the maximum value 5 at x = 1.
Since f (x) can be made as small as we please, therefore
the minimum value of f (x) does not exist.
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Example 40 :
Find the maximum and the minimum values of the function
f (x) = x3 + 1, x R

Sol. We have f (x) =  x3 + 1, x R
Here we observe that the values of f (x) increase when the
values of x are increased and f (x) can be made as large as
we please by giving large values to x. So f (x) does not
have the maximum value. Similarly, f (x) can be made as
small as we please by giving smaller values to x. So f (x)
does not have the minimum value also.

LOCAL MAXIMA & MINIMA
We have talked about the greatest (maximum) and the
least (minimum) values of a function in its domain. But
there may be points in the domain of a function where the
function does not attain the greatest (or the least) value
but the values at these points are greatest than or less
than the values of the function at the neighbouring points.
Such points are known as the points of local minimum or
local maximum and we will be mainly discussing about
the local maximum and local minimum values of a function.
Local maximum : A function f (x) is said to attain a local
maximum at x = a if their exists a neighbourhood
(a – , a +) of a such that

f (x) < f (a) for all x(a – , a + ), x  a
or f (x) – f (a) < 0 for all x(a –, a + ), x  a
In such a case f (a) is called the local maximum value of
f (a) at x = a.

Local minimum : A function f (x) is said to attain a local
minimum at x = a if there exists a neighbourhood
(a – , a + ) of a such that

f (x) > f (a) for all x(a – , a + ), x  a
or f (x) – f (a) > 0 for all x(a – , a + ), x  a
The value of the function at x = a i.e., f (a) is called the
local minimum value of f (x) at x = a.
The points at which a function attains either the local
maximum values or local minimum values are known as
the extreme point or turning points and both local maximum
and local minimum values are called the extreme values of
f (x). Thus, a function attains an extreme value at x=a if f
(a) is either a local maximum value or a local minimum
value. Consequently at an extreme point 'a', f (x) – f (a)
keeps ths same sign for all values of x in a neighbourhood
of a.

O

Y

X

B

D

C E

y=
f(x

)

A

In Figure we observe that the x-coordinates of the points
A, C, E are points of local maximum  and the values at
these points i.e., their y-coordinates are the local maximum
values of f (x). The x-coordinates of points B and D are
points of local minimum and their y-coordinates are the
local minimum values of f (x).
Note:

(i) The maximum and minimum points are also known as
extreme points.

(ii) A function may have more than one maximum and  minimum
points.

(iii) A maximum value of a function f (x) in an interval [a,b] is
not necessarily its greatest value in that interval. Similarly,
a minimum value may not be the least value of the
function. A minimum value may be greater than some
maximum value for a function.

(iv) If a continuous function has only one maximum (minimum)
point, then at this point function has its greatest (least)
value.

(v) Monotonic functions do not have extreme points.
For example,

(1) Function y= sinx, x(0,)
has a maximum points
at x = /2 because the value

X

Y

O

y=sinx

/2 

of sin=/2 is greatest in
the given interval for sin x.

Clearly function  y = sinx is increasing in the interval
(0, /2) and decreasing in the interval (/2, ) for that
reason also it has maxima at x = /2. Similarly we can see
from the graph of cosx which has a minimum point at x= .
(2) f (x) = x2,  x  (–1, 1) has a minimum point at x = 0
becauseat x = 0, the value of x2 is 0, which is less than all
the values of foundation at different points of the interval.

X

Y

O

y=x2

1-1

Clearly function y = x2 is decreasing  in the interval (–1,0)
and increasing in the interval (0,1) So it has minima at x= 0.

CONDITIONS FOR MAXIMA & MINIMA
Necessary Condition : We have the following theorem
which we state without proof.
Theorem : A necessary condition for f (a) to be an extreme
value of a function f (x) is that f ' (a) = 0, in case it exists.
Note :

1. This result states that if the derivative exists, it must be
zero at the extreme points.
A function may however attain an extreme value at a point
without being derivable thereat.
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For example, the function f (x) = | x | attains the minimum
value at the origin even though it is not derivable at x = 0.

 x'  X

 y'

  y

O

y =xy =-x

2. This condition is only a
necessary condition for
the point x = a to be an
extreme point.

 x'  X

 y'

  y

O

f(x)=x3

It is not sufficient i.e.,
f' (a) = 0 does not
necessarily imply that
x = a is an extreme point.
There are function for
which the derivatives vanish at a point but do not have
an extreme value  thereat . For example, for the function
f (x) = x3 , f ' (0) = 0 but at x = 0 the function does not attain
an extreme value.

3. As discussed in note 2 that all x, for which f ' (x) = 0, do not
give us the extreme values. The values of x for which
f ' (x ) = 0 are called stationary values or critical values of
x and the corresponding values of f (x) are called stationary
or turning values of f (x).
As we have seen in Remark 2 that f ' (a) = 0 is not the
sufficient condition for x = a to be an extreme point. The
following theorem provided the sufficient conditions for
x = a to be an extreme point. This is known as the first
derivative test and is stated without any proof.

Sufficient Condition :
First derivative test for local maxima and minima
Let f (x) be a function differentiable at x = a. Then

(a) x = a is a point of local maximum of f (x) if
(i) f '(a) = 0 and
(ii) f ' (x) changes sign from positive to negative as x passes

f ' (x) > 0 at every point in the left neighbourhood (nbd)
(a –,a) of  a and f ' (x) < 0 at every point in the right nbd
(a, a + ) of a.

(b)  x = a is a point of local minimum of f (x) if
(i)  f ' (a) = 0 and
(ii) f ' (x) changes sign from negative to positive as x passes

through a i.e., f ' (x) < 0 at every point in the left
nbd (a –, a) of a and f ' (x) > 0 at every point in the right
nbd (a, a + ) of a.

(c) If f ' (a) = 0, but f ' (x) does not change sign, that is, f ' (a)
has the same sign in the complete nbd of a, then a is
neither a point of local maximum nor a point of local
minimum.

ALGORITHM FOR DETERMINING EXTREME VALUES OF
A FUNCTION BY USING FIRST DERIVATIVE TEST

Step I : Put y = f (x)

Step II : Find
dy
dx

Step III : Put
dy
dx

 = 0 and solve this equation for x. Let c1,

c2, c3,... cn be the roots of this equation. c1, c2, c3,...,cn are
stationary values of x and these are the possible points
where the function can attain a local maximum or a local
minimum. So we test the function at each one of these
points.

Step IV : Consider x = c1. If
dy
dx

 changes its sign from

positive to negative as x increases through c1, then the
function attains a local maximum at x = c1.

If
dy
dx

 changes its sign from negative to positive as x

increases through c1, then the function attains a local
minimum at x = c1.

If
dy
dx

 does not change sign as x increases through c1,

then x = c1 is neither a point of local maximum nor a point
of local minimum. In this case x = c1 is a point of inflexion.
Similarly we may deal with other values of x.

Example 41 :
Find the local maxima or local minima, if any, of the function
 f (x) = sin4 x + cos4 x, 0 < x < /2
using the first derivative test

Sol. We have y = f (x) = sin4 x + cos4 x


dy
dx

 = 4 sin3 x cos x – 4 cos3 x sin x

= – 4 cos x sin x (cos2 x – sin2 x)
= – 2 sin 2x cos 2x = – sin 4x
For a local maximum or a local minimum, we have

dy
dx

 = 0– sin 4x = 0– sin 4x = 0sin 4x = 0

 4x =  0 x 0 4x 2
2
        



 x = /4
In the left nbd of x = /4, we have

x <
4

4x < sin 4x > 0– sin 4x < 0

dy
dx

 < 0

In the right nbd of x =/4, we have

x >
4

 4x > sin 4x < 0– 4 sin 4x > 0

dy
dx

 > 0
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Thus,
dy
dx

 changes sign from negative to positive as x

increases through
4


. So x =
4


 is a point of local minimum.

The local maximum value is
4 4 1f sin cos

4 4 4 2
                   

Example 42 :
The f ' (x) = (x – a)2n (x – b) 2p +1 where n and p are positive
integers then
(1) x = a is a point of minimum
(2) x = a is a point of maximum
(3) x = a is a point of maximum or minimum
(4)None of these

Sol. (3). We have, f ' (x) = (x – a)2n (x – b)2p+1

 f ' (x) = 0x = a, b
When x = a – h, f ' (x) = h2n  (a + h – b)2p+1

and when x = a + h, f ' (x) = h2n (a + h – b)2p+1

Thus we see that as x passes through a, f ' (x) does not
change sign. Hence, there is neither a maximum nor a
minimum at x = a.

Example 43  :
If f ' (x) = (x – a)2n (x – b) 2m +1 where m, n  N, then
(1) x = b is a point of minimum
(2) x = b is a point of maximum
(3) x = b is a point of  inflexion
(4) None of these

Sol. (1). We have f ' (x) = (x – a)2n (x – b)2m+1

 f ' (x) = 0 x = a, b
Now, for x = b – h, f ' (x) = (b –h – a)2n (–h)2m+1 < 0
and for x = b+ h, f ' (x) = (b + h – a)2n h2m+1 >0
Thus, as x passes through b, f ' (x) changes sign from
negative Hence, x = b is a point of minimum.

HIGHER ORDER DERIVATIVE TEST
(i) The value of the function f (x) at x = a is maximum, if

f ' (a) = 0 and f '' (a) < 0
(ii) The value of the function f (x) at x = a is  minimum if

f ' (a) = 0 and f '' (a) > 0
(iii) If f ' (a) = 0 ,f '' (a) = 0, f ''' (a) 0 then x = a  is not an extreme

point for the function f (x).
(iv) If f ' (a) = 0 ,f '' (a) = 0, f ''' (a) = 0 then the sign of f (iv) (a) will

determine the maximum and minimum value of function
i.e. f (x) is maximum, if f (iv)(a)<0 and minimum if f (iv)(a) >0.

(v) f ' (c) = f '' (c) = f ''' (c) = .... = f n–1(c) = 0 , and
(vi) f n (c) exists and is non-zero.

Then,  If n is even and f n (c) < 0x = c is a point of local
maximum.
If n is even and f n (c) > 0 x = c is a point of local
minimum
If n is oddx = c is neither a point of local maximum nor
a point of local minimum.

ALGORITHM FOR DETERMINING EXTREME VALUES OF
A FUNCTION

From the above test criteria we obtain the following rule
for determining maxima and minima of f (x).
Step I : Find f ' (x)
Step II : Put f ' (x) = 0 and solve this equation for x. Let c1,
c2,.... cnbe the roots of this equation. c1, c2,.... cn are
stationary values of x and these are the possible points
where the function can attain a local maximum or a local
minimum. So we test function at each one of these point.
Step III : Find f '' (x). Consider x = c1.
If f '' (c1) < 0, then x = c1 is a point of local maximum.
If f '' (c1) > 0, then x = c1 is a point of local minimum.
If f '' (c1)=0, we must find f ''' (x) & substitute in it c1, for x.
If f ''' (c1)  0, then x = c1 is neither a point of local maximum
nor a point of local minimum and is called the point of
inflection.
If f ''' (c1)=0, we must find f IV (x) & substitute in it c1 for x.
If f IV (c1) < 0, then x = c1 is a point of local maximum and
if  f IV (c1) > 0, then x = c1 is a point of local minimum.
If f IV (c1) = 0, we must find fV (x), and, so on. Similarly the
values of c2, c3 ...., may be tested.

Example 44 :
Find the points of maxima and minima  for the function
f (x)= x3 – 9x2 + 15x – 11.

Sol. Let  f (x)= x3 – 9x2 + 15x – 11.
then  f ' (x) = 3x2 – 18x + 15 = 3x (x2 – 6x + 5)
For maxima and minima  f ' (x) = 0x2 – 6x + 15 = 0
 (x – 1) (x – 5) = 0x = 1, 5
Again  f '' (1) = –12 < 0x = 1 is a point of maxima
and  f '' (5) = 12 > 0x = 5 is a point of minima

Example 45 :
For the curve y = xex, the point
(1) x = –1 is a point of minimum
(2) x = 0 is a point of minimum
(3) x = – 1 is a point of maximum
(4) x = 0 is a point of maximum

Sol. (1). We have, y = xexdy/dx = ex + xex

For max. or min. dy/dx = 0ex (1 + x) = 0x = –1

Now,
2

2
d y
dx

 = 2ex + xex
2

2
x 1

d y
dx 

 
 
  = e–1 (2 – 1) > 0

Hence, x = –1 is a point of local minimum.

Example 46 :
If the function f (x) = 2x3 – 9ax2 + 12a2 x + 1 attains its
maximum and minimum at p and q respectively such that
p2 = q, then find the value of a.

Sol. Since f (x) = 2x3 – 9ax2 + 12a2 x + 1 attains max. and min. at
p and q, respectively. Therefore

f ' (p) = 0, f ' (q) = 0, f ''(p) < 0 and f ''(q) >0
Now, f '(p) = 0, f '(q) = 0
 6p2 – 18ap + 12a2 = 0 and 6q2 – 18 aq + 12a2 = 0
 p2 – 3ap + 2a2 = 0 and q2 – 3 aq + 2a2 = 0
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 p = a, 2a , q = a, 2a ..(i)

Now, f ''(p) < 012 p – 18 a < 0p <
3
2

 a ...(ii)

and f ''(q) > 012 p – 18 a > 0q 
3
2

 a ...(iii)

From (i), (ii), (iii), we get p = a, q = 2a.
Now p2 = qa2 = 2aa = 0, 2
But for a = 0, f (x) = 2x3 +1 which does not attain a max. or
min. for any value of x. Hence, a = 2

Example 47 :
If A > 0, B > 0 and A + B =/3, then find the maximum value
of tan A tan B.

Sol. We have, A + B =/3.

 B =
3


 – Atan B =
3 tan A

1 3 tan A



Let Z = tanA + tan B. Then

Z =  tan A +
3 tan A

1 3 tan A



 =

23 tan A tan A
1 3 tan A




Z=
23x x

1 3 x


 , where x = tanA
dZ (x 3)( 3 x 1)
dx (1 3x)

 




For max Z,
dZ
dx

 = 0x =
1
3

, – 3

x  – 3  because A + B =
3


 which implies that x=tanA> 0

it can be easily checked that
2

2
d Z
dx

 < 0 for x =
1
3

Hence, Z is max. for x =
1
3

 i.e. tanA =
1
3

 or A = =
6


.

For this value of x,   Z = 1/3

GREATEST & LEAST VALUES OF A FUNCTION IN A GIVEN
INTERVAL

If a function f (x) is defined in an interval [a,b], then greatest
or least values of this function occurs either at x = a or
x = b or at those values of x where f ' (x) = 0.
Remember that a maximum value of the function f (x) in
any interval [a,b] is not necessarily its greatest value in
that interval.
Thus greatest value of f (x) in interval [a,b]

= Max.[f (a),f (b),f (c)]
Least value of f (x) in interval [a,b]

= Min. [f (a),f (b),f (c)]
Where x = c is a point such that f ' (c) = 0

Example 48 :
Find the greatest value of  x3 – 12x2 + 45x in the interval
[0, 7].

Sol. Let f (x) = x3 – 12x2 +45x , then
f ' (x) = 3x2 – 24x  + 45

3 (x–3) (x–5)
and f '' (x) = 6x –24
Now for maximum and minimum values

f ' (x) = 0 3 (x – 3) (x – 5) = 0   x = 3 , 5
Again f '' (3) = – 6 < 0 The function if maximum at x = 3
and f '' (5) = 6 > 0 The function is minimum at x = 5
Now f (0) = 0, f (3) = 54 , f (5) = 50 , f (7) = 70
  The greatest value in  [0, 7]

= max. {0, 54 ,50 , 70 } = 70

Example 49 :

If f (x) = cos x +
1
2

 cos 2x –
1
3

 cos 3x then find the difference

between the greatest and least values of the function.
Sol. It should be noted that it is not a question of max. or min.

but question of greatest and least value of f (x) in a certain
interval. The function is periodic with period 2. Hence
the required difference in the difference between greatest
and least values in the interval [0, 2]

dy
dx

 = – (sinx + sin2x – sin3x)

= –
3x x 3x 3x2sin cos 2sin cos
2 2 2 2

   

= –
3x x 3x2sin cos cos
2 2 2
    = –

3x2sin
2

 2sin x.
xsin
2

dy
dx

 = 0 at x = 0,
2
3


, , 2in [0, 2]

Corresponding values of y at the above points are

y =
7 13 1 7, , ,
6 12 6 6
 

Hence greatest value is
7
6

 and least is
13

12


 then

the difference is
7 13 27 9
6 12 12 4

     

Example 50 :
Find the maximum value of x3 – 3x in the interval [0, 2].

Sol. Let f (x) = x3 – 3x. Then f ' (x) = 3x2 – 3. For maximum or
minimum f ' (x) = 0x = ±1.
But x = –1[0, 2].
Therefore x = 1 only. It can be easily checked that f ''(x)> 0
for x = 1. So. f (x) attains a local minimum at x = 1
Now, f (0) = 0, f (1) = –2 and f (2) = 6
Hence f (x) attains the maximum value at x = 2
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PROPERTIES OF MAXIMA & MINIMA
(i) If f (x) is continuous function in its domain, then at least

one maxima and one minima must lie between two equal
values of x.

(ii) Maxima and minima occur alternately .that is between two
maxima there is one minimum and vice-versa.

(iii)  If f (x) is a maximum (minimum ) at a point x = a, then 1/ f
(x),  [f (x) 0 ] will be minimum (maximum) at that point.

(iv) If f (x)as x a or b and f ' (x) = 0 only for one value
of x (say c) between a and b, then f (c) is necessarily the
minimum and the least value.

(v) If f (x) as x  a or b, then f(c) is necessarily the
maximum and the greatest values of the function

MAXIMA & MINIMA  OF FUNCTION OF TWO VARIABLE:
If a function is defined in terms of two variables and if
these are associated with a given relation then by
eliminating one variable, we convert function in terms of
one variable and then find the maxima and minima by
known methods.

Example 51 :
If x + y = 8 then find the maximum value of xy.

Sol. Let Z = xy   Z = x (8 – x) or Z = 8x – x2

dz/dx = 8 – 2x = 0 x = 4
d2Z/dx2 = –2 < 0

 x = 4 is a maximum point. So maximum value is
Z = 8.4 – 42 =16.

Example 52 :
Divide 64 into two parts such that the sum of the cubes of
two parts is minimum. The two parts are
(1) 44,20 (2) 16, 48
(3) 32, 32 (4) 50, 14

Sol. (3). x + y = 64
y = x3 + y3 = x3 + (64 – x)3

dy
dx

 = 3 [x2– (64 –x)2] = 0 = 3 [(2x – 64) 64] = 0x = 32

2

2
d y
dx

 = + ive, Hence min.

Example 53 :
Find the minimum value of px + qy when xy = r2.

Sol. Let Z = px + qy. Then

Z = px +
2qr

x


dZ
dx

 = p –
2

2
qr
x

[xy = r2]

For max or min
dZ
dx

 = 0x = ±
2qr

p

For x =
2qr

p , we have
2 2

2 3
d z qr
dx x
  > 0

Hence, z is min. for x =
2 2

2

qr qr
p qr

p

 = 2r pq

SOME STANDARD GEOMETRICAL RESULTS RELATED TO
MAXIMA & MINIMA

The following results can easily be established.
(i) The area of rectangle with given perimeter is  greatest

when it is a square.
(ii) The perimeter of a rectangle with given area is least when

it is  a square.
(iii) The greatest rectangle inscribed in a given circle is a

square.
(iv) The greatest triangle inscribed in a given circle is

equilateral.
(v) The semi vertical angle of a cone with given slant height

and maximum volume is 1tan 2  .
(vi) The height of a cylinder of maximum  volume  inscribed in

a sphere of radius a is 2a / 3 .

Example 54 :
Find the maximum area of a rectangle of perimeter 176cms.

Sol. Let sides of the rectangle be x, y ; then
2x + 2y = 176

 Its area A = xy = x (88 – x)  = 88 x – x2


dA
dx

 = 88 – 2x,
2

2
d A
dx

 = – 2 < 0

Now,
dA
dx

 = 0x = 44; Also then
2

2
d A
dx

 < 0.

So area will be maximum when x = 44 and maximum area
= 44 × 44 = 1936 sq. cms.

Example 55 :
If the sum of length of the hypotenuse and another side
of a right angled triangle is given, show that the area of
the triangle is max. when the angle between these is
(1) /12 (2)/4
(3) /3 (4) /2

Sol. (3). AB + AC = constant = k
If AB = x then AC = k – x

A B x

C

k - x BC2 = (k – x)2 – x2 = k2 – 2kr

 =
1
2

 BC. AB

  =
1
2

 x 2(k 2kx)

Let Z = 2 =
1
4

 x2 (k2 – 2kx)   =
1
4

 (k2 x2 – 2kx3)

Z will be max. when x = k/3

 cos=
x k / 3 1

k x k k / 3 2
 

 
  = /3
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Example 56 :
A running track or 440 it is to be laid out enclosing a
football field, the shape of which is a rectangle with a
semi -circle at each end. If the area of the rectangular
portion is to be maximum then find the length of its sides.

Sol. Perimeter = 440 ft.
2x + r+ r = 440

or 2x + 2r = 440 .......... (1)

A B x

 x CD

 r r

A = Area of rectangular portion = x. 2r

A = x
(400 2x) 1


 

 (440 x – 2x2)

dA 1
dx



 (440 – 4x) x = 110

2

2
d A
dx

 = – ive  A is max. when x = 110.

 2r =
440 2x


 =
440 220

22 / 7


 = 70

RATE OF CHANGE OFVARIABLE
Derivative as a rate measurer : Let y  = f (x) be a function
of x. Let y be the change in y corresponding to a small

change x in x. Then ,
y
x



 represents the change in y

due to a unit change in x. In other words,
y
x



 represents

the average rate of change of y w. r. t. x as x changes from
x to x + x.
Asx 0, the limiting value of this average rate of change
of y with respect to x in the interval [x, x + x] becomes the
instantaneous rate of change of y w.r.t. x.

x 0

ylim
x 


  = Instantaneous rate of change of y w.r.t. x


dy
dx

 = Rate of change of y. w.r. t. x
x 0

y dylim
x dx 

   


The word “instantaneous” is often dropped.

Hence,
dy
dx

 represents the rate of change of y w.r.t. x for a

definite value of x.
Note :

1. The value of
dy
dx

 at x = x0 i.e.
x x0

dy
dx 

 
    represents the

rate of change of y with  respect to x at x = x0

2. If x =  (t) and y =(t), then

dy
dy dt

dxdx
dt

 , provided that
dx
dt
0

Thus, the rate of change of y with respect to x can be
calculated by using the rate of change of y and that of x
each with respect to t.

3. The term “rate of change” will mean the instantaneous
rate of change unless stated otherwise.

Example 57 :
Find the rate of change of the area of a circle with respect
to its radius. How fast is the area changing with respect
to the radius when the radius is 3cm ?

Sol. Let A be the area of the circle. Then  A = r2 
dA
dr

 = 2r

Thus, the rate of change of the area of the circle w.r.t. its
radius r is 2r.

when r = 3cm, we have
dA
dr

 = (2 × 3) cm2/cm = 6cm2/cm

Example 58 :
A balloon, which always remains spherical, has a variable

diameter
3
2

(2x + 3). Determine the rate of change of

volume with respect to x.
Sol. Let V be the volume of the balloon. Then

 V =
34 3 (2x 3)

3 4
   
 

 =
9
16


. (2x + 3)3


dV 9
dx 16


 . 3 (2x + 3)2

d
dx

(2x + 3)
dV 27
dx 8


  (2x + 3)2.

Related rates : Generally we come across with the
problems in which the rate of change of one of the
quantities involved is required corresponding to the given
rate of change of another quantity. For example, suppose
the rate  of change of volume of a spherical balloon is
required when the rate of change of its radius is given. In
such type of problems we must find a relation connecting
such quantities and differentiate this relation w.r.t. time.
The procedure is illustrated in the following examples.

Example 59:
The radius of a balloon is increasing at the rate of
10 cm/sec. At what rate is the surface area of the balloon
increasing when the radius is 15 cm ?

Sol. Let r be the radius and S be the surface area of the balloon
at any time t.

Then, S = 4  r2  and
dr
dt

 = 10 cm/sec
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Now, S = 4  r2

dS
dt = 8  r

dr
dt

;
dS
dt = 80  r

dr 10cm / sec.
dt

   



r 15

dS
dt 

 
    = 80 (15) = 120 cm2/sec

Example 60 :
The volume of a cube is increasing at a rate of 7 cm3/sec.
How fast is the surface area increasing when the length
of an edge is 12 cm ?

Sol. Let x be the length of an edge of the cube, V be the volume
and S be the surface area of any time t. Then

V = x3 and  S = 6x2

Also,
dV
dt

 = 7 cm3/sec [Given]


d
dt

 (x3) = 7 3x2 dx
dt

 = 7 2
dx 7
dt 3x


Now, S = 6x2 
dS dx12x
dt dt


 2
dS 712x
dt 3x
  2

dx 7
dt 3x

 
 

 



dS 28
dt x
 

x 12

dS 28
dt 12

      cm2/sec. =
7
3

 cm2/sec.

Example 61 :
The length x of a rectangle is decreasing at the rate of
2 cm/sec and the width y is increasing at the rate of
2 cm/sec. When x = 12 cm and y = 5 cm, find the rate of
change of (i) the perimeter and (ii) the area of the rectangle.

Sol. Let P be the perimeter and A be the area of the rectangle at
any time t. Then,  P = 2 (x + y) and A = xy.

It is given that
dx
dt

 = – 2 cm/sec and
dy
dt

 = 2cm/sec.

(i) We have, P = 2 (x + y)


dP dx dy2
dt dt dt

      = 2 (–2 + 2) = 0 cm/sec

i.e. the perimeter remains constant.
(ii) We have,  A = xy


dA dx dyy x
dt dt dt

          


dA
dt

 = – 2 × 5 + 12 × 2  [ x = 12 cm and y = 5 cm (given)]


dA
dt

 = 14 cm2/sec

Example 62 :
On the curve x3 = 12y, find the interval of values of x for
which the abscissa changes at a faster rate than the
ordinate?

Sol. Given x3 = 12y, differentiating w.r.t. y
2

2 dx dy x3x 12
dy dx 4
  

Now abscissa changes at a faster rate than the ordinate,

then we must have
dy 1
dx
 .

 | x2 | < 4, x0  –2 < x < 2, x0x (–2, 2) – {0}

IMPORTANT POINTS
* If a quantity y varies with another quantity x, satisfying

some rule y= f(x), then
dy
dx

 or (or f  ' (x)) represents the rate

of change of y with respect to x and
x x0

dy
dx 


  (or f ' (x0))

represents the rate of change of y with respect to x at x =
x0.

* A function f is said to be (a) increasing on an interval (a, b)
if x1 < x2 in (a, b)f (x1) f (x2) for all x1, x2(a, b).
Alternatively, if f ' (x)  0 for each x in (a, b).
(b) decreasing on (a,b) if   x1 < x2 in (a, b)f (x1)f (x2) for
all x1, x2(a, b). Alternatively, if f ' (x)  0 for each x in (a,
b)

* The equation of the tangent at (x0, y0) to the curve y = f (x)

is given by 0 0
(x ,y )0 0

dyy y (x x )
dx
  

* If
dy
dx

 does not exist at the point (x0, y0), then the tangent

at this point is parallel to the y-axis and its equation is x =
x0.

*  Equation of the normal to the curve y = f (x) at a point

(x0,y0) is given by 0 0

(x ,y )0 0

1y y (x x )
dy
dx


  




* Let y = f (x), x be a small increment in x and y be the
increment in y corresponding to the increment in x, i.e.,
y = f (x +x) – f (x). Then dy given by  dy = f ' (x)dx or dy

= dy x
dx
    

is a good approximation ofy when dx = x is

relatively small and we denote it by dy y.
* A point c in the domain of a function f at which either

f ' (c) = 0 or f is not differentiable is called a critical point of
f.
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* First derivative test : Let f be a function defined on an
open interval I. Let f be continuous at a critical point c in I.
Then :
(a) If f ' (x) changes sign from positive to negative as x
increases through c, i.e., if f ' (x) > 0 at every point
sufficiently close to and to the left of c, and f ' (x) < 0 at
every point sufficiently close to and to the right of c, then
c is a point of local maxima.
(b) If f ' (x) changes sign from negative to positive as x
increases through c, i.e., if f ' (x) < 0 at every point
sufficiently close to and to the left of c, and f ' (x) > 0 at
every point sufficiently close to and to the right of c, then
c is a point of local minima.
(c) If f ' (x) does not change sign as x increases through c,
then c is neither a point of local maxima nor a point of local
minima. Infact, such a point is called point of inflexion.

* Second derivative test : Let f be a function defined on an
interval I and cI. Let f be twice differentiable at c. Then
(a) x = c is a point of local maxima if f ' (c) = 0 and f ''(c) < 0.
The values f (c) is local maximum value of f .
(b) x = c is a point of local minima if f ''(c) = 0 and f ''(c) > 0.
In this case, f (c) is local minimum value of f .
(iii) The test fails if f ''(c) = 0 and f ''(c) = 0. In this case, we
go back to the first derivative test and find whether c is a
point of maxima, minima or a point of inflexion.

* Rolle’s Theorem: If f : [a, b]R is continuous on [a, b]
and differentiable on (a, b) such that f (a) = f (b), then there
exists some c in (a, b) such that f '(c) = 0.

* Mean value theorem: If f : [a, b] R is continuous on [a,
b] and differentiable on (a, b). Then there exists some c in

(a, b) such that
f (b) f (a)f (c)

b a





* Increasing/Decreasing :
1. If f (x) > 0 for all x in an interval I then f (x) is increasing
on the interval I.
2. If f (x) < 0 for all x in an interval I then f (x) is decreasing
on the interval I.
3. If f (x) = 0 for all x in an interval I then f (x) is constant on
the interval I.

* Concave Up/Concave Down :
1. If f (x) > 0 for all x in an interval I then f (x) is concave up
on the interval I.
2. If f (x) < 0 for all x in an interval I then f (x) is concave
down on the interval I.

* Length of Sub–tangent =
dxy
dy  ; Sub–normal =

dyy
dx ;

Length of tangent =

2dxy 1
dy

        
 ;

Length of normal =
2dyy 1

dx

        

* Orthogonal trajectory : Any  curve which cuts every
member of a given family of curves at right angle, is called
an orthogonal trajectory of the family.

* Some common Parametric coordinates on a curve:

(a) For 2 3 2 3 2 3x y a    take parametric coordinate
x = a cos3  &  y = a sin3.

(b) For x y a    take  x = a cos4  &  y = a sin4.

(c)
n n

n n
x y 1
a b
    taken  x = 2/na (sin )   &  y = 2/nb (sin ) .

(d) For   c2 (x2 + y2) = x2 y2  take  x = c sec   and  y = c cosec.
(e) For y2 = x3,   take x = t2 and y = t3.
* The tangent at P meeting the curve again at Q.


2 1

2 1P

y ydy
dx x x






(x ,y )1 1 (x ,y )2 2
QP

O

T
t

* Different Graphs of the cubic:
y = ax3 + bx2 + cx + d

1. One real & two imaginary roots (always monotonic)xR
Condition : f ' (x) 0 or f ' (x)0 together with either f '(x) =0
has no root (i.e. D < 0) or f ' (x) = 0 has a root x =  then
f () = 0.

(i) either f '(x) 0 has no real root
or (ii) if f '(x) 0 has a root x then f ( ) 0


    

e.g. y = x3 – 2x2 + 5x + 4
y ' = 3x2 – 4x + 5   (D < 0)
y = (x – 2)3

y ' = 3(x – 2)2 = 0   x = 2, also f (2) = 0
gives x = 2,    y (2) = 0

Note: In this case if f ' (x) = 0 has a root x =  and f () = 0
this would mean f (x) = 0 has repeated roots which is dealt
separately.

2. Exactly one root and non monotonic
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3. Three roots
two concident

One different

4. All three distinct real roots

f (x1) · f (x2) < 0
where x1 & x2 are the roots of f ' (x) = 0

5. All three roots concident

f '(x)  0 or f '(x)  0 &  f () = 0
where  is a root of  f ' (x) = 0
e.g.  y = (x – 1)3

Note :
(i) Graph of every cubic polynomial must have exactly

one point of  inflection.
(ii) In case (4) if  f (a), f (b), f (c) and f (d) alternatively

change sign.

ADDITIONAL EXAMPLES
Example 1 :

In the curve y = c ex/a, then –
(A) subtangent is constant.
(B) subnormal varies as the square of the ordinate.
(C) tangent at (x1, y1) on the curve intersects the x-axis at
      a distance of (x1 – a) from the origin .
(D) equation of normal at the point where the curve cuts
      y-axis is cy + ax = c2.

Sol. (A,B,C,D). We have, y = c ex/a

 x/ady c e
dx a
 

dy 1 y
dx a
 

y
dy / dx

 = a = const.

 subtangent = const.
Length of the subnormal

= y
dy
dx

= y.
2y y

a a
 (square of the ordinate)

Equation of the tangent at (x1 , y1) is

y – y1 = 1y
a


 (x – x1)

This meets x-axis at a point given by

– y = 1y
a

 (x – x1)x = x1 – a

The curve meets y-axis at (0, c)


(0,c)

dy
dx
 
   = c/a

So, equation of the normal at (0, c) is

y – c = –
1

c / a
 (x – 0) ax + cy = c2

Example 2 :

If the line
x y 2
a b
   touches the curve

n nx y
a b
          = 2

at point (a, b), then find the value of n.

Sol.
n nx y

a b
           = 2


dy
dx

 = –

n 1

n 1

n x
a a
n y
b n





 
  

 
  

 = –
n 1nb x

a y

  
      


(a,b)

dy b
dx a
     

So tangent to the curve at (a, b) is

y – b = –
b
a

 (x – a) 
x y
a b
  = 2

Example 3 :
Find the angle between the tangent to the curve y2 = 2ax
at the points where x = a/2.

Sol. We have, y2 = 2ax ..(i)

Put x =
a
2

 ; y2 = 2a a
2
 
  

y = ± a

The points are (a/2, a) and (a/2, –a)
Differentiating (1) with respect to x, we get

2y
dy
dx

 = 2a
dy a
dx y


At
a ,a
2
 
    ;

dy a a
dx y a
   = 1 = m1 (say)

At
a , a
2
     ;

dy a a
dx y a
 


 = –1 = m2 (say)

Since m1m2 = – 1, the two tangents are at right angles.
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Example 4 :
Find the equation of the one of the tangents to the curve
y = cos (x + y), – 2 x  2that is parallel to the line
x + 2y = 0.

Sol.
dy
dx

 = – sin (x + y). [1 + dy/dx] ...(1)

Since the tangent is parallel to x + 2y = 0

therefore
dy
dx

 = slope = –
1
2

. Putting in (1)

sin (x + y) = 1 = sin (/2)
cos (x + y) = 0  y = cos (x + y) = 0
 sin (x + y) = 1 sinx = 1 y = 0

 x =
2


, –
3
2


 as – 2 < x < 2

Hence the points are [(–3)/2, 0] and [/2, 0] where the
tangents are parallel to the line x + 2y = 0,
The equation of tangents are :

y – 0 = –
1
2

 (x + 3/2) and y – 0 = –
1
2

 (x – /2)

or x + 2y + 3/2 = 0  and x + 2y – /2 = 0

Example 5 :
Find the number of tangents to the curve y2–2x3 – 4y+8=0
that pass through (1, 2).

Sol. Differentiating w.r.t x,

2y
dy
dx

 – 6x2 – 4
dy
dx

 = 0
2dy 3x

dx y 2



 The equation of the tangent at (, ) is

 y –  =
23
2



 (x – )

It passes through (1, 2) if 2 – =
23
2



 (1 – )

or ( – 2)2 = 32 ( – 1)
Also, (, ) satisfies the equation of the curve
  – 23 –4 + 8 = 0 or ( – 2)2 =  23 – 4
 ( – 2)2 = 32 ( – 1) = 23 – 4
 3 – 32 + 4 = 0
or ( –2) (2 – – 2) = 0 or ( –2)2 ( + 1) = 0
When  = 2 , ( –2)2 = 12 or  = 2 ±  2 3
When  = –1 , ( –2)2 = –6 or  = non real number
 (, ) has two values

Example 6 :
Find the co-ordinates of the point P on the curve y2 = 2x3,
the tangent at which is perpendicular to the line
4x – 3y + 2 = 0 are given by [Slope of given line is 4/3]

Sol.
2dy 6x

dx 2y
 

26x 4.
2y 3  = – 1 (m1/m2 = –1)

y = 4x2  or y2 = 16x4 = 2x3 y = 0 or 1/8

y = 0, –
1

16
 from y = – 4x2 . Now

dy 0
dx 0
  at (0, 0) and

hence rejected   Required point is
1 1,
8 16
   

Example 7 :
Find the angle which the perpendicular from the origin on
the tangent makes with the x-axis for the curve whose
parametric equations are x = a sin3, y = a cos3.

Sol.
dy y
dx x
  = slope of the tangent  = – cot.

Hence slope of a line through origin and perpendicular to
the tangent is = tan  as m1m2 = –1
Therefore it makes an angle  with x-axis.

Example 8 :
Find the point of inflexion for the curve y = (x – a)n, where
n is odd integer and n  3.

Sol. Here
2

2
d y
dx

 = n (n – 1) (x – a)n –2

Now
2

2
d y
dx

 = 0x = a

Differentiating equation of the curve n times, we get

n

n
d y
dx

 = n ! at x = a,
n

n
d y
dx

 0 and
n 1

n 1
d y
dx



  = 0,

where n is odd. Therefore (a, 0) is the point of inflexion.

Example 9 :
Find the interval of increase of the function
f (x) = x – ex + tan (2/7).

Sol. We have : f (x) = x – ex + tan
2
7
 

   f ' (x) = 1 – ex

For f (x) to be increasing, we must have
f '  (x) > 01 – ex > 0 ex < 1
x < 0x(–, 0)

Example 10 :
If a function f (x) = cos | x | – 2ax + b is an increasing
function on whole number line, then find the value of a.

Sol. 
d

dx
cos | x | = – sinx, for x R

f '(x) = – sin x – 2a
Now f (x) is an increasing function, therefore
f '(x) > 0– sinx – 2a > 0

a < –
1
2

 sinx a  –
1
2
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Example 11 :

If y = 2x + arc cotx + n [ 21 x  – x], then y
(A) increases in [0,[
(B) decreases in [0,[
(C) neither increases nor decreases in [0, [
(D) increases in ]–, 0]

Sol. (A, D). We have

y = 2x + cot –1 x + log[ 21 x  – x]


dy
dx

 = 2 – 2 2 2

1 1 x 1
1 x 1 x x 1 x

 
   

     

2 2 2

2 22

2x 1 1 (2x 1) 1 x
1 x 1 x1 x

   
  
 

Now,
dy
dx
 0 (2x2 +1) – 21 x  0

 (2x2 +1)21 + x24x4 + 3x2 0
Which is true for all real values of x.
y increases for all real values of x.

Example 12 :
Find the height of the cylinder of max. volume that can be
inscribed in a sphere of radius a.

Sol. If a be the radius and h the height, then from the figure
r + (h2/4) = a2

 h2 = 4 (a2 – r2)

Now V = r2h = 
2 1a h

4
   

h = 
2 31a h h

4
   

L

MA

D C

B

O  a


2 2dV 3a h

dh 4
       = 0 for max. or min.

This gives h = (2 / 3 ) a
d2V/ dh2 = – 6h/4< 0

Hence V is max. when h = 2a / 3

Example 13 :
Find the ratio of the altitude of the cone of greatest volume
which can be inscribed in a given sphere to the diameter of
the sphere.

Sol. Let h be the height of the cone
and r be its radius.
h = CL = CO + OL = a + OL
 OL = h – a

 r = LA = 2 2(OA OL )

L

 a

  h-a

 a

 rB A

C

O

or r = 2 2{a (h a) } 
  = (2ah – h2)

V =
1
3
r2h =

1
3
 (2ah – h2) h =

1
3
 (2ah2 – h3)

dy
dh

 = (/3) (4ah – 3h2) = 0 h = 0 or 4a/3

h = 0 is rejectedh = 4a/3 = (2/3) (2a)
h = 2/3 (diameter)

Example 14 :

For the function f (x) =
x

0

sin t
t  dt, where x > 0,

(A) maximum occurs at x = n, n even
(B) minimum occurs at x = n, n odd
(C) maximum occurs at x = n, n odd
(D) Minimum occurs at x = n, n even

Sol. (C, D). We have

f ' (x) =
sin x

x
 and f ' '(x) = 2

x cos x sin x
x


For maximum or minimum, f ' (x) = 0


sin x

x
 = 0sinx = 0 ; x  0

x = n; n = 1, 2, 3,........( x > 0)

At x = n, f''(x) = 2
n cos n sin n cos n

n(n )
    




 =
n( 1)

n



Extreme points are x = n, n = 1, 2, 3..... where the maximum
occurs at x = , 3, 5,.... and the minimum occurs at x =
2, 4, 6,....

Example 15 :
If f (x) = | x | + | x – 1| + | x –2 | ,then
(A) f (x) has minima at x = 1
(B) f (x) has maxima at x = 0
(C) f (x) has neither maxima nor minima at x = 0
(D) f (x) has neither maxima nor minima at x = 2

Sol. (A, C, D).  we have, f (x) = | x | + | x – 1 | + | x – 2 |

  =

3x 3 , x 0
x 3 , 0 x 1
x 1 , 1 x 2

3x 3 , x 2

  
    
   
  

f '(x) =

3 , x 0
does not exist , x 0

1 , 0 x 1
does not exist , x 1

1 , 1 x 2
does not exist , x 2

3 , x 2

 
 
   
 
  


 

Clearly f (x) has minima at x = 1 and neither maxima nor
minima at x = 0 and x = 2.
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Example 16 :
Find the greatest value of f (x) = (x + 1)1/3 – (x – 1)1/3 on
[0, 1]

Sol. We have, f (x) = (x + 1)1/3 – (x – 1)1/3

f '(x) = 1/3 1/3
1 1 1
3 (x 1) (x 1)

 
 

   
=

2/3 2/3

2 2/3
(x 1) (x 1)

3(x 1)
  



Clearly, f '(x) does not exist at x = ± 1
Now, f '(x) = 0(x – 1)2/3 = (x + 1)2/3x = 0
Clearly f '(x)  0 for any other value of x[0, 1] .
The value of f (x) at x = 0 is 2.
Hence, the greatest value of f (x) is 2.

Example 17 :

Find the minimum value of
2 2(2x 2x 1)sin xe   .

Sol. Let y =
2 2(2x 2x 1)sin xe    and u = (2x2 – 2x – 1) sin2 x

Now
du
dx

= (2x2 – 2x – 1) 2 sin x cosx + (4x – 2) sin2 x

         = sin x [2 (2x2 –  2x) cos x + (4x – 2) sin x]

du
dx

 = 0sinx = 0x = n

2

2
d u
dx

 = sinx
d

dx
[2(2x2 –2x – 1) cos x + (4x – 2) sin x]

+ cos x [2 cosx (2x2 – 2x – 1) + (4x – 2) sinx]

At x = n,
2

2
d u
dx

 = 0 + 2 cos2 n(2n2 2 – 1) > 0

Hence at x = n, the value of u and so its corresponding
the value of y is minimum and minimum value = e0 = 1

Example 18 :
A wire of length 'a' is cut into two parts which are bent
respectively in the form of square and a circle. Find the
least value of the sum of the areas so formed.

Sol. Given 4x + 2r =a

A = x2 + r2 =
1

16
 (a – 2r)2 + r2

dA
dr

 = 0 gives r  =
a

2( 4) 

for which
2d A
dr

 is +ive and hence minimum

4x = a – 2r = a –
a 4a

4 4



   

 x =
a

4 
 A = x2 + r2  =

2a
4( 4) 

Example 19 :
Water seeps out of a conical filter at the constant rate of
5 c.c./sec. The height of the cone of water in the filter is
15 cm, the height of the filter is 20 cm and radius of the
base is 10 cm. Find the rate at which the height of the water
decreases.

Sol. Let at any instant, the radius of the base and height of the
cone formed by the water in the filter be x and y respectively
Volume of water in the filter at that time is

V =
1
3
x2y   But

x 10 1
y 20 2
 

O

20

M
10

P

 x  y

 x =
1
2

 y V = 21 1 y
3 4
 . y =

3y
12



2

2dv dy y dy3y
dt 12 dt 4 dt

 
   ;

dV 5
dt


We are to find
dy
dt

, when y = 15

 5 = 
2(15) dy

4 dt


dy 5 4 1 4.
dt 15 15 45


 
  

 cm/sec.

Example 20 :
Show that tan2x + 6 log sec x + 2 cosx + 4  6 sec x

for 0  x  /2
Sol. Let f(x) = tan2x + 6 log (sec x) + 2cos x + 4 – 6 sec x

f '(x)= 2tanx sec2x +
6

sec x . secx tanx – 2sin x – 6sec x tan x

= 3
2sin x
cos x  2 31 3cos x cos x 3cos x  

= 3
2sin x
cos x

 (1 – cos x)3

Now, in (0, /2) f ' (x) is positive and hence f (x) increasing.
Besides, f (0) = 0.  Hence, f (x) is positive in (0, /2).
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Example 21 :
Find the tangent and normal for    x2/3 + y2/3 = 2 at (1, 1).

Sol.  x2/3 + y2/3 = 2

1 1
3 32 x y y 0

3

  
  
  

 or  y' = –

1
3x

y


 
  

At (1, 1) y' = –1
Equation of tangent y – 1 = –1 (x – 1)x + y = 2
Equation of normal y – 1 = 1 (x – 1) x – y = 0

Example 22 :
Find tangent to  x = a sin3t and y = a cos3t  at  t = /2.

Sol. x = a sin3 t; y = a cos3 t
2

2
dy 3a cos t sint cot t
dx 3a sin t cost


  

At t =
2


,
dy
dx

 = 0 point is (a, 0)

 Equation of tangent   y = 0

Example 23 :
Find the equation of the normal to the curve  x2 = 4y  which
passes through (1, 2).

Sol. x2 = 4y 2x = 4y'

y' = 1x
2

 & y1 =
2
1x
4

Normal :  y – y1 =
1

2
x


(x – x1 ) or     y –
2
1x
4

=
1

2
x


(x – x1 )

It passes through (1, 2)

2 –
2
1x
4

 =
1

2
x


(1 – x1) = –
1

2
x

 + 2

3
1x 8  x1 = 2  &    y1 =

2
1x
4

= 1

  Normal is  y – 1 =
2

2


 (x – 2) = 2 – x ;  x + y = 3

Example 24 :
Tangent at point P on the curve   y2 = x3  meets the curve

again at  point  Q. Find OP

OQ

m
m  , where O is origin.

Sol. Take  P (t2, t3) and Q (T2, T3)

2dy 3x
dx 2y
   or

dy 3 t
dx 2
    

Slope line joining P and Q is =
3 2 2

2 2
T t T t Tt

T tT t

   





2 23 T t Ttt

2 T t
 




 or  3tT + 3t2 = 2T2  + 2t2 + 2Tt


tT

2

 

OP

OQ

m
2

m
 

Example 25 :
Show that for the curve by2 = (x + a)3 the square of the
subtangent varies as the subnormal.

Sol. by2 = (x + a)3 or  2byy' = 3(x + a)2

S.T. =
y
y '

= 2
y

3 (x a)
2by =

2

2
2by 2 (x a)

33 (x a)





S.N. = yy' = y
2 23 (x a) 3 (x a)

2by 2b
 

   ST2 SN

Example 26 :
Show that at any point on the hyperbola xy = c2 , the
subtangent varies as the abscissa and the subnormal varies
as the cube of the ordinate of the point of contact.

Sol. xy = c2    xy' + y = 0 or  y' =
y

x


ST =
y
y '  = –x ,  SN = yy' =

2 2 3

2
y y yy
x cc
  
  

Example 27 :
 Match the following :

Column-I            Column-II

(A) If the parabola y2 = 4ax, a > 0 cuts the       (P) 4 2
hyperbola xy = 2  at right angles, then
a =

(B) If the curves ay + x2 = 7, a > 0 and x3 = y  (Q) 2 2
cut orthogonally at (1, 1), then a =

(C) If the curves y2 = 4x and xy = a, a > 0 cut   (R) 1/2
orthogonally, then a =

(D) Curves 2x = y2 and 2xy = a, a > 0 cut          (S) 6
each other at
right angles, then a =

Sol. (A) - R, (B) - S, (C) - P, (D) - Q
(A) Given curves are, y2 = 4ax .....(1)

and xy = 2 .....(2)

From (1),
dy2y 4a
dx
 

dy 2a
dx y
 ......(3)

From (2), y + x
dy
dx

 = 0 
dy y
dx x
 .......(4)

Putting the value of y from (2) in (1), we get
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2
2

x
 = 4ax x3 =

1
2a

.....(5)

For curves (1) and (2) to cut at right angles,

2a y
y x
   

      =  –12a = x ; 8a3 = x3 =
1
2a

[From (5)]

 16a4 = 1    a = 1/2 [ a > 0]
(B) Given curves are ay + x2 = 7 ........(1)

and y = x3 ........(2)

From (1),
dy
dx

 =
2x
a


........(3)

From (2),
dy
dx

 = 3x2 .........(4)

For curves (1) & (2) to cut each other orthogonally at (1,1),

2
a

     · 3 = – 1    a = 6.

(C) Given curves are, y2 = 4x .......(1)
and xy = a .......(2)

From (1),
dy2y
dx

 = 4 
dy 2
dx y
 ......(3)

From (2),     1 · y + x
dy
dx

 = 0


dy y
dx x
  .......(4)

Putting the value of  y  from (2) in (1), we get
2

2
a
x

 = 4x     a2 = 4x3 .......(5)

From (2), 2
a dy ay
x dx x


       [ from (2), y =

a
x

]

any curve (1) for curve (2)

dy dy·
dx dx
   
        = 2

2 a 2·
y xx
 
 ......(6)

For curves (1) and (2) to cut each other orthogonally,

2
x


 =  – 1    x = 2. [From (6)]

 From (5), a = 4 2 [ a > 1]
(D) Given curves are, y2 = 2x .........(1)

and xy = a/2 .........(2)

From (1),
dy 1
dx y
 ...........(3)

From (2), y + x
dy
dx

 = 0
dy
dx

 =  –
y
x

..........(4)

for curve (1) for curve (2)

dy dy 1·
dx dx x

             .........(5)

Putting the value of  y from (2) in (1), we get
2

2
a

4x
 = 2x 8x3 = a2 .........(6)

For the two curves to cut each other at ight angles,

– 1 1
x
   x = 1

 From (6), a2 = 8  a 2 2 .

Example 28 :
Find intervals of monotonicity of following functions :
(a) f (x) = x4 – 8x3 + 22x2 – 24x + 7

(b) f (x) = 2
2x

1 x
(c) f (x) = ln (x2 – 2x)

(d) f (x) = 2
| x 1 |

x


Sol.(a) We have
f (x) = x4 – 8x3 + 22x2 – 24x + 7,  x R
and f '(x) = 4x3 – 24x2 + 44x – 24 = 4(x – 1) (x – 2) (x – 3)

–ve +ve +ve–ve
1 2 3

x = 2

x = 1 x = 3

From the sign scheme for  f '(x), we can see that  f(x)
From the sign scheme for  f '(x), we can see that  f(x)
strictly decreases in (–, 1)
strictly increases in (1, 2)
strictly decreases in (2, 3)
strictly increases in (3, ).

(b) We have f (x) = 2
2x

1 x
, x R

and f '(x) =
2

2 2
(1 x ) 2 2x (2x)

(1 x )
 


=

2

2 2
2 (x 1)
(1 x )
 



2 2
2 (x 1) (x 1)

(1 x )
  




From the sign scheme for  f '(x), we can see that  f (x)
strictly decreases in (–, 1)
strictly increases in (–1, 1)
strictly decreases in (1, )

–ve –ve+ve
–1 1

x = 1

x = – 1
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(c) We have  f (x) = ln (x2 – 2x), x (–, 0) (2,)

and f '(x) = 2
2x 2 2 (x 1)

x (x 2)x 2x
 



From the sign scheme for  f '(x), we can see that  f(x)

–ve +ve +ve–ve

0 1 2
x = 0 x = 2

strictly decreases in (–, 0)(1, 2)
strictly increases in (0, 1)(2,).

Also, we can see that  f (0–) = –  and  f (2+) = – .

(d) We have f (x) = 2
(x 1)

x


 ,  x < 1  and  f (x) = 2
x 1
x


, x  1

f '(x) = 3 2 3
2 1 x 2

x x x
 
  , x < 1   and  f '(x) = 3

2 x
x


, x > 1

Now, from the sign scheme for  f '(x), we have
 f (x) strictly increases in (–, 0)

0 1 2
–ve+ve–ve+ve

strictly decreases in (0, 1)
strictly increases in (1, 2)
strictly decreases in (2, ).

Example 29 :
If (x) = f(x) + f(1 – x) and f "(x) < 0 in (– 1, 1), then show
that (x) strictly increases in (0, 1/2).

Sol. We have (x) = f (x) + f (1 – x) and  '(x) = f '(x) – f '(1 – x)
which vanishes at points given by x = 1 – x  i.e. x = 1/2
f "(x) < 0    f '(x) is decreasing for x (0, 1/2)
i.e. 1 – x > x    f '(1 – x) < f '(x)
hence '(x) > 0   x (0, 1/2)
Hence, (x) strictly increases in (0, 1/2).

Example 30 :
Find the image of interval [–1, 3] under the mapping
specified by the function   f (x) = 4x3 – 12x.

Sol. f '(x) = 12x2 – 12  = 12 (x2 – 1)
f '(x) = 0  at  x = ±1, f (–1) = 8, f (1) = –8
f (3) = 72   greatest value is 72 and least value is –8.

Example 31 :
Find the range of the following functions

f (x) = x 3 2 5 x   .

Sol. We have f (x) = x 3 2 5 x  
whose domain is x  [3, 5] and its derivative is

f '(x) =
1 1

2 x 3 5 x


 
 =

5 x 2 x 3
2 x 3 5 x
  
 

Now, solving

5 x 2 x 3     i.e. 5 – x > 4 (x – 3) given  x < 17/5.
Hence, we have

f  ' ( x )  >  0  x (3, 17/5) & f '(x)< 0 x (17/5, 5)
 f (x) strictly increases in (3, 17/5) and strictly decreases

in (17/5, 5).
Now, we have

f (3) = 2 2 , f (5) = 2 and

17 17 17f 3 2 5 10
5 5 5
        

Hence, the range is y  [ 2, 10]

Example 32 :
Find the range of the following functions

4 2

4 2
x x 2x 8f (x)
x x 2x 4
  


  

Sol. f (x) =
4 2

4 2 4 2
x x 2x 8 41
x x 2x 4 x x 2x 4
  

 
     

2 2 2
41

(x 1) (x 1) 2
 

   

Let g (x) = (x2 – 1)2 + (x – 1)2 + 2, whose least value = 2

and greatest value = 

Thus, we have  for  f(x) greatest value = 1 +
4
2

 = 3

and   least value = 1 +
4


 = 1.

Also, f(x) is continuous and defined on R. Hence, the range
of f (x), is  y (1, 3].

Example 33 :

Show that   ln (1 + x) > x –
2x

2
  x (0,)

Sol. Consider the function  f (x) = ln (1 + x) – x +
2x

2
, x (0,)

Then f '(x) =
1

1 x
– 1 + x =

2x
1 x

 > 0  x (0,)

 f (x) strictly increases in (0,)

 f (x) > f (0+) = 0  i.e.   ln (1 + x)  > x –
2x

2
which is the desired result.
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Example 34 :
Show that the equation   x5 – 3x – 1 = 0  has a unique root
in [1, 2].

Sol. Consider the function
f (x) = x5 – 3x – 1,  x [1, 2]

and f '(x) = 5x4 – 3 > 0 x [1, 2]
 f (x) striclty increases in [1, 2]

1 2

(1, –3)

XAlso, we have
f (1) = 1 – 3 – 1 = –3

and f (2) = 32 – 6 – 1 = 25
From the shape of the curve shown alongside, we can see
that the curve  y = f(x) will cut the X-axis exactly once in
[1, 2] i.e.f (x) will vanish exactly once in [1, 2]

Example 35 :

Prove that
x

1 x
 < ln (1 + x) < x x > 0

Sol. Consider the function  f (x) = ln (1 + x) –
x

1 x
, x > 0.

Then f '(x) = 2 2
x x x

1 x (1 x) (1 x)
 

  
 > 0 x > 0

 f (x) strictly increases in (0,)

 f (x) > f (0+) = 0  i.e.ln (1 + x) >
x

1 x
  which proves the

LHI. Now, consider the function   g(x) = x – ln (1 + x), x > 0

Then g '(x) = 1 –
1 x

1 x 1 x


 
 > 0 x > 0

 g (x) strictly increases in (0,) g (x) > g (0+) = 0
i.e.   x > ln (1 + x) which proves the RHI.

Example 36 :

If  f (x) =
2x , x 0

2sin x,   x 0

 



, investigate the function  at

x = 0 for maxima/minima.
Sol. Analyzing the graph of  f (x), we get  x = 0 is a point of

minima.


2– 

2


y

xx'

y'

O

y = x2
y = 2 sin x

1

2

–1

Example 37 :

The function y =
ax b

(x 1)(x 4)


 
 has turning point at

P (2, 1). Then find the value of a and b.

Sol. 2
ax b ax by

(x 1) (x 4) x 5x 4
 

 
   

 has turning point at

P (2, –1)
 P (2, –1) lies on the curve   2a + b = 2 …(i)

Also
dy
dx

 = 0 at P(2, –1)

2

2
dy a (x 5x 4) (2x 5) (ax b)
dx (x 5x 4)

    


 

At P(2, –1),
dy 2a 2a b
dx 4

  
 = 0

 b = 0a = 1 [from equation (i)]

Example 38 :

Find the maximum value of   f (x) =
x1

x
 
  

Sol. f (x) =
x1

x
 
       f '(x) =

x1
x
 
  

1ln 1
x

   

f '(x) = 0     ln
1
x

= 1 
1
x

 = e    x =
1
e

Also for   x <
1
e

,  f '(x) is positive and for  x >
1
e

,  f '(x) is

negative. Hence,x = 1/e is point of maxima.
Therefore, the maximum value of function is e1/e .

y

1/e 1 2 3 4
xx' O

y'

1

Also
1x Lim x ln Lim xlnx
x 0x 0 x 0

x 0

1Lim e e e 1
x

     


       

x

x 0

1Lim
x

 
     = 1.
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Example 39 :
Find the greatest and least values of function

f (x) = 2
x, 1 x 0

2 (x 1) , 0 x 2
   
    

.

Sol. f (x) = 2
x, 1 x 0

2 (x 1) , 0 x 2
   
    

and

f  '(x) =  1, 1 x 0
2x(x 1), 0 x 2
   
   

Thus, the points at which f(x) may have extreme values,
are the critical points x = 0, 1 [f '(1) = 0  and f '(0) = DNE]
and the end points x = – 1, 2
Now, f (– 1) = 1, f (1) = 2 and f (2) = 1.
Since f is discontinuous at x = 0, we also need to find the
limiting values of f(x) as x 0.
W e  h a v e   f  ( 0

–) 0, f(0+) 1 and f(0) = 1
the largest and the smallest among the above six values
are 2 and 0 respectively. Hence, the greatest value is 2 but
the least value does not exist since the function
approaches 0 but is never equal to 0.

Example 40 :
Find greatest and least values of

f (x) =
2 2a b

x 1 x



, x (0, 1) (a, b > 0).

Sol. f (x) =
2 2a b

x 1 x



,  x (0, 1)

and f '(x) =
2 2

2 2
a b

x (1 x)




which exists everywhere in (0, 1) and vanishes at points,

given by
2 2

2 2
b a

(1 x ) x



  ;   a2 (1 – x)2 = b2x2

i.e. a (1 – x) = bx  i.e.   x =
a

a b
To find the greatest and least value, we need to check the

values of f(x) at x = 0+, 1–,
a

a b
.

We have f (0+) +, f (1– ) + and f
a

a b
 
    = (a + b)2

Hence, we have,  least value = (a + b)2

and greatest value does not exist.

Example 41 :
Find greatest and least values of

f (x) = (a x) (b x)
(c x)
 


, x > – c.

Sol. We have     f (x) =
(a x) (b x)

(c x)
 


, x (– c,)

and     f ' (x) =
2

2
(c x) (2x a b) [x (a b)x ab]

(c x)
      



2

2
x 2cx ac bc ab

(c x)
   




, x (– c,)

which vanishes at points given by
x2 + 2cx + ac + bc – ab = 0

i.e. x = – c ± 2c (ac bc ab)  

   = – c ± (a c) (b c) 

Thus, the expression for  f '(x) can be written as

f '(x) = 2
(x ) (x )

(c x)
 



choosing  = – c – (a c) (b c)   and

 = – c + (a c) (b c) 

The critical point x =  is of no interest since it does lie in
the interval (– c, ).
Now, we have f ( – c+), f()

f () =
(a c (a c) (b c) ) (b c (a c) (b c) )

c c (a c) (b c)
       

   

(a c)(b c) (a b 2c) (a c) (b c)
(a c)(b c)

(a c) (b c)

      
  


 

= 2 (a c) (b c) a b 2c    

= a – c + b – c + 2 (a c) (b c) 

 2(a c) (b c)   

Hence, we have

Least value =  2(a c) (b c)    and greatest value

does not exist.

Example 42 :
Rectangles are inscribe inside a semi-circle of radius r. Find
the rectangle with maximum area.

Sol. Let us choose co-ordinate system with origin as centre of
circle.   Area, A = xy
 A = 2 (r cos ) (r sin ),  (0, /2)
 A = r2 sin 2
A is maximum when  sin 2 = 1   2 = /2   = /4
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r

(0, 0)
x

y

(r cos , r sin ) (–r cos , r sin ) 

Sides of the rectangle are

2r cos 4
 
    = 2 r   and  r sin 4

 
   =

r
2 .

Example 43 :
The tangent to the parabola  y = x2  has been drawn so that
the abscissa x0 of the point of tangency belong to the
interval (1, 2). Find x0 for which the triangle is to be
bounded by the tangent, the axis of ordinates, and the
straight line y = x0

2 has the greatest area.

Sol. y = x2,
dy
dx

= 2x

R

Q P(x , x )0 0
2

   Equation of the tangent at   (x0 , x0
2) is

y –x0
2 = 2x0 (x – x0).

It meets y-axis in R (0, – x0
2). Q is  (0,x0

2)
   Z = area of the triangle PQR

2
0

1 2x
2

x0 = x0
3, 1  x0  2

0

dZ
dx

 = 3x0
2 > 0 in   1  x0  2

 Z is an increasing function in [1, 2]
Hence, Z, i.e., the area of PQR is greatest at x0 = 2.

Example 44 :
A sheet of area 40 m2 is used to make an open tank with
square base. Find the dimensions of the base such that
volume of this tank is maximum.

Sol. Let the length of base be x m and height be y m
Volume V = x2y
Again x and y are related to the surface area of this tank
which is equal to 40 m2.

 x2 + 4xy = 40y =
240 x

4x
 , x (0,  40)

 V(x) = x2
2 340 x 40x x

4x 4

  
 

 

x

y

Maximizing volume,

V'(x) =
240 3x

4


 = 0   x =
40
3

m

and V"(x) =
3x
2


   V"
40
3

 
  

< 0

 volume is maximum at x =
40
3

m.

Example 45 :
If a right-circular cylinder is inscribed in a given cone.
Find the dimensions of the cylinder such that its volume is
maximum.

Sol. Let  x be the radius of cylinder and y be its height
Volume V = x2y
x, y can be related by using similar triangles

y h
r x r




y =
h
r

 (r – x)

 V(x) =x2 h
r

 (r – x), x (0, r)

x
r

h

y

 V (x) =
h
r


(rx2 – x3) V' (x) =
h
r


 x (2r – 3x)

V' (x) = 0    x = 2r / 3

Also V"(x) =
h
r


(2r – 6x)  V"
2r
3
 
   < 0

This volume is maximum when,  x =
2r
3

 and y =
h
3

.
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Example 46 :
Find the value of a if  x3 – 3x + a = 0 has three real distinct
roots.

Sol. Let  f(x) = x3 – 3x + a
Let  f '(x) = 0   3x2 – 3 = 0  x = ±1
For three distinct roots,  f(1) f(–1) < 0
   (1 – 3 + a)(–1 + 3 + a) < 0
   (a + 2) (a – 2) < 0
   –2 < a < 2

Example 47 :
Prove that three exist exactly two non-similar isosceles
triangle ABC such that  tan A + tan B + tan C = 100.

Sol. Let  A = B, then 2A + C = 180º  and 2 tan A + tan C = 100
Now 2A + C = 180º    tan 2A = –tan C …(i)
Also 2 tan A + tan C = 100
 2 tan A – 100 = –tan C …(ii)

From (i) and (ii), 2 tan A – 100 = 2
2 tan A

1 tan A

Let tan A = x, then 2
2x

1 x
 = 2x – 100

 x3 – 50x2 + 50 = 0
Let  f(x) = x3 – 50x2 + 50. Then  f '(x) = 3x2 – 100x. Thus  f '(x)

= 0 has roots 0,
100

3
. Also  f (0)

100f
3

 
   < 0. Thus  f (x)= 0

has exactly three distinct real roots. Therefore, tan A and
hence A has three distinct values but one of them will be
obtuse angle. Hence, there exist exactly two non similar
isosceles triangles.

Example 48 :
Find the set of value of m for the cubic

x3 –
3
2

x2 +
5
2

 = 1/4log (m)  has 3 distinct solutions.

Sol. Consider  y = x3 –
3
2

x2 +
5
2

dy
dx

 = 3x2 – 3x =  3x (x – 1) = 0 x = 0   or  1

2

2
d y
dx

 = 6x – 3   ;
2

2
x 0

d y
dx 

 = – 3    i.e.   < 0

   maximum at x = 0

2

2
x 1

d y
dx 

 = is 3  i.e. > 0    mimimum

Hence the graph of the
cubic is now for 3 distinct
roots

2 < log1/4 (m) < 5/2
2 < – log4 (m) < 5/2
– 5/2 < log4(m) < – 2
1/32 < m <  1/16
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PART - 1 - TANGENT  AND  NORMAL
Q.1 P is the point of contact of the tangent from the origin to

the curve y = logex. The length of the perpendicular drawn
from the origin to the normal at P is
(A) 1/2e (B) 1/e

(C) 22 e 1 (D) 2e 1
Q.2 For the curve 4x5 = 5y4, the ratio of the cube of the

subtangent at a point on the curve to the square of the
subnormal at the same point is –
(A) x (4/5)4 (B) y (5/4)4

(C) (4/5)4 (D) (5/4)4
Q.3 The angle between y2 = 4x and x2 + y2 = 12 at a point of

their intersection is –
(A) tan–1 (1/2) (B) tan–1 2 2

(C) tan–1 2 (D) tan–1 2

Q.4 Length of the subtangent at (x1, y1) on xn ym = am + n,
m, n > 0, is –

(A) 1
n | x |
m

(B) 1
n x
m

(C) 1
m | x |
n

(D) 1
n | y |
m

Q.5 The length of the sub-tangent, ordinate and the sub-
normal are in –
(A) AGP (B) A.P.
(C) H.P (D) G.P.

Q.6 If sin–1 a is the acute angle between the curves
x2 + y2 = 4x and x2 + y2 = 8 at (2, 2), then a =
(A) 1 (B) 0

(C) 1/ 2 (D) 3 / 2
Q.7 If the length of the sub-tangent at any point to the curve

xyn = a is proportional to the abscissa, then ‘n’ is –
(A) any non-zero real number (B) 2
(C) –2 (D) 1

Q.8 Slope of Normal to the curve 2
2

1y x
x

   at (–1, 0) is –

(A) 1/4 (B) –1/4
(C) 4 (D) – 4

Q.9 If y = 4x – 5 is tangent to the curve y2 = px3 + q at (2, 3),
then
(A) p = 2, q = –7 (B) p = –2, q = 7
(C) p = –2, q = –7 (D) p = 2, q = 7

Q.10 If x + 4y = 14 is a normal to the curve y2 =x3 – at (2, 3),
then the value of  +  is –
(A) 3 (B) 7
(C) 2 (D) 9

Q.11 The length of the subtangent at any point of the curve
xmyn = am+n is proportional to –
(A) ordinate (B) abscissa
(C) (ordinate)n (D) (abscissa)n

Q.12 The distance between the origin and the normal to the
curve y = e2x + x2 at the point whose abscissa is 0, is –

(A) 1/ 5 (B) 2 / 5

(C) 3 / 5 (D) 2 / 3
Q.13 If the line ax + by + c = 0 is a normal to the rectangular

hyperbola xy = 1, then –
(A) a 0, b  0 (B) a < 0, b < 0 or a > 0, b> 0
(C) a > 0, b < 0 (D) a < 0, b > 0

Q.14 The length of subtangent to the curve x2y2 = a4 at the
point (–a, a) is
(A) 3a (B) 2a
(C) a (D) 4a

Q.15 The line 2x 6y 2   is a tangent to the curve
x2 – 2y2 = 4. The point of contact is

(A) (4, 6) (B) (7, 2 6)

(C) (2, 3) (D) ( 6,1)
Q.16 The point of the curve y2 = 2 (x – 3) at which the normal

is parallel to the line y – 2x + 1 = 0 is
(A) (5, 2) (B) (–1/2, –2)
(C) (5, –2) (D) (3/2, 2)

Q.17 The equation of tangent to the curve y = 2 cos x  at
x = /4 is

(A) y 2 2 2 x
4
      (B) y 2 2 x

4
     

(C) y 2 2 x
4
      

(D) y 2 2 x
4
     

Q.18 The point on the curve y2 = x, where tangent makes 45°
angle with x-axis, is –

(A)
1 1,
2 4
 
   (B)

1 1,
4 2
 
  

(C) (4, 2) (D) (1, 1)

PART - 2 - MONOTONICITY
Q.19 The set of real values of x for which f (x) =

x
log x

 is
increasing, is –
(A) {x : x e} (B) empty
(C) {x : x < e} (D) {1}

Q.20 The function f (x) =
x 3
3 x
  decreases in the interval

(A) (–3, 3) (B) (–, 3)
(C) (3,) (D) (–9, 9)

EXERCISE - 1 [LEVEL-1]

QUESTION BANK CHAPTER 6 : APPLICATION  OF  DERIVATIVES
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Q.21 If 3 2f (x) x 6x 9x 3     be a decreasing function,
then x lies in
(A) ( , 1) (3, )    (B) (1, 3)
(C) (3,) (D) None of these

Q.22 The function 1f (x) tan (sin x cos x)  , x > 0 is always
an increasing function on the interval
(A) (0,) (B) (0,/2)
(C) (0,/4) (D) (0, 3/4)

Q.23 3 22x 18x 96x 45 0    is an increasing function
when
(A) x 8, x 2   (B) x 2, x 8  

(C) x 2, x 8   (D) 0 x 2  
Q.24 f (x) = (x – 2)5 (x + 1)4 is decreasing in interval (–1, 1/A).

Find the value of A.
(A) 3 (B) 7
(C) 2 (D) 9

Q.25 Function f (x) =
a sin x b cos x
csin x d cos x




 is monotonic decreasing

if
(A) ad – bc < 0 (B) ad – bc > 0
(C) ab – cd < 0 (D) ab – cd > 0

Q.26 If function f (x) = kx3 – 9x2 + 9x + 3 is monotonic increasing
in every interval then
(A) k < 3 (B) k 3
(C) k > 3 (D) k 3

Q.27 The function f (x) = x1/x is increasing in the interval
(A) (e,) (B) (–, e)
(C) (–e, e) (D) None of these

Q.28 f (x) = x3 + ax2 + bx + 5 sin2x is  an monotonically increasing
function in the set of real numbers if a and b satisfy the
condition –
(A) a2 – 3b – 15 < 0 (B) a2 – 3b – 15 > 0
(C) a2 – 3b + 15 < 0 (D) a > 0, b > 0

Q.29 The function sin x – bx + c will be increasing in the interval
( , )  , if
(A) b 1 (B) b  0
(C) b < –1 (D) b 0

PART - 3 - MAXIMA  AND  MINIMA
Q.30 A wire of length 20cm is bent in the form of a sector of a

circle. The maximum area that can be enclosed by the
wire is –
(A) 20 sq. cm (B) 25 sq. cm
(C) 10 sq. cm (D) 30 sq. cm

Q.31 The sum of two positive numbers is given. If the sum of
their cubes is minimum, then –
(A) one is thrice the other (B) they are equal
(C) one is twice the other (D) they are unequal

Q.32 The perimeter of a sector is a constant. If its area is to be
maximum, then the sectorial angle is
(A) 2c (B)c/6
(C)c/4 (D) 4c

Q.33 The maximum value of xe–x is
(A) –1/e (B) e
(C) 1/e (D) –e

Q.34 The maximum area of a rectangle that can be inscribed in
a circle of radius 2 units is –
(A) 8 sq. units (B) 4 sq. units
(C) 5 sq. units (D) 8 sq. units

Q.35 On the interval [0, 1] the function x25 (1 – x)75 takes its
maximum value at the point.
(A) 0 (B) 1/4
(C) 1/2 (D) 1/3

Q.36 The function f (x) =
2

2
x 3x 2
x 2x 3
 

 
 is equal to

(A) min. at x = –3, max. at x = 1
(B) max. at x = – 3
(C) Increasing in its domain
(D) Decreasing in its domain

Q.37 The value of a in order that f (x) = sin x – cos x – ax + b
decreases for all real values is given by –

(A) a 2 (B) a 2
(C) a 1 (D) a < 1

Q.38 The function f (x) = 1 + x (sin x) [cos x], 0 < x /2
(where [ . ] is G.I.F.)
(A) is continuous on (0, /2)
(B) is strictly increasing in (0, /2)
(C) is strictly decreasing in (0, /2)
(D) has global maximum value 2

Q.39 Let | x |,0 | x | 2f (x) 1 , x 0
   , then at x = 0  f  has

(A) A local maximum (B) No local maximum
(C) A local minimum (D) No extremum

Q.40 The total revenue in Rupees received from the sale of x
units of a product is given by R(x) = 3x2 + 36x + 5. The
marginal revenue, when x = 15 is
(A) 116 (B) 96
(C) 90 (D) 126

Q.41 The sum of two numbers is fixed. Then its multiplication
is maximum, when
(A) Each number is half of the sum
(B) Each number is 1/3 and  2/3 respectively of the sum
(C) Each number is 1/4 and 3/4 respectively of the sum
(D) None of these

Q.42 The minimum value of the expression 7 – 20x + 11x2 is

(A)
177
11

(B)  –
177
11

(C)  –
23
11

(D)
23
11

Q.43 Let f (n) = 20n – n2 (n = 1, 2, 3, ..........), then –
(A) f (n)as n
(B) f (n) has no maximum
(C) the maximum value of f (n) is greater than 200
(D) The maximum value of f (n) is 100
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PART - 4 - RATE  OF  CHANGE
OF VARIABLE

Q.44 A sphere increases its volume at the rate of  cc/s. The
rate at which its surface area increases when the radius is
1 cm is –

(A)
2


sq. cm/s (B)
3
2


 sq. cm/s

(C)  sq. cm/s (D) 2 sq. cm/s
Q.45 If a ball is thrown vertically upwards and the height s

reached in time t is given by s = 22t – 11t2, then the total
distance traveled by the ball is –
(A) 22 units (B) 44 units
(C) 33 units (D) 11 units

Q.46 A stone is dropped into a quiet lake and waves move in
circles at the speed of 5 cm/sec. At that instant, when the
radius of circular wave is 8 cm, how fast is the enclosed
area increasing?
(A) 6cm2/s (B) 8cm2/s
(C) (8/3) cm2/s (D) 80cm2/s

Q.47 A balloon which always remains sphereical is being
inflated by pumping in 10 cube centimeters of gas per
second. Find the rate at which the radius of the balloon is
increasing when the radius is 15 cms.

(A)
1

90
cm / sec (B)

1
9

 cm / sec

(C)
1

30
 cm / sec (D)

1


 cm / sec

PART - 5 - MISCELLANEOUS
Q.48 The equation sin x + x cos x = 0 has at least one root in –

(A) (–/2, 0) (B) (0,)
(C) (, 3/2) (D) (0,/2)

Q.49 Function f(x) = cos x – 2x is monotonic decreasing when
(A)  > 1/2 (B) < 1/2
(C) < 2 (D) > 2

Q.50 If a2 x4 + b2 y4 = c4, then the maximum value of xy is

(A)
c
ab (B)

2c
2 ab

(C)
c

2 ab (D)
2c

2ab
Q.51 The curve represented parametrically by the equations

x = 2 ln cot t + 1 & y = tan t + cot t
(A) tangent and normal intersect at the point  (2, 1)
(B) normal at  t = /4  is parallel to  y axis
(C) tangent at  t = /4  is parallel to the line  y = x
(D) tangent at  t = /4  is parallel to  x  axis

Q.52 The maximum value of (x – p)2+(x – q)2 + (x – r)2 will be at
x equal to-

(A)
p q r

3
 

(B) 3 qpr

(C) qpr (D) p2 + q2 + r2

Q.53 The value of ,  [0, /2] for which the sum of intercepts

on co-ordinate axes by tangent at point(3 3 cos , sin

) of ellipse
2x

27
 + y2 = 1 is minimum, is :

(A)/6 (B)/4
(C)/3 (D)/2

Q.54 Let the function f (x) be defined as follows :

3 2x x 10x, 1 x 0

f (x) cos x , 0 x
2

1 sin x , x
2


     
 
  
     


.  Then f (x) has –

(A) a local minimum at x = /2
(B) a local maximum at x = /2
(C) absolute minimum at x = – 1
(D) absolute maximum at x = 

Q.55 If
2 2

2 2
x y 1
a b
   (a > b) and x2 – y2 = c2 cut each other at

right angles, then –
(A) a2 + b2 = 2c2 (B) b2 – a2 = 2c2

(C) a2 – b2 = 2c2 (D) a2 b2 = 2c2

Q.56 The greatest area of the rectangular plot which can be
laid out within a triangle of base 36ft. & altitude 12ft.
equals (Assume that one side of the rectangle lies on the
base of the triangle)
(A) 90 (B) 108
(C) 72 (D) 126

Q.57 f (x) =
xsin , 0 x 1

2
3 2x, x 1

  

  

, then

(A) f (x) has a local minimum at x = 1
(B) f (x) has a local maximum at x = 1
(C) f (x) does not have any local maximum or minimum at
      x = 1
(D) f (x) has a global minimum at x = 1

Q.58 For the curves, x3 + 2 = 3xy2 and y3 + 2 = 3x2y which of
the following are true?
(i) They are orthogonal.
(ii) They are symmetric with respect to the axes of

coordinates.
(iii) They are reflections of each other with respect to

y = x.
(A) (i) Only (B) (ii) and (iii) Only
(C) (i) and (iii) Only (D) (i), (ii) and (iii)

Q.59 A curve y = f (x) passes through the point (4, 3) and the
normal to the curve at the point happens to be a tangent
to the circle x2 + y2 = 25. The value of f ' (4) is
(A) –3/4 (B) 3/4
(C) 4/3 (D) – 4/3
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Q.60 Let f : RR be a function such that
f (x) = x3 + x2 f ' (1) + x f '' (2) + f ''' (3)  xR.  Then
f (x) = 0 has –
(A) Three real and distinct roots
(B) Three real roots of which two are equal
(C) Two imaginary roots
(D) Three real and coincident roots

Q.61 The interval in which f(x) = 2 sin x + tan x – 3x increases is
(A) (–/2, 0) (B) (0,/2)
(C) (–/2,/2) (D) (/2, 3/2)

Q.62 Let the function g : R (–/2, /2) be given by
g (t) = /2 – 2 cot–1 (3–t). Then g is –
(A) even and is strictly increasing in (– , )
(B) odd and is strictly decreasing in (– , )
(C) even and is strictly decreasing in (– , )
(D) odd and is strictly increasing in (– , )

Q.63 Let f(x) = cot–1 [g (x)], where g (x) is an increasing function
for 0 < x < . Then f (x) is
(A) increasing in (0, )
(B) decreasing in (0, )
(C) increasing in (0, /2) and decreasing in (/2, )
(D) None of these

Q.64 Suppose x1 & x2 are the point of maximum and the point
of minimum respectively of the function
f (x) = 2x3  9 ax2 + 12 a2x + 1 respectively, then for the
equality x1

2 = x2 to be true the value of 'a' must be
(A)  0 (B)  2
(C)  1 (D)  1/4

Q.65 {a1, a2, ....., a4, ......} is a progression where

an =
2

3
n

n 200
. The largest term of this progression is :

(A)  a6 (B)  a7
(C)  a8 (D)  none

Q.66 The largest possible value of the expression

y x 2 2 3 x     is –

(A) 3 (B) 5
(C) 2 (D) 17

Q.67 If the normal to the curve y = f (x) at the point (3, 4) makes
an angle 3/4 with the positive x-axis, then f '(3) =
(A) –1 (B)  –3/4
(C) 4/3 (D) 1

Q.68 The function f(x) =
x 1 x 1 2x 1
x 1 x 3 2x 3

2x 1 2x 1 4x 1

  
  
  

 has –

(A) one point of maximum and one point of minimum
(B) one point of maximum only
(C) one point of minimum only
(D) none of the above

Q.69 The normal at 2, 6 to the curve x = 1 + t, y = 2 + 4t has the
intercepts on the axes given by
(A) 50, 25/4 (B) 50, 25/2
(C)  48, 25 (D) None of these

Q.70 The function f(x) = cot–1 x + x increases in the interval
(A) (1,) (B) (–1,)
(C) (–,) (D) (0,)

Q.71 At a point (a/8, a/8) on the curve x1/3 + y1/3 = a1/3 (a > 0)
tangent is drawn. If the axes be of length 2 , then find the
value of a.
(A) 1 (B) 2
(C) 4 (D) 8

Q.72 If the line ax + by + c = 0 is normal to the curve xy + 5 = 0,
then
(A) a > 0 , b > 0 (B) b > 0, a < 0
(C)   b < 0, a > 0 (D) none of these

Q.73 If f(x) = x3 + ax2 + bx – 5 cos2 x is an increasing function
for all real values of x, then a and b satisfy the condition
(A) a2 – 3b – 15 < 0 (B) a2 – 3b – 15 > 0
(C) a2 – 3b + 15 < 0 (D) a2 – 3b + 15 > 0

Q.74 f (x) = 2x4 – 5x2 + 7 attains-

(A) A maximum of
87
16  at x =

5
2

(B) A minimum of
87
16  at x = –

5
2

(C) A maximum of
31
8  at x =

5
2

(D) A minimum of
31
8  at x = –

5
2

Q.75 If  a < b < c < d and  x  R then the least value of the
function, f (x) = x  a + x  b + x c + x  d is
(A)  a + c  b  d (B)  a + b + c + d
(C)  c + d  a  b (D)  a + b  c  d

Q.76 Maximum value of [sin x] + [cos x] is (where [.] represents
greatest integer function)
(A) 0 (B) 1
(C) 2 (D) 3

Q.77 The point on the curve y2 = x2 + ax + 25 touches the axis
of x are –
(A) ± 5 (B) ± 10
(C) ± 15 (D) none of these

Q.78 If a function f(x) = cos | x | – 2ax + b is an increasing
function on whole number line, then the value of a is
(A) b (B) b/2
(C) a – 1/2 (D) a > – 3/2

Q.79 Statement 1 : The cubic equation x3 + 2x2 + x + 5 = 0 has
three real roots.
Statement 2 : The cubic equation x3 + 2x2 + x + 5 = 0 has
only one real root.
Statement 3 : The cubic equation x3 + 2x2 + x + 5 = 0 has
only real root , such that [] = –3.
Statement 4 : The cubic equation x3 + 2x2 + x + 5 = 0 has
three real roots , , , such that [] = –3, [] = –2,
[] = –1,(where [.] denotes the greatest integer function)
(A) TFFT (B) FTTF
(C) TFFF (D) TFTF
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Q.80 If a > b > 0, then maximum value of
2 2

2 2 2 2
ab (a b )sin x cos x
a sin x b cos x




, where x 0,

2
   

 is –

(A) a2 – b2 (B)
2 2a b

2


(C)
2 2a b

2


(D) None of these

Q.81 A truck is to be driven 300 km. on a highway at a constant
speed of x kmph. Speed rules of the highway required
that 30 x  60. The fuel costs Rs. 10 per litre and is

consumed at the rate of
2x2

600
  litres per hour. The

wages of the driver are Rs. 200 per hour. The most eco-
nomical speed to drive the truck, in kmph, is –
(A) 30 (B) 60

(C) 30 3.3 (D) 20 3.3
Q.82 The radius of a right circular cylinder increases at the

rate of 0.1 cm/min, and the height decreases at the rate of
0.2 cm/min. The rate of change of the volume of the
cylinder, in cm3/min, when the radius is 2 cm and the
height is 3 cm is
(A) – 2 (B) – 8/5
(C) – 3/5 (D) 2/5

Q.83 Let cot cot tan
1 2 3x (tan ) , x (cot ) , x (tan )       

and tan
4x (cot )    where 0 / 4    , then

(A) x1 < x2 < x3 < x4 (B) x1 < x3 < x4 < x2
(C) x1 < x4 < x3 < x2 (D) x1 < x2 < x4 < x3

Q.84 Maximum value of x2 ln (1/x) is –
(A) 2e (B) e
(C) 1/e (D) 1/2e

Q.85 Let f (x) be defined as
1 2tan 5x , 0 x 1f (x) 6x , x 1
      

;

f (x) can have a maximum at x = 1 if value of is
(A) 0 (B) – 1
(C) – 2 (D) – tan 1

Q.86 The curve y – exy + x = 0 has a vertical tangent at –
(A) (1, 1) (B) (0, 1)
(C) (1, 0) (D) no point

Q.87 Length of the tangent at t = /4 to the curve
x = a (cos t + t sin t), y = a (sin t – t cost) (a > 0) is

(A) a 1
4
    (B) a 1

4
   

(C) a ( – 4) (D) None of these
Q.88 If t, n, t', n' are the lengths of tangent, normal subtangent

and subnormal at a point P (x, y) on any curve y = f (x)
then

(A) t2 + n2 = t'n' (B) 2 2
1 1 1

t nt n
 

 
(C) t'n' = tn (D) nt' = n't

Q.89 If a variable tangent to the curve x2y = c3 makes intercepts
a, b on x and y axis respectively, then the value of a2b is
(A) 27 c3 (B) (4/27) c3

(C)  (27/4) c3 (D)  (4/9) c3

Q.90 The slope of normal at the point with abscissa x = – 2 of
the graph of the function f (x) = | x2 – | x | | is –
(A) 1/3 (B) –1 / 3
(C) 1/6 (D) – 1/6

Q.91 Difference between the greatest and the least values of
the function f (x) = x(ln x – 2) on [1, e2] is
(A) 2 (B) e
(C) e2 (D) 1

Q.92 The true set of real values of x for which the function,
f (x) = x ln x – x + 1 is positive is –
(A) (1,) (B) (1/e,)
(C) [e,] (D) (0, 1)(1,)

Q.93 For which values of ‘a’ will the function
2

4 3 3xf (x) x ax 1
2

     will be concave upward along

the entire real line
(A) a [0, )  (B) a ( 2,2) 

(C) a [ 2,2]  (D) a (0, ) 

Q.94 If slope of
axy

b x



 at (1, 1) be 2, then b =

(A) 0 (B) 2
(C) 1 (D) None of these

Q.95 If x and y are real numbers satisfying the relation
x2 + y2 – 6x + 8y + 24 = 0 then minimum value of
f (x) = log2 (x2 + y2) is –
(A) 1 (B) 2
(C) 3 (D) 4

Q.96 The curve 2
2xy

1 x



 has –

(A) exactly three points of inflection separated by a point
of maximum and a point of minimum.

(B) exactly two points of inflection with a point of
maximum lying between them.

(C) exactly two points of inflection with a point of
minimum lying between them.

(D) exactly three points of inflection separated by two
points of maximum.

Q.97 If f (x) = 2x3 – 3 (a + 1) x2 + 6ax – 12 has maximum at x1 and
minimum at x2 and if 2x1 = x2 then value of ‘a’ is –
(A) 1 (B) 1/2
(C) –1 (D) 3

Q.98 Tangent of acute angle between the curves y = | x2 – 1 |

and 2y 7 x   at their points of intersection is –

(A)
5 3

2
(B)

3 5
2

(C)
5 3

4
(D)

3 5
4
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EXERCISE - 2 [LEVEL-2]
Q.1 The tangent to the curve xy = 25 at any point on it cuts

the coordinate axes at A B, then the area of the triangle
OAB is
(A) 100 sq. units (B) 50 sq. units
(C) 25 sq. units (D) 75 sq. units

Q.2 The tangent to the curve y = x3 + 1 at (1, 2) makes an
angle  with y-axis, then the value of tan  is
(A) –1/3 (B) 3
(C) –3 (D) 1/3

Q.3 The two curves x3 – 3y2 + 2 = 0 and 3x2y – y3 = 2
(A) touch each other (B) cut at right angle
(C) cut at angle /3 (D) cut at angle /4

Q.4 The greatest value of the function

1 1f (x) tan x log x
2

   in
1 , 3
3

 
 
 

 is –

(A)
1 log 3

6 4

 (B)

1 log3
6 4



(C)
1 log3

3 4

 (D)

1 log 3
3 2



Q.5 Let f (x) = x + tan3x, g (x) is inverse function of f (x), find

343g 1
4
     .

(A) 3 (B) 7
(C) 2 (D) 9

Q.6 The point(s) on the curve y3 + 3x2 = 12y where the tangent
is vertical (parallel to y-axis), is (are)

(A)
4 , 2
3

 
    (B)

11 ,1
3

 
  

(C) (0, 0) (D)
4 , 2
3

 
  

Q.7 All the values of  for which the curve

y =
4 2x 3x x 3

4 2
     has three tangents parallel to the

axis of x lie in the interval (–k,k) then find the integral
value of .
(A) 3 (B) 7
(C) 2 (D) 9

Q.8 If the normal at the point " t1" on the curve xy = c2 meets
the curve again at " t2", then
(A) t1

3 t2 = 1 (B) t1
3 t2 = –1

(C) t1 t2
3 = – 1 (D) t1 t2

3 =1
Q.9 The curve y2 = 2x and 2xy = k cut at right angles if

(A) k2 = 8 (B) k2 = 4
(C) k2 = 2 (D) None of these

Q.10 If f (x) = xex(1–x) , then f (x) is
(A) increasing in [–1/2, 1] (B) decreasing in R
(C) increasing in R (D) decreasing in [–1/2, 1]

Q.11 Function f (x) = tan–1 (sin x + cosx) is monotonic increasing
when
(A) x < 0 (B) x > 0
(C) 0 < x </2 (D) 0 < x < /4

Q.12 f (x) = 2x2 – log | x | (x  0) is monotonic increasing in the
interval
(A) (1/2,) (B) (–,–1/2) (1/2,)
(C)  (–,–1/2) (0, 1/2) (D)  (–1/2,  0) (1/2,)

Q.13 The function f (x) = 2 log (x – 2) – x2 + 4x + 1 increases on
the interval
(A) (1, 2) (B) (2, 3)
(C) (5/2, 3) (D) Both (B) and (C)

Q.14 If the relation between sub-normal SN and sub-tangent
ST at any point S on the curve; by2 = (x + a)3 is
p (SN) = q(ST)2, then the value of p/q –
(A) 8a/27 (B) 27/8b
(C) 8b/27 (D) 8/27

Q.15 A ladder 10 meters long rests with one end against a
vertical wall, the other end on the floor, the lower end
moves away from the wall at the rate of 2 meter/minute.
The rate at which the upper end falls when its base is 6
meters away from the wall, is –
(A) – 3 meters/min. (B) –2/3 meters/min.
(C) – 3/2 meters/min. (D) None of these

Q.99 The difference between greatest and least value of

f (x) = 2 sin x + sin 2x,
3x 0,
2
   

 is –

(A)
3 3

2
(B)

3 3 2
2


(C)
3 3 2

2
 (D) None of these

Q.100 The number of tangents to the curve x3/2 + y3/2 = 2a3/2,
a > 0 which are equally inclined to the axes, is –
(A) 2 (B) 1
(C) 0 (D) 4

Q.101 Coffee is draining from a conical filter, height and diameter
both 15 cms into a cylinderical coffee pot diameter 15 cm.
The rate at which coffee drains from the filter into the pot
is 100 cu cm /min. The rate in cms/min at which the level
in the pot is rising at the instant when the coffee in the
pot is 10 cm, is

(A)
9

16
(B)

25
9

(C)
5

3
(D)

16
9
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Q.16 The function f (x) = 3 cos4x + 10 cos3x + 6 cos2x – 3,
(0  x  ) is –

(A) Increasing in
2,

2 3
  
  

(B)  Increasing in
20, ,

2 3
           

(C) Decreasing in
2,

2 3
  
  

(D) all of above
Q.17 The interval in which the function 2x3 + 15 increases less

rapidly than the function 9x2 – 12x, is –
(A) (–, 1) (B) (1, 2)
(C) (2,) (D) None of these

Q.18 AB is a diameter of a circle and C is any point the
circumference of the circle, then –
(A) area of ABC is maximum when it is an isosceles
(B) area of ABC is minimum when it is isosceles
(C) the perimeter ofABC is minimum when it is isosceles
(D) the perimeter ofABC is maximum when it is isosceles

Q.19 The interval in which f (x) = cos–1
2

2
1 x
1 x

 
 
 

 is decreasing

(A) (–,) (B) (–, 0)
(C) (0,) (D) (1,)

Q.20 The maximum value of x1/x is –
(A) (1/e)e (B) e1/e

(C) e (D) 1/e
Q.21 The altitude of a cone is 20cm. and its semi-vertical angle

is 30°. If the semi-vertical angle is increasing at the rate of
2° per second, then the radius of the base is increasing at
the rate of –
(A) 30 cm/sec (B) 160/3 cm/sec
(C) 10 cm/sec (D) 160 cm/sec.

Q.22 If 2y a log | x | bx x   has its extremum values at
x = –1 and x = 2, then
(A) a = 2, b = –1 (B) a = 2, b = –1/2
(C) a = –2, b = 1/2 (D) None of these

Q.23 The function
2x

2x
(e 1)
(e 1)




 is

(A) Increasing (B) Odd
(C) Even (D) Both (A) and (B)

Q.24 The values of ‘a’ for which the function
3 2(a 2)x 3ax 9ax 1    decreases monotonically

throughout for all real x, are
(A) a < – 2 (B) a > –2
(C) –3 < a < 0 (D) a 3   

Q.25 Find the coordinates of a point of the parabola
y = x2 + 7x + 2 which is closest to the straight line
y = 3x– 3.
(A) (–2, –8) (B) (–3, –7)
(C) (–1, –6) (D) (–5, –9)

Q.26 If z  = y + f (v), where
xv
y
 
   

 then z zv
x y
 


 
 is

(A) –1 (B) 1
(C) 0 (D) 2

Q.27 Co-ordinates of a point on the curve y = x log x at which
the normal is parallel to the line 2x – 2y = 3 are
(A) (0,0) (B) (e, e)
(C) (e2, 2e2) (D) (e–2, – 2e–2)

Q.28 The equation of the tangent to curve y = be–x/a at the
point where it crosses y-axis is
(A) ax + by = 1 (B) ax – by = 1

(C)
x y 1
a b
  (D)

x y 1
a b
 

Q.29 If f (x) = 3x2 + 15x + 5, then the approximate value of
f (3.02) is –
(A) 47.66 (B) 57.66
(C) 67.66 (D) 77.66

Q.30 The curve given by x + y = exy has a tangent parallel to
the y-axis at the point
(A) (0, 1) (B) (1, 0)
(C) (1, 1) (D) (–1, –1)

Q.31 Find the minimum value of the function

4 3 2
40

3x 8x 18x 60  
.

(A) 1 (B) 1/4
(C) 1/2 (D) 2/3

Q.32 The largest term in the sequence
2

n 3
na

n 200



 is given

by
(A) 529/49 (B)  8/29
(C) 49/543 (D) None of these

Q.33 What are the minimum and maximum values of the function
x5 – 5x4 + 5x3 – 10
(A) – 37, – 9
(B) 10, 0
(C) It has 2 min. and 1 max. values
(D) It has 2 max. and 1 min. values

Q.34 The maximum value of 2
xf (x)

4 x x

 

 on [–1, 1] is

(A) –1/4 (B) –1/3
(C) 1/6 (D) 1/5

Q.35 If P = (1, 1), Q = (3, 2) and R is a point on x-axis  then the
value of PR + RQ will be minimum at
(A) (5/3, 0) (B) (1/3, 0)
(C) (3, 0) (D) (1, 0)

Q.36 Function
3

4 xf (x) x
3

   is

(A) Increasing for x > 1/4 and decreasing for x < 1/4
(B) Increasing for every value of x
(C) Decreasing for every value of x
(D) None of these
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Q.37 Find the minimum value of 64 secx +27 cosecx , 0 <x </2
(A) 137 (B) 125
(C) 25 (D) 75

Q.38 In its domain, f (x) =
1

1
sin x
cot x



  is –

(A) a increasing function
(B) a strictly increasing function
(C) a decreasing function
(D) a strictly decreasing function

Q.39 Number of point of inflexion on curve y = g (x) such that

g' (x) =
2

2
x 2x 1

(x 1)
 



(A) 0 (B) 1
(C) 2 (D) > 2

Q.40 The curve y = ax3 + bx2 + cx + 5 touches the x-axis at
point P (–2, 0) and cuts y-axis at a point Q where its
gradient is 3. Find a, b, c.

(A) 0, 0, 3 (B)
1 1, ,3
2 4

(C)
1 1, ,3
4 2

(D)
1 3, ,3
2 4




Q.41 Tangent to the curve x = a cos 2 cos  ,

y a cos sin    at the point corresponding to
6


 

is–
(A) parallel to the x-axis (B) parallel to y-axis
(C) parallel to y = x (D) None of these

Q.42 If curves y2 = 6x and 9x2 + by2 = 16, intersect orthogonally
then b =
(A) 4 (B) 2
(C) 9/2 (D) 2/9

Q.43 Find the number of critical points of f (x) = 2
| x 1 |

x


.

(A) 4 (B) 2
(C) 1 (D) 3

Q.44 If the function f (x) =
cx d

(x 1) (x 4)


 
 has a turning point

at the point (2, –1) then –
(A) c = 2, d = 0 (B) c = 1, d = 0
(C) c = 1, d = – 1 (D) c = 1, d = 1

Q.45 Find the value of n for which the area of the triangle
formed by the axes of coordinates and any tangent to the
curve xn y = an is constant.
(A) 4 (B) 2
(C) 1 (D) 3

Q.46 If equation of normal at point (m2, –m3) on the curve
x3 – y2 = 0 is y = mx – 2m3, then m2 equals –
(A) 2/9 (B) –2/9
(C) 2/3 (D) – 2/3

Q.47 If tangent at any point of the curve y = x3 + x2 + x + 5
makes acute angle with x-axis, then –

(A) 0 <  < 3 (B) 3 3   
(C) | | < 1 (D) (0, 1)

Q.48 Cosine of the angle of intersection of curves
y = 3x–1 log x and y = xx– 1 is –
(A) 0 (B) 1
(C) 1/2 (D) 1/3

Q.49 If m be the slope of a tangent to the curve
ey = 1 + x2 then–
(A) | m | > 1 (B) m < 1
(C) | m | < 1 (D)  | m |1

Q.50 Let f (x) = ex cos x and slope of the curve y = f (x) is
maximum at x = a then a equals –
(A) 0 (B)/2
(C) 3/2 (D) None of these

Q.51 The point of the curve y = x2 that it closest to (4, –1/2) is
(A) (1, 1) (B) (2, 4)
(C) (2/3, 4/9) (D) (4/3, 16/9)

Q.52 If 0 x  1 and f (x) =

x 1 1
1 x 1

1 1 x



 then –

(A) f (x) has local maximum at x = 2/3
(B) f (x) has local minimum at x = 1/3
(C) least value of f (x) is 2
(D) least value of f (x) is 4

Q.53 Angle between two curves y = f (x) and y = g (x) is the
angle between tangents to these curves at the common
point of intersection.
Given curves are y = | x2 – 1 | and y = | x2 – 3 |.
Choose the correct options –
(A) The common point of intersection is

( 2,1) & ( 2,1)

(B) The acute angle between the curves at their point of

intersection is 1 13 2 3 2tan & tan
7 7

    
       

(C) only (A) is correct
(D) Both (A) and (B) are correct

Q.54 If f '' (x) > 0  xR, f ' (3) = 0 and
g (x) = f (tan2x – 2 tan x + 4), 0 < x < /2, then g (x) is
increasing in –

(A) 0,
4
 

     (B) ,
6 3
  
   (C) 0,

3
 

    (D) ,
4 2
  
  

Q.55 Let a  (0, 4/27) be such that
r1 = a (1 + 2r1 + 3r12 + ......), r2 = a (1 + 2r2 + 3r22 + ......),
r1 < r2 then –

(A) 1 2
1 1r 0, , r ,1
3 3

          
   (B) 1 2

1 1r ,0 , r 0,
3 3

           

(C) 1 2
1r , r 0,
3

   
(D) 1 2

1r , r ,0
3

    
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Directions : Assertion-Reason type questions.
Each questions contain Statement -1 (Assertion) and
Statement -2 (Reason). Each question has 4 choices (A),
(B), (C) and (D) out of which ONLY ONE is correct.
(A) Statement-1 is True, Statement-2 is True,Statement-2
       is a correct explanation for Statement -1
(B) Statement-1 is True, Statement-2 is True;Statement-2
      is NOT a correct explanation for Statement - 1
(C) Statement - 1 is True, Statement- 2 is False
(D) Statement -1 is False, Statement -2 is True

Q.56 Statement 1 : If f (x) = (x – 3)3, then f (x) has neither
maximum nor minimum at x = 3
Statement 2 : f ' (x) = 0, f '' (x) = 0 at x = 3.

Q.57 Statement 1 : If f (x) = max. {x2 – 2x + 2, | x – 1 |} the
greatest value of f (x) on the interval [0, 3] is 5.
Statement 2 : Greatest value of f (C) = max. {5, 2} = 5.

Q.58 Statement 1 : Sum of left hand derivative and right hand
derivative of f (x) = | x2 – 5x + 6 | at x = 2 is equal to zero.
Statement 2 : Sum of left hand derivative and right hand
derivative of f (x) = | (x – a) (x – b) | at x =  a (a < b) is equal
to zero, (where a, bR)

Q.59 Statement 1 : f (x) = x + cos x is strictly increasing.
Statement 2 : If f (x) is strictly increasing, then f ' (x) may
vanish at some infinite number of points.

Q.60 Let u C 1 C   , v C C 1    and
let f (x) = ln (1 + x)  x(–1,)
Statement 1 : f (u) > f (v)   C > 1
Statement 2 : f (x) is increasing hence for u > v, f(u) > f (v).

Q.61 Statement -1 :  In a triangle ABC if sides a, b are constants
and the base angles A and B vary, then

2 2 2 2 2 2

dA dB

a b sin A b a sin B


 
Statement -2 : In a triangle ABC, b sin A = a sin B.

Q.62 Statement 1 : The tangent at x = 1 to the curve
y = x3 – x2 – x + 2 again meets the curve at  x = – 2.
Statement 2 : When a equation of a tangent solved with
the curve, repeated roots are obtained at point of
tangency.

Q.63 Statement 1 : Tangent drawn at the point (0, 1) to the
curve y = x3 – 3x + 1 meets the curve thrice at one point
only.
Statement 2 : Tangent drawn at the point (1, –1) to the
curve y = x3 – 3x + 1 meets the curve at 1 point only.

Q.64 Statement 1 : Let f : [0,)[0,) and g : [0,)[0,)
be non-increasing and non-decreasing functions
respectively and h (x) = g (f (x)).  If f and g are differentiable
for all points in their respective domains and h (0) = 0
then h (x) is constant function.
Statement 2 : g (x)[0,)h (x) 0 and h' (x) 0

Q.65 Let f : R  R is differentiable and strictly increasing
function throughout its domain.
Statement 1 : If | f (x) | is also strictly increasing function,
then f (x) = 0 has no real roots.
Statement 2 : At  or – , f (x) may approach to 0, but
cannot be equal to zero.

Passage (Q.66-Q.68)
a (t) is a function of t such that da/dt = 2 for all values of
t and a = 0 when t = 0. Further y = m (t) x + c (t) is tangent
to the curve y = x2 – 2ax + a2 + a at the point whose
abscissa is 0. Then –

Q.66 If the rate of change of distance of vertex of
y = x2 – 2ax + a2 + a from the origin with respect to t is k,
then k =

(A) 2 (B) 2 2

(C) 2 (D) 4 2
Q.67 If the rate of change of c (t) with respect to t, when t = k

is , then –
(A) 16 2 2 (B) 8 2 2
(C) 10 2 2 (D) 16 2 2

Q.68 The rate of change of m (t), with respect to t, at t =  is –
(A) –2 (B) 2
(C) – 4 (D) 4

Q.69 Assume that f is continuous on [a, b], a > 0 and

differentiable on an open interval (a, b). If
f (a) f (b)

a b
 ,

then there exist x0  (a, b) such that
(A) x0 f ' (x0) = f (x0) (B) f ' (x0) + x0 f (x0) = 0
(C) x0 f ' (x0) + f (x0) = 0 (D) f ' (x0) = x0

2 f (x0)
Q.70 Number of positive integral values of ‘a’ for which the

curve y = ax intersects the line y = x is –
(A) 0 (B) 1
(C) 2 (D) More than 2

Q.71 Point 'A' lies on the curve
2xy e  and has the

coordinate (x,
2xe ) where x > 0. Point B has the

coordinates (x, 0). If 'O' is the origin then the maximum
area of the triangle AOB is

(A)
1
2e     (B)

1
4e (C)

1
e     (D)

1
8e

Q.72 The angle at which the curve  y = KeKx intersects the
y-axis is :
(A)  tan1 k2 (B)  cot1 (k2)

(C) sec1 4( 1 k ) (D) none

Q.73 The minimum value of the polynomial
x (x + 1) (x + 2) (x + 3) is :
(A)  0 (B)  9/16
(C)  – 1 (D) – 3/2

Q.74 A curve y = f(x) passes through the point P(1, 1). The
normal to the curve at P is a (y – 1) + (x – 1) = 0. If the
slope of the tangent at any point on the curve is
proportional to the ordinate of the point, then the equation
of  the curve is-
(A) y = ea (x – 1) (B) y = ea (1 – x)

(C) y = ea/2 (x – 1) (D) ea/2 (x + 1)



252

STUDY  MATERIAL : MATHEMATICSQUESTION BANK

Q.75 The minimum value of
tan x

6
tan x

     is :

(A)  0 (B)  1/2
(C)  1 (D)  3

Q.76 The values of x for which

1 +  x ln 2 2(x x 1) 1 x     are-

(A) x 0 (B) 0  x 1
(C) x 0 (D) None of these

Q.77 Let  f (x) =
n

2n
r

r 0

tan x

tan x



,  n N, where  x [0, /2)

(A) f (x) is bounded and it takes both of it's bounds and
the range of  f (x) contains exactly one integral point.

(B) f (x) is bounded and it takes both of it's bounds and
the range of  f (x) contains more than one integral
point.

(C) f (x) is bounded but minimum and maximum does not
exists.

(D) f (x) is not bounded as the upper bound does not
exist.

Q.78 Let C be the curve y = x3 (where x takes all real values).
The tangent at A meets the curve again at B. If the gradient
at B is K times the gradient at A then K is equal to
(A) 4 (B) 2
(C) – 2 (D) 1/4

Q.79 Which of the following statement is true for the function

3

3

x x 1

x 0 x 1f (x)

x 4x x 0
3




   

  

(A) It is monotonic increasing x R  .
(B) f  (x) fails to exist for 3 distinct real values of x.
(C) f  (x) changes its sign twice as x varies from (– , ).
(D) function attains its extreme values at x1 & x2 , such

that x1, x2 > 0.

NOTE : The answer to each question is a NUMERICAL VALUE.

Q.80 If f (x) =
2 2sin x cos x7e e 2  , then find the value of

min max7f f .
Q.81 Let F (x) be a cubic polynomial defined by

F (x) =
3

2x (a 3) x x 13
3
    . Find the sum of all

possible integral value(s) of ‘a’ for which F (x) has
negative point of local minimum in the interval [1, 100].

Q.82 Let F (x) =
2

1/2
3 2

2x log (k 6k 8), 2 x 1
x 3x 4x 1 , 1 x 3

       


     
Find the sum of all possible positive integer(s) in the
range of k such that F (x) has the smallest value at x = –1.

Q.83 Let P (x) = x10 + a1x9 + a2x8 + ........... + a10 be a polynomial
with real coefficients. Suppose P (0) = –1, P (1) = 2,
P (2) = –1.
Let R be the number of real zero’s of P (x) then R A. Find
the value of A.

Q.84 If 1200 sq. cm of material is available to make a box with a
square base and an open top. Find the largest possible
volume of the box (in cubic cm).

Q.85 The lower corner of a leaf in a book is folded over so as to
just reach the inner edge of the page. The fraction of
width folded over if the area of the folded part is minimum
is A/3. Find the value of A.

Q.86 A rectangle with one side lying along the x-axis is to be
inscribed in the closed region of the xy plane bounded
by the lines y = 0, y = 3x, and y = 30 – 2x. The largest area
of such a rectangle is 135/A. Find the value of A.

Q.87 A closed vessel tapers to a point both at its top E and its
bottom F and is fixed with EF vertical when the depth of
the liquid in it is x cm, the volume of the liquid in it is,
x2 (15  x) cu. cm. The length EF is (in cm.)

Q.88 A horse runs along a circle with a speed of 20 km/hr. A
lantern is at the centre of the circle . A fence is along the
tangent to the circle at the point at which the horse starts.
The speed with which the shadow of the horse move
along the fence at the moment when it covers 1/8 of the
circle  in km/hr  is –

Q.89 The radius of a right circular cylinder increases at a
constant rate. Its altitude is a linear function of the radius
and increases three times as fast as radius. When the
radius is 1cm the altitude is 6 cm. When the radius is 6cm,
the volume is increasing at the rate of 1Cu cm/sec. When
the radius is 36cm, the volume is increasing at a rate of n
cu. cm/sec. The value of 'n' is equal to:

Q.90 The number of values of x where the function

f (x) = cos x + cos ( 2x)  attains its maximum is

Q.91 Tangents are drawn from P(6, 8) to the circle x2 + y2 = r2

Find the radius of the circle such that the area of the
triangle formed by tangents and chord of contact is
maximum.

Q.92 If  y is a function of x and log (x + y) – 2xy = 0, then the
value of y' (0) is equal to

Q.93 If f(x) is a twice differentiable function such that f (a) = 0,
f (b) = 2, f (c) = 1, f (d) = 2, f (e) = 0, where a < b < c < d< e,
then the minimum number of zeroes of
g (x) = (f(x))2 + f(x) . f (x) in the interval [a, e] is _____.
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Q.94 The total number of local maxima and local minima of the

function
3

2/3
(2 x) , 3 x 1f (x)
x , 1 x 2
         

Q.95 The maximum value of the function
f (x) = 2x3 – 15x2 + 36x – 48 on the set
A = {x | x2 + 209x} is

Q.96 Let f be a function defined on R (the set of all real numbers)
such that f ' (x) = 2010 (x – 2009) (x – 2010)2 (x – 2011)3

(x – 2012)4, for all x R. If g is a function defined on R
with values in the interval (0,) such that f (x) = ln (g (x)),
for all x R, then the number of points in R at which g has
a local maximum is :

Q.97 The number of distinct real roots of
x4 – 4x3 + 12x2 + x – 1 = 0 is

Q.98 Let f : IR IR be defined as f (x) = | x | + | x2 – 1 |. The total
number of points at which ƒ attains either a local maximum
or a local minimum is

Q.99 Let p (x) be a real polynomial of least degree which has a
local maximum at x = 1 and a local minimum at x = 3. If
p (1) = 6 and p (3) = 2, then p' (0) is –

Q.100 The number of points in (–,), for which
x2 – x sin x – cos x = 0, is –
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Q.1 If the function f(x) = 2x3 – 9ax2 + 12a2 x + 1, where a > 0,
attains its maximum and minimum at p and q respectively
such that p2 = q, then a equals [AIEEE 2003]
(A) 1/2 (B) 3
(C) 1 (D) 2

Q.2 The real number x when added to its inverse gives the
minimum value of the sum at x equal to- [AIEEE 2003]
(A) – 2 (B) 2
(C) 1 (D) – 1

Q.3 If 2 2 2 2u a cos b sin     + 2 2 2 2a sin b cos  
then the difference between the maximum and minimum
values of u2 is given by – [AIEEE 2004]

(A) 2 (a2 + b2) (B) 2 22 a b
(C) (a + b)2 (D) (a – b)2

Q.4 A function y = f(x) has a second order derivative
f (x) = 6( x – 1). If its graph passes through the point
(2,1) and at that point the tanget to the graph is y = 3x –
5, then the function, is- [AIEEE 2004]
(A) (x– 1)2 (B) (x– 1)3
(C) (x+1)3 (D) (x+1)2

Q.5 The normal to the curve x = a (1+ cos ), y = a sin  at ‘’
always passes through the fixed point- [AIEEE 2004]
(A) (a, 0) (B) (0, a)
(C) (0,0) (D) (a, a)

Q.6 If 2a + 3b + 6c = 0, then at least one root of the equation
ax2 + bx + c = 0 lies in the interval- [AIEEE 2004]
(A) (0,1) (B) (1,2)
(C) (2,3) (D) (1,3)

Q.7 If the equation anxn + an–1 xn–1 + .... + a1x = 0 ; a1  0, n
2, has a positive root x = , then the equation
nanxn–1 + (n – 1) an–1 xn–2 + .... + a1 = 0 has a positive
root, which is - [AIEEE-2005]
(A) greater than  (B) smaller than
(C) greater than or equal to (D) equal to 

Q.8 The normal to the curve x = a (cos  +  sin ),
y = a (sin  –  cos ) at any point '' is such that -
(A) it passes through the origin [AIEEE-2005]

(B) it makes anlge
2


 +  with the x-axis

(C) it passes through a , a
2
   

(D) it is at a constant distance from the origin.
Q.9 A spherical iron ball 10 cm in radius is coated with a layer

of ice of uniform thickness that melts at a rate of
50cm3/min. When the thickness of ice is 5 cm, then the
rate of which the thickness of ice decreases, is -

[AIEEE-2005]

(A)
1

36
 cm/min. (B)

1
18

 cm/min.

(C)
1

54
 cm/min. (D)

5
6

 cm/min.

Q.10 A function is matched below against an interval whre it is
supposed to be increasing. Which of the follownig pairs
is incorrectly matched ? [AIEEE-2005]
   Interval       function
(A) (–,)    x3 + 6x2 + 6
(B) [2,)    3x2 – 2x + 1
(C) (–, –4]    x3 – 3x2 + 3x + 3

(D)
1,
3

   
   2x3 – 3x2 – 12x + 6

Q.11 Let f be differentiable for all x. If f(1) = – 2 and f (x) 2 for
x [1, 6], then - [AIEEE-2005]
(A) f(6)  8 (B) f(6) < 8
(C) f(6) < 5 (D) f(6) = 5

Q.12 Angle between the tangents to the curve y = x2 – 5x + 6
at the points (2, 0) and (3, 0) is – [AIEEE 2006]
(A)/2 (B)/6
(C)/4 (D)/3

Q.13 The function f(x) =
x 2
2 x
  has a local minimum at –

(A) x = – 2 (B) x = 0 [AIEEE 2006]
(C) x = 1 (D) x = 2

Q.14 A  triangular park is enclosed on two sides by a fence
and on the third side by a straight river bank. The two
sides having fence are of same length x. The maximum
area enclosed by the park is – [AIEEE 2006]

(A)
3x

8
(B)

1
2

x2

(C) x2 (D)
3
2

x2

Q.15 A value of C for which the conclusion of Mean Value
Theorem holds for the function f(x) = logex on the interval
[1, 3] is- [AIEEE 2007]
(A) 2log3e (B) (1/2) loge3
(C) log3e (D) loge3

Q.16 The function f(x) = tan-1 (sinx + cosx) is an increasing
function in- [AIEEE 2007]
(A) (/4, /2) (B) (–/2, /4)
(C) (0, /2) (D) (–/2, /2)

Q.17 If p and q are positive real numbers such that p2 + q2 = 1,
then the maximum value of (p + q) is- [AIEEE 2007]
 (A) 2 (B) 1/2
 (C) 1/ 2 (D) 2

EXERCISE - 3 [PREVIOUS YEARS JEE MAIN QUESTIONS]
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Q.18 Suppose the cubic x3 – px + q has three distinct real roots
where p > 0 and q > 0. Then which one of the following
holds ? [AIEEE 2008]

(A) The cubic has minima at –
p
3

 and maxima at
p
3

(B) The cubic has manima at both
p
3

 and –
p
3

(C) The cubic has maxima at both
p
3

 and –
p
3

(D) The cubic has minima at
p
3

 and maxima at –
p
3

Q.19 Given P(x) = x4 +ax3 + bx2 +cx + d such that x = 0 is the
only real root of P’ (x) =0. If P(–1) < P(1), then in the
interval [–1,1] - [AIEEE 2009]
(A) P (–1) is the minimum and P(1) is the maximum of P
(B) P(–1) is not minimum but P(1) is the maximum of P
(C) P(–1) is the minimum but P(1) is not the maximum of P
(D) Neither P(–1) is the minimum nor P(1) is the maximum
      of P

Q.20 The shortest distance between the line y – x = 1 and the
curve x = y2 is - [AIEEE 2009]

(A)
8

23
(B)

8
32

(C)
5

23
(D)

4
3

Q.21 The equation of the tangent to the curve y = x + 2
4

x
, that

is parallel to the x-axis, is – [AIEEE 2010]
(A) y = 1 (B) y = 2
(C) y = 3 (D) y = 0

Q.22 Let f : RR be defined by f(x) = k 2x, ifx 1
2x 3, if x 1
  
   .

If f has a local minimum at x = –1, then a possible value of
k is – [AIEEE 2010]
(A) 0 (B) –1/2
(C) –1 (D) 1

Q.23 For x
50,
2
 

   , define f (x) =
x

0
t sin t dt . Then f has :

(A) local maximum at  and 2. [AIEEE 2011]
(B) local minimum at  and 2
(C) local minimum at  and local maximum at 2 (D) local
maximum at and local minimum at 2

Q.24 The shortest distance between line y – x = 1 and curve
x = y2 is – [AIEEE 2011]

(A)
3

4
           (B)

3 2
8

(C)
8

3 2          (D)
4
3

Q.25 A spherical balloon is filled with 4500 cubic meters of
helium gas. If a leak in the balloon causes the gas to
escape at the rate of 72 cubic meters per minute, then
the rate (in meters per minute) at which the radius of the
balloon decreases 49 minutes after the leakage began is :

[AIEEE 2012]
(A) 9/7 (B) 7/9
(C) 2/9 (D) 9/2

Q.26 Let a, b  R be such that the function f given by
f (x) = ln | x | + bx2 + ax, x 0 has extreme values at x  = – 1
and x = 2. [AIEEE 2012]
Statement-1 : f has local maximum at x = – 1 and at x = 2.
Statement-2 : a = 1/2 and b = –1/4
(A) Statement-1 is false, Statement-2 is true.
(B) Statement-1 is true, statement-2 is true; statement-2

is a correct explanation for Statement-1.
(C) Statement-1 is true, statement-2 is true; statement-2

is not a correct explanation for Statement-1.
(D) Statement-1 is true, statement-2 is false.

Q.27 The real number k for which the equation, 2x3 + 3x + k = 0
has two distinct real roots in [0, 1] [JEE MAIN 2013]
(A) lies between 1 and 2 (B) lies between 2 and 3
(C) lies between –1 and 0 (D) does not exist.

Q.28 The intercepts on x-axis made by tangents to the curve,

x

0
y | t | dt, x R  , which are parallel to the line y = 2x,

are equal to – [JEE MAIN 2013]
(A) ± 1 (B) ± 2
(C) ± 3 (D) ± 4

Q.29 If f and g are differentiable functions in [0, 1] satisfying
f (0) = 2 = g (1), g (0) = 0 and f (1) = 6, then for some
c] 0, 1[ [JEE MAIN 2014]
(A) 2f '(c) = g '(c) (B) 2f '(c) = 3g '(c)
(C) f '(c) = g'(c) (D) f '(c) = 2g'(c)

Q.30 If x = –1 and x = 2 are extreme points of
f (x) = log | x | + x2 + x, then – [JEE MAIN 2014]
(A) = –6,  = 1/2 (B) = –6,  = –1/2
(C) = 2,  = –1/2 (D) = 2,  = 1/2

Q.31 Let f (x) be a polynomial of degree four having extreme

values at x = 1 and x = 2. If 2x 0

f (x)lim 1 3
x

 
  
 

, then f (2)=

(A) – 4 (B) 0 [JEE MAIN 2015]
(C) 4 (D) –8

Q.32 The normal to the curve, x2 + 2xy – 3y2 = 0 at (1, 1)
   [JEE MAIN 2015]

(A) Meets the curve again in the second quadrant
(B) Meets the curve again in the third quadrant:
(C) Meets the curve again in the fourth quadrant
(D) Does not meet the curve again
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Q.33 A wire of length 2 units is cut into two parts which are
bent respectively to form a square of side = x units and a
circle of radius = r units. If the sum of the areas of the
square and the circle so formed is minimum, then:

[JEE MAIN 2016]
(A) (4 –) x =r (B) x = 2r
(C) 2x = r (D) 2x = ( + 4) r

Q.34 Consider 1 1 sin xf (x) tan , x 0,
1 sin x 2

          
.

A normal to y = f (x) at x = /6 also passes through the
point [JEE MAIN 2016]
(A) (0, 2/3) (B) (/6, 0)
(C) (/4, 0) (D) (0, 0)

Q.35 The normal to the curve y (x – 2) (x – 3) = x + 6 at the point
where the curve intersects the y-axis, passes through
the point : [JEE MAIN 2017]
(A) (1/2, –1/3) (B) (1/2, 1/3)
(C) (–1/2, –1/2) (D) (1/2, 1/2)

Q.36 Twenty meters of wire is available for fencing off a flower-
bed in the form of a circular sector. Then the maximum
area (in sq. m) of the flower-bed, is : [JEE MAIN 2017]
(A) 25 (B) 30
(C) 12.5 (D) 10

Q.37 If the curves y2 = 6x, 9x2 + by2 = 16 intersect each other
at right angles, then the value of b is: [JEE MAIN 2018]
(A) 4 (B) 9/2
(C) 6 (D) 7/2

Q.38 Let f (x) = 2
2

1x
x
  and g (x) = 1x

x
  ,

x R { 1,0,1}   . If h (x) = f (x)
g (x)

, then the local minimum

value of h (x) is: [JEE MAIN 2018]

(A) 2 2 (B) 2 2

(C) 3 (D) –3
Q.39 The maximum volume (in cu. m) of the right circular cone

having slant height 3m is :      [JEE MAIN 2019 (Jan)]
(A) 3 3         (B) 6 (C) 2 3        (D) (4/3) 

Q.40 If  denotes the acute angle between the curves,
y = 10 – x2 and y = 2 + x2 at a point of their intersection,
then | tan  | is equal to :      [JEE MAIN 2019 (Jan)]
(A) 4/9             (B) 7/17 (C) 8/17            (D) 8/15

Q.41 The shortest distance between the line y = x and the
curve y2 = x – 2 is : [JEE MAIN 2019 (April)]

(A)
7

4 2 (B)
7
8

(C)
11

4 2 (D) 2

Q.42 If S1 and S2 are respectively the sets of local minimum
and local maximum points of the function,
f (x) = 9x4 + 12x3 – 36x2 + 25, x R, then :

[JEE MAIN 2019 (April)]
(A) S1 = {–2, 1}; S2 = {0} (B) S1 = {–2, 0}; S2 = {1}
(C) S1 = {–2}; S2 = {0, 1} (D) S1 = {–1}; S2 = {0, 2}

Q.43 Let f : [0, 2] R be a twice differentiable function such
that f ''(x) > 0, for all x (0, 2). If
f (x) = f (x) + f (2 – x), then f is :[JEE MAIN 2019 (April)]
(A) decreasing on (0, 2)
(B) decreasing on (0, 1) and increasing on (1, 2)
(C) increasing on (0, 2)
(D) increasing on (0, 1) and decreasing on (1, 2)

Q.44 The height of a right circular cylinder of maximum volume
inscribed in a sphere of radius 3 is

[JEE MAIN 2019 (April)]

(A) 2 3 (B) 3

(C) 6 (D)
2 3
3

Q.45 Let S be the set of all values of x for which the tangent to
the curve y = f (x) = x3 – x2 – 2x at (x, y) is parallel to the
line segment joining the points (1, f (1)) and (–1, f (–1)),
then S is equal to : [JEE MAIN 2019 (April)]
(A) {–1/3, –1} (B) {1/3, –1}
(C) {–1/3, 1} (D) {1/3, 1}

Q.46 If the tangent to the curve, y = x3 + ax – b at the point
(1, –5) is perpendicular to the line, –x + y + 4 = 0, then
which one of the following points lies on the curve ?

[JEE MAIN 2019 (April)]
(A) (–2, 2) (B) (2, –2)
(C) (2, –1) (D) (–2, 1)

Q.47 Let f(x) is a five degree polynomial which has critical

points x = ±1 and 3x 0

f (x)lim 2 4
x

      then which one is

incorrect. [JEE MAIN 2020 (Jan)]
(A) f (x) has minima at x = 1 & maxima at x = –1.
(B) f (1) – 4f (–1) = 4.
(C) f (x) is maxima at x = 1 and minima at x = –1.
(D) f (x) is odd.

Q.48 Let f (x) = x3 – 4x2 + 8x + 11, if LMVT is applicable on f(x)
in [0, 1], value of c is : [JEE MAIN 2020 (Jan)]

(A)
4 7

3


(B)
4 5

3


(C)
4 7

3


(D) 4 5
3


Q.49 For f (x) = ln
2x
7x

  
 
 

. Rolle's theorem is applicable on

[3, 4], the value of f "(c) is equal to
[JEE MAIN 2020 (JAN)]

(A) 1 / 12 (B) –1 / 12
(C) 1 / 6 (D) –1 / 6
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Q.50 Let f (x) = x cos–1(sin (–| x |)), x ,
2 2
    

 then

[JEE MAIN 2020 (JAN)]
(A) f ' (0) = – /2
(B) f ' (x) is not defined at x = 0
(C) f ' (x) is increasing in (–/2, 0) and f '(x) is decreasing

in (0,/2).
(D) f ' (x) is decreasing in (–/2, 0) and f '(x) is increasing

in (0,/2).
Q.51 If normal at P on the curve y2 – 3x2 + y + 10 = 0 passes

through the point (0, 3/2) then slope of tangent at P is n.
The value of | n | is equal to [JEE MAIN 2020 (JAN)]

Q.52 Let f (x) be a polynomial of degree 3 such that f (–1) = 10,
f (1) = –6, ƒ(x) has a critical point at x = –1 and ƒ'(x) has a
critical point at x = 1. Then f (x) has a local minima at
x = _______. [JEE MAIN 2020 (JAN)]

Q.53 A spherical iron ball of 10 cm radius is coated with a layer
of ice of uniform thickness the melts at a rate of 50cm3/
min. When the thickness of ice is 5cm, then the rate (in
cm/min.) at which of the thickness of ice decreases, is :

[JEE MAIN 2020 (JAN)]
(A) 1 / 36 (B) 5 / 6
(C) 1 / 18 (D) 1 / 54

Q.54 Let a function f : [0, 5]R be continuous,  f (1) = 3 & F

be defined as:
x

2

1
F (x) t g (t) dt  , where

t

1
g (t) f (u) du  .

Then for the function F, the point x = 1 is :
[JEE MAIN 2020 (JAN)]

(A) a point of local minima. (B) not a critical point.
(C) a point of inflection. (D) a point of local maxima.
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ANSWER KEY

Q 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
A D C B C D C A A A D B B B C A C C B A A B C A A A D B C C B
Q 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
A B A C D B C A A A D A C D D A D A B A D D A A B C B B C B A
Q 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
A C B B B B B D D A C C A A D C B B C B B B D B D D C A B C A
Q 91 92 93 94 95 96 97 98 99 100 101
A B D C B D A B C C B D

EXERCISE - 1

Q 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
A B A B C B D C B A A D D D C C A B A B B B B D D A
Q 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
A B D D D B D C A C A A B B A D A C D B C C B B D A
Q 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
A A C C D A B B A B D A D C A A B D C A B D B C A D
Q 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
A C A A C 8 5040 12 4 4000 2 2 10 40 33 1 5 1 6 2 7 1 2 5 9 2

EXERCISE - 2

Q 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
A D C D B A A B BD B D A A D B A B D D B A
Q 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
A C C D B C B D A D C B C B A D A B B C D
Q 41 42 43 44 45 46 47 48 49 50 51 52 53 54
A A A B A C B A A A D 4 3 C A

EXERCISE - 3
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CHAPTER-6:
APPLICATION OF DERIVATIVES

SOLUTIONS TO TRY ITYOURSELF
TRY IT YOURSELF-1

(1) (C). x = e2t + 2e–t and y = e2t + et

At t = ln 2 ;  x = 4 + 1 = 5,  y = 4 + 2 = 6
2t t

2t t
dy 2e e 8 2 10
dx 8 1 72e 2e

 
  



 Equation of tangent is y – 6 =
10
7

 (x – 5)

7y – 42 = 10x – 50  or  10x – 7y = 8
(2) For point of intersection

x 2 2
x

ln xe ln x ln x 0 or e x 1
e

   

 x = 1 or x = ± 1/e  but 0 < x < 1
Point P is (1/e, –1)

For curve C1,
dy e (1 ln x)
dx
 

 Slope of tangent at point P is equal to

1e 1 ln 0
e

    

 Equaton of normal is x = 1/e.
(3) Take P (t2, t3) and Q (T2, T3)

2dy 3x dy 3or t
dx 2y dx 2

    

Slope line joining P and Q is
3 3 2 2

2 2
T t T t Tt

T tT t
  





2 23 T t Ttt
2 T t

 



or 3tT + 3t2 = 2T2 + 2t2 + 2TtT = –t/2

 OP

OQ

m
2

m
 

(4) y = x2 and 6y = 7 – x3 Point (a, a) is (1, 1).
y'1 = 2x and y'2 = –x2/2
y'1 × y'2 = –1 = /2

(5) xy = c2xy' + y = 0  or
yy

x



2 2 3

2
y y y yST x, SN yy y
y x cc

  
      


(6) Let f (x) = x1/4 
3/4

3/4
1 1f (x) (x)
4 4x

 

Also, f (x + x) = (x + x)1/4

Now, f (x + x) = f (x) + x f ' (x)  (approximately)

 (x + x)1/4 = x1/4 + x .
3/4
1

4x
We have to find (82)1/4 and we know the value of (81)1/4

which is equal to 3.
Putting at x = 81, x + x = 82, so that dx = 1

we get (82)1/4 = (81)1/4 + 3/4
11

4 (81)


3
1 13 3 3.009

1084 3
    


(7) (C). Given, x1/3 + y1/3 = a1/3, a > 0

 2/3 2/31 1 dyx y 0
3 3 dx
   

2/3dy y
dx x

    

At P (a/8, a/8), dy/dx = –1
Equation of tangent at P is

a ay 1 x
8 8

         or
ax y
4

 

It intercepts on the axes are a/4, a/4.

Given,
2 2a a 2

16 16
  a2 = 16a = 4   (a > 0)

(8) (A). Given curve is y = sin x ...... (1)
Let the tangent to curve (1) at P (, ) pass through (0, 0).
Equation of tangent at (, ) is

y –  = cos  (x – ) ...... (2)
Since (2) passes through (0, 0)

 cos or cos 
     


...... (3)

Also, (, ) lies on (1), sin  =  ...... (4)

From eq. (3) and (4),
2

2
21 

 


or 2 – 2 = 22 or
2 2

2 2 1 


 
 or 2 2

1 1 1 
 

 (, ) lies on curve 2 2
1 1 1
y x
  .

(9) Equation of the curve is x2 + y2 – 2x – 4y + 1 = 0.


dy 4dy2x 2y 2 0
dx dx

   


dy(2y 4) 2 2x
dx

   
dy 2 2x 1 x
dx 2y 4 y 2

 
 

 
Since tangents are parallel to the x-axis, slope of each of
the tangents = 0.

 1 x 0
y 2




1 – x = 0x = 1

At x = 1, 12 + y2 – 2 (1) – 4y + 1 = 0
 y2 – 4y = 0y (y – 4) = 0y = 0  or  y = 4
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 The points are (1, 0) and (1, 4).
 The equation of tangent through (1, 0) and parallel
to the x-axis is y = 0.

and the equation of tangent through (1, 4) and
parallel to the x-axis is y = 4
 The equations of tangents are y = 0 and y = 4.

(10) For the points of intersection  of curve and x–axis, y = 0
 sin x / a 0 x a.n   

Here
dy b xcos
dx a a
  ;

2

2 2
d y b xsin

adx a
 

3

3 3
d y b xcos

adx a
 

Now at  x = an,  we have
2

2 2
d y b sin n 0
dx a
     and

3

3 3
d y b cos n 0
dx a
   

Therefore x = an is a point of inflexion  of the curve.
This is the point where the  curve meets the x–axis.

TRY IT YOURSELF-2

(1) 2
ln x 1f (x)
(ln x)




Sign of f ' (x)
– – – –    – – – –  + + + + +

0             1            e
Strictly increasing in (e, ) and strictly decreasing in
(0, 1)(1, e)

(2) f ' (x) = 3 (a + 2) x2 – 6ax + 9a  0  xR
 3 (a + 2) < 0  and 36a2 – 4 . 3 (a + 2) . 9a 0
 a < –2 and a2 – 3a (a + 2)  0
 a < –2  ....... (1)  and a2 + 3a 0
 a(–, –3][0,)
 a –3

(3) f (x) = ln (1 + x) –
x

1 x
 = ln (1 + x)  +

1
1 x

 – 1

Domain : x > –1

2 2
1 1 xf (x)

1 x (1 x) (1 x)
  
  

f ' (x) 0  x0 f (x)
& f ' (x) 0  x0 f (x)

f ' (0) = 0
 f (x) > f (0)  xDf – {0}
 f (x) > 0  x(–1, 0)(0,)

(4) (AC). f (x) =
2

2

2

x 1 , x 1
| x 1| x

1 xx , x 1, x 0
x

      


 f ' (x) =

3

3

x 2 , x 1, x 0
x

does not exist , x 1
2 x , x 1
x

  
 
  


Clearly, f ' (x) > 0 for x < 0 or 1 < x < 2
and f ' (x) < 0 for 0 < x < 1 or x > 2
Thus, f (x) is increasing for (–, 0)(1, 2) and decreasing
for (0,1) (2,).

(5) We have, f (x) =
2

2
x x 1
x x 1
 

 
, xR

and
2 2

2 2
(x x 1) (2x 1) (x x 1) (2x 1)f (x)

(x x 1)
      


 

2 2
2 (x 1) (x 1)
(x x 1)
  


 

Now, from the sign scheme for f ' (x), we have

–1 +1

–ve       +ve          –ve

 f (x) strictly decreases in (–, –1)
Strictly increases in (–1, 1)
Strictly decreases in (1,)

(6) (A). f (x) is monotonic decreasing when
f ' (x) < 0 x

 sinx – 2 < 0
 2 > – sin x  2 > 1  > 1/2
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CHAPTER-6 :
APPLICATION OF DERIVATIVES

EXERCISE-1

(1) (D). y = loge x ;
dy 1
du x


Eq. of tangent y – y1 =
1

1
x

(x – x1)

Passing through (0, 0), –y1 =
1

1
x

(–x1)

y1 = 1 x1 = e  Point is (e, 1)
Equation of normal at (e, 1) is y – 1 = – e (x – e)
ex + y – 1 – e2 = e

L
2

2
2 2 2

c e 1 e 1
a b e 1

 
   

 

(2) (C). 4x5 = 5y4 20x4 = 20y3 . y'  y' = x4/y3

43 4 4 3 12 4 16

2 4 2 2 12 8 20
(SN) (y / x ) y y y 4

5(ST) (x / y ) x x x
         

(3) (B). 2yy1 = 4 2x + 2yy1 = 0

y1 =
4

2y yy1 = –x

y1 =
2
y  y1 =

x
y


1
2 1m

2 2 2
  2

2 1m
2 2 2

   

1 1
22 2tan 2 2111

22

 
             

(4) (C).  xn ym = am + 1  n log x + m log y = (m + 1) a


n m .y 0
x y
   (diff. wr to x)


n yy .
n x

    ST at (x1, y1)

     =
1

1
1

xm . .y
n y
  ; (x1, y1) = 1

m | x |
n

(5) (D). y/y', y, yy' are in GP
(6) (C). Slope of first curve m1 = 0

Slope of second curve m2 = –1, therefore angle is 45°

A = sin 45° = 1/ 2

(7) (A). Differentiating xyn = a, we get y' =
y

nx


ST = –nx. Since it is proportional to x, n can be any
non-zero real number.

(8) (A). 3
2y 2x 2 2 4

x
        = slope of the tangent.

 Slope of the normal = 1/4
(9) (A). Given curve qpxy  32 …..(i)

Differentiate with respect to x, 23.2 px
dx
dyy 

 











y
xp

dx
dy 2

2
3 pp

dx
dy 2

3
4

2
3

3,2


For given line, slope of tangent 4
42  p  2p

From equation (i), q 829  7q .

(10) (D).
2

2 3 dy 3 xy x
dx 2y


   

Slope of the normal at (2, 3) is

2
(2,3)

dx 2 3 1 1
dy 2 43 (2)

  
           = 2

Also (2, 3) lies on the curve.
9 = 8 –  = 16 – 9 = 7 +  = 9

(11) (B). m log x + n log y = (m + n) log a


m n dy dy m y0
x y dx dx n x


   

Subtangent =
y y n xm y(dy / dx) m

n x


 


Subtangent x
(12) (B). The point on the curve corresponding to x = 0 is

(0, 1)

2xdy (2e 2x)
dx
  

0

x 0

dy (2e 0) 2
dx 

      

Hence the equation of the normal at the point (0, 1) is

1(y 1) (x 0)
2

    2y + x – 2 = 0

Distance of the point (0, 0) from this line is =
2
5

(13) (B). Given curve is xy = 1 ........... (1)
Line is ax + by + c = 0 ........... (2)

From (1),
2

dy 1
dx x
 

Slope of the normal = x2 = positive
........... (3)

ax + by + c = 0 is normal

Slope = –
a
b

........... (4)

From eq. (3) & (4),
a
b
  = positive

i.e. a, b have opposite signs.
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(14) (C). Equation of the curve 422 ayx  .

Differentiating the given equation, 022 22  xy
dx
dyyx

 x
y

dx
dy 
  1

),(



















 a
a

dx
dy

aa

Therefore sub-tangent = a

dx
dy
y









.

(15) (A). Solving the line and curve, we get x = 4 and 6y .

Thus point of contact is )6,4(  .

(16) (C). Given )3(22  xy .....(i)

Differentiate w.r.t. x,
ydx

dy
dx
dyy 12.2 

Slope of the normal y

dx
dy












1

Slope of the given line = 2 2 y
From equation (i), x = 5
Required point is (5, –2).

(17) (C). xy cos2

At 2
2
2,

4
 yx 

and x
dx
dy sin.2

2
4/









xdx
dy

  Equation of tangent at 






 2,
4


 is








 
4

22 xy .

(18) (B).
dy 1 1 1tan 1 1 y , x
dx 4 2y 2 4


      

(19) (A). f (x) =
x

log x
 ; 2 2

1log x.1 x. log x 1xf (x)
(log x) (log x)

 
 

f (x) is increasingf ' (x) > 0

 2
log x 1 0
(log x)


 log x – 1 > 0x > e

(20) (A). f (x) =
x 3
3 x
   ;

2
1 3f (x) 0
3 x
  

2
2

1 3 x 9 x ( 3, 3)
3 x
     

(21) (B). 396)( 23  xxxxf , For decreasing 0)(  xf

 09123 2  xx  0342  xx
 0)1()3(  xx ,  )3,1(x .

(22) (C). 













  

4
sin2tan)( 1 xyxf








 






 
4

cos2sec
4

sin2tan 2  x
dx
dyyxy

0
4

cos0 





 

x
dx
dy

. 






4
,0 x .

(23) (A). 096366)(' 2  xxxf , for increasing

 0)2)(8()('  xxxf  8,2  xx .
(24) (A). f (x) = (x – 2)5 (x + 1)4

f ' (x) = 5 (x – 2)4 (x + 1)4 + (x – 2)5 (4) (x + 1)3

= (x + 1)3 (x – 2)4 (5x + 5 + 4x – 8)
f ' (x) = 3 (x + 1)3 (x – 2) 4 (3x – 1) < 0
decreasing in (–1, 1/3)

(25) (A). f ' (x) = 2
(csin x d cos x)(a cos x bsin x)

(csin x d cos x)
 



– 2
(a sin x b cos x)(ccos x d sin x)

(csin x d cos x)
 



= 2
ad bc

(csin x d cos x)




Function f (x) is monotonic decreasing if f ' (x) < 0
ad – bc < 0

(26) (D). f (x) is monotonic increasingf '(x) > 0
3kx2 – 18x + 9 > 0 kx2 – 6x + 3 > 0
which is positive only when k > 0 and b2 – 4ac  0
i.e. when (–6)2 – 4(k) (C)  0  or when k  3

(27) (B). We have, f (x) = x1/x

f '(x) = 2
1

x
 (1 – logx) x1/x .

f '(x) > 0 if 1 – log x > 0, i.e. logx < 1
x < e,f (x) is increasing in the interval (–, e)

(28) (C). f (x) = x3 + ax2 + bx + 5 sin2x
f ' (x) = 3x2 + 2ax + b + 5 sin 2x
since f (x) is an monotonically increasing function
3x2 + 2ax + b – 5 > 0  xR
4a2 – 4.3 (b – 5) < 0
a2 – 3b + 15 < 0

(29) (C). Let cbxxxf  sin)(

0cos)('  bxxf  or bx cos  or 1b .

(30) (B). P = 2r + s ; 1 1A rs r.(20 2r)
2 2
   ;  2r + s = 20 ;

A = 10r – r2 ;
dA 10 2r
dr
   ;

dA 0 r 5
dr
  

Amax = 50 – 25 = 25
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(31) (B). Given a + b = k, k const b = k – a
S = a3 + b3 = a3 + (k – a)3 = a3 + k3 – a3 – 3k2a + 3ka2

S = k3 – 3k2a + 3ka2


dS
da

= 0 3k2 + 6ak3k = 6a   (k 0)

a = k/2 b = k – k/2 = k/2  a = b
(32) (A). P = r + r + r2r + r

2 2 21 1 P 2r 1A r r [Pr 2r ]
2 2 r 2

       

dA 1 [P 4r]
dr 2
  r

r

r


dA P0 r
dr 4
  

When c

PP 2
P P / 24r ; 2
4 P / 4 P / 4

    
    

(33) (C).
x

x
xy xe

e
 

x x x

2x 2x
dy e .1 x.e e (1 x)
dx e e

 
   ;

dy 0
dx


x = 1 must be a point of maxima. y (1) = 1/e
(34) (D). r = 2; maximum rectangle is a square with each side

a 2r 2 2  ,  therefore area = a2 = 8
(35) (B). Let f (x) = x25 (1 – x)75 . Then,

f ' (x) = x24 (1 – x)74 (1 – 4x)
Now, f ' (x) = 0 x = 0, 1, 1/4
Clearly, f ' (x) > 0 in the left neighborhood of 1/4 and
f '(x) < 0 in the right neighborhood of 1/4. So f '(x) changes
its sign form positive to neghbourhood of 1/4. Hence, it
attains maximum at   x = 1/4.

(36) (C).  y =
(x 2)(x 1) (x 2)
(x 3)(x 1) (x 3)
  


   , x 1, x  – 3

or y =
x 3 5

x 3
 


 = 1 –
5

x 3

2
dy 5
dx (x 3)

  = + ive

always for all values of x in its domain.
 y = f (x) is an increasing function in its domain.

(37) (A). We have ;  f (x) = sin x – cos x – ax + b
 f ' (x) = cos x + sin x – a
 f ' (x) < 0  xR
 (cos x + sin x) < a  xR
As the max. value of (cos x + sin x)  is 2

The above is possible when a 2
(38) (A). For 0 < x/2 ; [cos x] = 0

Hence, f (x) = 1 for all  (0, /2]

Trivially f (x) is continuous on (0, /2)
This function is neither strictly increasing nor strictly
decreasing and its global maximum is 1.

(39) (A). The graph of the function is as given below:

Y

1
y = |x| y= |x|

–2 2
XO

1)0(,1)0(,1)0(  hfhff
 f (x) has a maximum at x = 0

(40) (D).  R(x) = 3x2 + 36x + 5, 
dR 6x 36
dx
  ;

dR 6 15 36 126
dx
    [x = 15]

(41) (A). Suppose that two numbers are x and y .
xsysyx 

Then 2)()( xxsxsxxyxf 

xsxf 2)(' 

0)(' xf for maximum value of )(xf

2
sx   and 2

sy 

Thus each number is half of the sum.
(42) (C). Given 211207)( xxxf 

xxf 2220)(' 

Put 0)(' xf  i.e., 02220  x
 11/10x and 022)('' xf

Hence at )(,11/10 xfx  will have minimum value,

121
11100

11
2007

11
10 








 f
11
100

11
2007 

11
23
 .

(43) (D). Consider f (x) = 20x – x2 defined for all xR
f ' (x) = 20 – 2x,  f ' (x) = 0x = 10 & f '' (x) = – 2 < 0
Hence, x = 10 is a point of maximum.
 Maximum value = 100

(44) (D). 34V r
3
  S = 4r2

2dV dr4 .r
dt dt
 

dS dr4 .2r
dt dt
 

dr4
dt

   2 


dr 1
dt 4

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(45) (A). s = 22t – 11t2 ;  ds/dt  = 22 – 22t
v = ds/dt = 0 t = 1
Distance = s = 22 – 11 = 11 units
    Total distance = 11 + 11 = 22

(46) (D). Given
dr 5 cm / sec
dt


2 dA drA r 2r 2 8 5
dt dt

          = 80cm2/s

(47) (A).
dv dr10cc / sec, ?
dt dt
   when r = 15

3 24 dv dr dr 1V r 4 10 4 225
3 dt dt dt 90
          

(48) (B). Let f (x) = sin x + x cos x

Consider g (x) =
x

x
0

0

(sin t t cos t) dt [t sin t] x sin x  

g (x) = x sin x which is differentiable
now g (0) = 0 and g () = 0, using Rolles Theorem
hence  atleast one x(0, ) where g '(x) = 0
i.e. x cos x + sin x = 0 for atleast one x (0, )

(49) (A). f (x) is monotonic decreasing when
f ' (x) < 0  x sinx – 2 < 0
2 > – sin x 2 > 1 > 1/2

(50) (D) If the sum of two positive quantities is a constant,
then their product is maximum, when they are equal .
 a2 x4. b2y2 is maximum when  a2 x4 = b2y4

=
1
2

 (a2x4 + b2y4) =
4c
2

 maximum value of  a2 x4. b2y4 =
4c
2

.
4c
2

 =
8c
4

Maximum value of xy =
8

2 2
c

4a b
 =

2c
2ab

.

(51) (D) x = 2 ln  cot t + 1, y = tan t + cot t
Slope of tangent

t
4

dy
dx 



 
    =

2 2

2

t
4

sec t cosec t
2 cosec t

cot t 


 
 

 
  

= 0

(52) (A). We have, z = (x – p)2 + (x – q)2 + (x – r)2 ......... (1)
Differentiating equation (1) with respect to x, we get

dz
dx  = 2 (x – p) + 2(x – q) + 2(x – r). ........ (2)

For minima or maxima, put
dz
dx  = 0

From equation (2), we get
2 (x – p) + 2 (x – q) + 2 (x – r) = 0  3x – (p + q + r) = 0

or x =
1
3  (p + q + r)

 The given equation is maximum at x = (1/3) (p + q + r)

(53) (A). Here a2 = 27, b2 = 1, a = 3 3  , b = 1

The point (a cos , b sin ) is ( 3 3  cos , sin ).

Tangent at the above point is
3x 3 3 cos

9


+
ysin

1


 = 1

 Sum of intercepts =
1

3 3 cos
 + 1

sin 

or s = 3 3  sec  + cosec 


ds
d  = 3 3  sec  tan  – cosec  cot  = 0

  tan3  =
1

3 3
tan  =

1
3
  = 6



2

2
d s
d

 is positive at  = 6


.

Therefore, sum is minimum at  = /6.
(54) (B). In –1 x < 0,  f ' (x) = 3x2 + 2x – 10

      = 2x2 + (x + 1)2 – 11 < 0
 f (x) is monotonically decreasing in the interval
–1 x < 0

In 0 < x <
2


, f ' (x) = – sin x < 0,  f (x) is m.d.

In
2


 < x , f ' (x) = cos x < 0,  f (x) is m.d.

 f h 2 f
2 2

                , f h f
2 2
           

 f (x) has a local maximum at x = /2

(55) (C).
2 2

2 2
x y 1
a b
  

2

2
dy b x
dx a y


  and x2 – y2 = c2


dy x
dx y


The two curves will cut at right angles if

c c1 2

dy dy. 1
dx dx
           


2 2 2

2 2 2
b x x x y. 1

ya y a b
     

2 2

2 2
x y 1

2a b
 

[Using
2 2

2 2
x y 1
a b
  ]

Substituting these values in x2 – y2 = c2,
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we get
2 2

2a b c
2 2
   a2 – b2 = 2c2.

(56) (B).

S

B C

y

P Q
36

12(1
2–

y)

A

R

x

Area of rectangle = A = xy ........... (1)

Also,
36 12
x 12 y

 3y = (36 – x) ........... (2)

 2x 1A (36 x) (36x x )
3 3
   

Now,  A ' (x) = 036 – 2x = 0x = 18

A'' (x) =
1
3

 (–2) < 0. Also,
36 x 36 18y 6

3 3
 

  

 Amax = 18 × 6 = 108 sq. feet

(57) (B). f (x) =
2


 cos
2


x, 0  x < 1

= – 2,  x  1
  f (x) changes sign from positive to negative from the
left side of x = 1 to the right side of x = 1.
f (x) changes from an increasing function to a decreasing
function.   f (x) has a local maximum at x = 1.

(58) (C). m1 =
2 2x y
2xy


 and m2 = 2 2
2xy

y x

Hence, m1m2 = –1 and the curves intersect orthogonally.
Therefore (i) is true. Replacing x by – x in the first equa-
tion, we get a new equation. Therefore, the first curve is
not symmetrical with respect to the y-axis. Similarly, the
second curve. Therefore (ii) is false.
If x and y are interchanged in the first equation, we get
the second. Therefore (iii) is true.

(59) (B). As (4, 3) lies on the circle, the normal to
y = f (x) is the tangent to the circle (4, 3) so that the two
curves intersect orthogonally at (4, 3).
f (4) = the slope of y = f (x) at (4, 3) = – the reciprocal of
the slope of the circle (4, 3) = 3/4.

(60) (A). We have f (x) = x3 + x2 f ' (1) + x f '' (2) + f ''' (3)
f ' (x) = 3x2 + 2x f ' (1) + f '' (2)
f ' (1) = 3 + 2 f ' (1) + f '' (2)
f ' (1) + f '' (2) + 3 = 0 ......... (1)
f '' (x) = 6x + 2f '(1)
f '' (2) = 12 + 2f ' (1)
f ''' (x) = 6 f ''' (3) = 6
f ' (1) = – 5  ;    f '' (2) = 2
Hence,  f (x) = x3 – 5x2 + 2x + 6 ......... (2)
Now,  f (–1) = – 1 – 5 – 2 + 6 = – 2

f (0) = 6 one root(–1, 0)
f (2) = 8 – 20 + 4 + 6 = –2One root(0, 2)
Two roots are realAll three roots are real.
Also f (5) = 125 – 125 + 10 + 6 = 16
One root(2, 5)
Roots lies in (–1, 0), (0, 2), (2, 5)
Hence, all roots are real and distinct.

(61) (C). f (x) = 2 cos x + sec2 x – 3 > 0
  2 cos3 x – 3 cos2 x + 1 > 0
  (cos x – 1)2 (2 cos x + 1) > 0
  cos x > – 1/2  x  (–/2, 2/3)
Among the given intervals,  (–/2, /2) lies  within the
above interval.

(62) (B). We have,  g (t) = 1 t2cot (3 )
2

 


g (–t) = 1 t 1 t2cot (3 ) 2 tan (3 )
2 2

   
  

(As 1 1 1cot x tan , x 0
x

   )

             =
1 t 1 t2 cot (3 ) 2cot (3 )

2 2 2
            

(As  cot–1x + tan–1x =
2


 xR)

             = – g (t)
Hence g (–t) = – g (t)g is an odd function

Also,
t

t 2
2.3 .ln 3g (t)

1 (3 )








 g ' (t) < 0,  tR
g is strictly decreasing in (– , ).

(63) (B). We have, f (x) = cot–1 (g (x))

f  (x) = 2
1

1 [g(x)]



 × g' (x)  < 0 for 0 < x < 

 g (x) is increasing for 0 < x < ,g  (x) > 0]
Thus, f (x) is decreasing in (0, )

(64) (B). f  (x) = 6 (x2  3 ax + 2 a2) = 6 (x  2 a) (x  a) = 0
    x = 2 a  or  a
   f  (x) = 6 (2 x  3 a)

 
  






f a a
f a a
( )
( )
2



If a then x a
x a

If a then x a
x a

 


 



0
2

0 2

1

2

1

2

Now  x1
2 = x2      a2 = 2 a      a = 2

other option not valid ]

(65) (B). Let
2 3

3 3 2
x dy x (400 x )y ;

dxx 200 (x 200)


 
 

 Now    if   x  > (400)1/3,  y is decreasing   and
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 if    x  < (400)1/3,  y is increasing  hence
   y  is greatest at  x = (400)1/3.

But x  N  hence practical maxima occurs at

  x = 7  or  x = 8  ;   a7 =
49

543
  ;   a8 =

64
712

(66) (B). Domain is [2, 3],  now
dy 1 1
dx 2 x 2 3 x
 

 

for maximum or minimum
dy 0
dx


4 (x – 2) = 3 – x    5x = 11   x = 11/5

now,  f (2) = 2,  f (3) = 1,
11 1 2 5f 2. 5
5 5 5 5
       

(67) (D). Slope of normal to y = f(x) at (3, 4) is
1

f '(3)


.

Thus,
1

f '(3)


 = tan
3
4
 

 
 

 = tan 2 4
   
 

 = – cot
4


 = – 1

 f (3) = 1.

(68) (D).Row operations will give  f (x) =
x 1 x 1 2x 1

2 2 2
3 3 1

  

 

which is a linear function of x and hence has no extreme
points.

(69) (A). (2, 6) corresponds  to t = 1 on the curve.
Slope at t = 1 is 8.

Normal at (2, 6) is y – 6 = –
1
8  (x – 2) whose intercept form

is
x
50  +

y
25 / 4

 = 1.

(70) (C). We have, f (x) = cot–1 x + x

f (x) = – 2
1

1 x
 + 1=

2

2
x

1 x
. Clearly, f (x) > 0 for all x.

Therefore f (x) increases in (– ,  )
(71) (C). Slope of tangent

= –
2/32/3

x
2/3

y

f x y
f xy




      

 = –1 at (a/8, a/8)

Tangent is y – a/8 = – 1 (x – a/8)   or     x + y = a/4
Its intercepts on axes are A =a/4,  B = a/4
Portion of tangent intercepted between the axes is

2 2A B 2   (given)


2 2a a

16 16
  = 2 or a2 = 16 a = 4

(72) (A). xy = –5

dy dy yx y 0 0
dx dx x

      (as xy = – 5 < 0)

The slope of the normal is negative


a a0 0 a 0, b 0
b b
         or   a < 0, b < 0

(73) (A). f’(x) = 3x2 + 2ax + b + 5 sin 2x > 0 for all x
  3x2 + 2ax + b + 5 sin 2x > 0
  3x2 + 2ax + b > – 5 sin 2x > – 5
  3x2 + 2ax + (b + 5) > 0
  4a2 – 12(b + 5) < 0  a2 – 3b – 15 < 0

(74) (D). f(x) = 2
2

2 5x
4

  
 

 +
31
8 

31
8  attained at x = –

5
2

(75) (C). | x – a | + | x – b | + | x – c | + | x – d |

So  minimum value is ( c + d – a – b)
(76) (B). Since – 1 sin x  1, – 1  cos x  1,

[sin x]  1 and [cos x]  1
[sin x] + [cos x]  2

But [sin x] + [cos x] = 2 if sin x = 1 and cos x = 1 which is
not possible.
 maximum value of [sin x] + [cos x] is 1

(77) (B).
dy
dx

 = 0 as tangent is x - axis

 2x + a = 0    or  x = – a/2.   But point lies on the curve.

y = x2 + ax + 25 =
2100 a

4


= 0  as it lies on x - axis.

  a = ± 10

(78) (C).
d

dx
cos | x | = – sinx, for x R

   f '(x) = – sin x – 2a
Now f(x) is an increasing function, therefore
f ' (x) > 0– sinx – 2a > 0

a < –
1
2

 sin xa  –
1
2

(79) (B). Let f(x) = x3 + 2x2 + x + 5, then f (–2) = 3 and
f (–3) = –7
 f(x) has an odd number of real roots –2 and –3. But, if
the given equation has an odd number of real roots
between –2 and –3, then their product will be less than
–8.
However, product of the roots is –5. So, there is exactly
one real root between –3 and –2
Let it be . Then – 3 <  < –2  [] = –3
Also,  f ' (x) = 3x2 + 4x + 1, where  D = 16 – 12 > 0
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(80) (B). 0 x
2


  tan x > 0,  cot x > 0

Now,
2 2

2 2 2 2
ab (a b )sin x cos xf (x)
a sin x b cos x






2 2

2 2
ab (a b )

a tan x b cot x





=
2 2

2
ab (a b )

(a tan x b cot x ) 2ab


 

f (x) will be max. when 2(a tan x b cot x )  is minimum.
But its minimum value is zero.

 Max. value of
2 2 2 2ab (a b ) a bf (x)

2ab 2
 

 

(81) (B). Time taken by the truck =
300 hours

x

petrol consumed =
2x 3002

600 x
 
 

   litre

   Expenses on travelling,

2300 x 3000e 200 2
x 600 x
 

    
 

 =
60000 6000 660005x 5x

x x x
   


2

dE 66000 5 0
dx x
      for all x[30, 60]

 most economical speed is 60 kmph.
(82) (D). Given,V =r2h

Differentiating both sides

2dV dh dr dh drr 2r h r r 2h
dt dt dt dt dt

              

dr 1 dh 2and
dt 10 dt 10
  

dV 2 1 rr r 2h ( r h)
dt 10 10 5

                   

Thus, when r = 2 and h = 3,

dV (2) 2( 2 3)
dt 5 5

 
   

(83) (B). cot cot
1 2x (tan ) , x (cot )     ,

tan
3x (tan )    and tan

4x (cot )  

0 / 4 tan cot       
x1 < x2 ;   x3 < x2

x1 < x3
x1 < x3 < x2
x3 < x4 < x2
x1 < x3 < x4 < x2

(84) (D). Let f (x) = 2 1x ln
x

 = – x2 ln x

f ' (x) = – 2x ln x – x = 0x = e–1/2

x 0 x
lim f (x) 0, lim f (x)
 

  

and 1/2 1f (e )
2e

  Maximum value of f (x) is
1
2e

.

Alt. : Check with f '' (x)
(85) (D). f (1) = – 6

For maximum at x = 1
1

x 1
lim f (x) tan 5 6


    

 1tan 1    tan1  

(86) (C). y – exy + x = 0


xydy dye y x 1 0

dx dx
      

i.e.,
dy dyy(x y) x(x y) 1 0
dx dx
     

  i.e., [1 – x (x + y)]
dy
dx

 = y (x + y) – 1

for the vertical tangents

1 – x (x + y) = 0 i.e.,
21 xy

x




i.e.,
21 x1 x e x 0

x
    i.e.,

21 x 1e
x

 

x = 1 and y = 0

(87) (A). y (at t =
4


) =
1 1a

42 2
 
   = a 1

42
   

t
4

a cos cos sin
dy 4 4 4 4
dx a sin cos sin

4 4 4 4



       


        

 =

a sin
4 4 tan 1a 4cos
4 4

 


 
 

 length of the tangent

 =
2y dy1dy dx

dx

      =

a 1
42 1 1

1

   
 = a 1

4
   
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(88) (B). t = length of tangent = 1| y |
sin

n = length of normal = 1| y |
cos , t' = sub tangent = 1| y |

tan
,

n' = subnormal =
1| y |

cot

(i)
21 1
1

| y | | y |
t n . y

tan cot
  

 

(ii)
2 2

2 2 2 2 2
1 1 1

1 1 cos sin 1
t n y y y

 
   

(iii) 1 1 1 1
1

| y | | y | | y | | y |
nt . | y | t

cos tan sin
  

  
(89) (C). x2y = c3

x2 dy
dx

 + 2xy = 0
dy
dx

 =
2y
x



equation of tangent at (x,y)

Y – y =
2y (X x)
x

 

Y = 0,  gives , X =
3x
2

 = a

and   X = 0 , gives , Y = 3y = b

Now  a2b =
29x .3y

4
  = 2 327 27x y c

4 4
   (C)

(90) (A).  x = – 2
| x | = – x
f (x) = | x2 + x |     x2 + x > 0
f (x) = x2 + x .......... (1)


dy f (x) 2x 1
dx
  

Slope of normal at x = – 2

=
1 1 1

2( 2) 1 4 1 3
 

 
   

(91) (B). y = x (ln x – 2)

y' = x
1
x
 
    + (ln x – 2) = ln x – 1

dx
dy

 = ln x – 1 = 0 x = e

now f (1) = – 2
f (e) = – e (least)
f (e2) = 0 (greatest)
 difference = 0 – (–e) = e  Ans.

(92) (D). f (x) = x ln x – x + 1 f (1) = 0
f ' (x) = 1 + ln x – 1 = ln x
f ' (x) < 0 if 0 < x < 1

f ' (x) > 0  if 1 < x
f ' (x) > 0 for all x(0, 1)(1,)

(93) (C).
2

4 3 3xf (x) x ax 1
2

   

f ' (x) = 4x3 + 3ax2 + 3x
f '' (x)=12x2 + 6ax + 30 = 3 (4x2 + 2ax + 1)0  xR
4a2 – 16 0  a2 4    –2   a   2

(94) (B).
axy

b x



........... (1)

Since (1, 1) lies on (1)
b – 1 = a ........... (2)

From (1), 2
dy ab
dx (b x)



At (1, 1), 2
dy ab 2
dx (b 1)
 
 ........... (3)

From (2) and (3), 2
b(b 1) 2
(b 1)




b = 2b – 2b = 2

(95) (D). x2 + y2 – 6x + 8y + 24 = 0
it centre is (3, – 4) and radius = 1
least distance of (0, 0) from the circle = 5 – 1 = 4

 2 2x y 4   i.e., x2 + y2 = 16

minimum value of 2 2
2 2log (x y ) log 16 4  

(96) (A). Graph of 2
2xy

1 x



 is

from the graph it is clear that there are three points of
inflection separated by a point of minimum
Alternate :

2 2

2 2 2 2
dy 2(1 x ) 2x.2x 2(1 x )
dx (1 x ) (1 x )

  
 

 

x = – 1 is a minimum and x = 1 is a maximum.
2 2 2 2 2

2 2 4
d y (1 x ) ( 4x) 2 (1 x ) 2 (1 x ).2x
dx (1 x )

    




=
2 2

2 3
4x (1 x ) 8x (1 x )

(1 x )
   



=
3 3 3 2

2 3 2 3 2 3
4x 4x 8x 8x 12x 4x 4x (x 3)

(1 x ) (1 x ) (1 x )
      

 
  
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 There are 3 points of inflection : x 0, 3, 3 

(
2

2
d y
dx

  changes sign while x passes through these

points)
(97) (B). f (x) = 2x3 – 3 (a + 1) x2 + 6ax – 12

f ' (x) = 6 {x2 – (a + 1) x + a} = 0
      = 6 (x – 1) (x – a) = 0
f '' (x) = 12x – 6 (a + 1)
f '' (1) = 6 – 6a > 0
f '' (a) = 12a – 6a – 6 = 6a – 6 = 6 (a – 1)
 If a < 1 then x = a is a local max.
 2a = 1   a = 1/2
If a > 1 then x = a is a least minimum  2 = a

(98) (C). Point of intersection of curves
2y | x 1 |   and 2y 7 x   is ( 3,2)

y = x2 – 1   and 2y 7 x 

dy 2x
dx
 and

dy x
dx y
 

1
( 3,2)

dym 2 3
dx
   and 2

( 3,2)

dy 3m
dx 2
  

5 3tan
4

 

(99) (C). f (x) = 2 sin x + sin 2x
f ' (x) = 2 cos x + 2 cos 2x = 2 (cos x + cos 2x)
f ' (x) = 0 2cos2x + cos x – 1 = 0

1 3 1cos x 1,
4 2
 
   x ,

3


 

Now, 3f (0) 0, f 2
2
     

  ;

3 3 3 3f ( ) 0, f 2
3 2 2 2
       

difference between greatest value and least value

=
3 3 2

2


(100) (B). Given curve is x3/2 + y3/2 = 2a3/2 ....... (1)


3 3 dyx y 0
2 2 dx

   or
dy x
dx y
 

Since tangent is equally inclined to the axes


dy 1
dx
  

x 1
y

   
x 1
y

  

 x y [ x 0, y 0] 

Putting y x  in (1), we get

2x3/2 = 2a3/2 x3 = a3

x = a and so y = a
(101) (D). For cylindrical pot V = r2h

2dV dh drr h ·2r
dt dt dt

     

 (r = constant,
dr
dt

 = 0)

hence, 100 =r2
dh
dt

100 = ·
225 dh
4 dt
 (r = 15/2 cm)

dh 400 16
dt 225 9
 

 
 cm/min

EXERCISE-2
(1) (B). xy = 25  ;  xy' + y (1) = 0  ;  y' = –y/x

Consider a point (5, 5) on xy = 25 ;  m = –5/5 = –1
Equation of tangent at (5, 5) is y – 5 = –1 (x – 5)
y – 5 = –x + 5 ;  x + y = 10

x y 1
10 10
    ;  Area =

1 10 10 50
2
  

 In general, area = 50 sq. units

(2) (A). Clearly  = 90 +   = 90 + 
tan  = tan (90 + )

  = – cot 

)
x

y




 '

tan  = 2

(1, 2)

dy 3x 3
dx
 

 Required = – cot  = –1/3

(3) (B). Diff.x3 – 3x y2 + 2 = 0 w.r.t. x to get
2 2dy 3x 3y

dx 6xy


 


Diff. 3x2y – y3 – 2 = 0 w.r.t. x to get 2 2
dy 6xy
dx 3x 3y
 



Clearly, m1 × m2 = – 1

(4) (C).
2

2 2
1 1 (x 1)f (x)

2x1 x 2x (1 x )
 

  
 

f ' (x) = 0x = 1

Now, f (1) = 1 1tan 1 log1
2 4

 
 

11 1 1 1f tan log 3 log 3
4 6 43 3

    
         

and 1 1 1f ( 3) tan ( 3) log 3 log 3
4 3 4

 
   

Hence, the greatest value of f (x) is
1 log3

3 4


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(5) ( B ) .
f 1

4 4
      

 f ' (x) = 1 + 3 tan2x sec2x

f
4
      = 1 + 3 × 2 = 7;   g' 1

4
     =

1 1
7f

4


    

(6) (D). yxy 123 23   dx
dyx

dx
dyy .126.3 2 

 06)123( 2  xy
dx
dy

 2312
6
y
x

dx
dy




 x
y

dy
dx

6
312 2



Since tangent is parallel to y-axis

 0
dy
dx

 0312 2  y or 2y .

Then 3
4

x . At ;2,
3
4









  the equation of curve

doesn’t satisfy.

(7) (C). 3dy x 3x
dx
   

We must have
dy 0
dx
  for three values.

Equation x3 – 3x +  = 0 has three real roots.
Let g (x) = x3 – 3x +  then g'(x) = 0 for x = 1, –1
For three roots of g (x) = 0
g (1) g (–1) < 0– 2 <  < 2 k = 2

(8) (B). We have, xy = c2

x
dy
dx

 + y . 1 = 0 
dy
dx

 = –
y
x

;

 2
(ct ,c/ t ) 11 1

dy 1
dx t
  

The equation of the normal at

1
1

cct ,
t

 
    is y –

1

c
t

 = t1
2 (x – ct1).

since, this normal passes through

2
2

cct ,
t

 
    therefore,

2 1

c c
t t
  = t1

2 (ct2 – ct1)

t1
3 t2 = – 1 (as t1 – t2  0)

(9) (A). Let P (x1, y1) be the point of intersection of the two
curves.

We have, y2 – 2x2y
dy
dx

=2m1=
(x ,y )1 1

dy
dx
 

    
=

1

1
y

and 2xy = k x
dy
dx

 + y = 0

m2 = 1

1(x ,y )1 1

ydy
dx x
       

Since the two curves intersect at right angles,

m1m2 = – 1
1 1

1 y
y x
   

        = – 1x1 = 1

and hence from y1
2 = 2x1, we get y1

2 = 2
since (x1, y1) also lies on 2xy = k
k2 = 4x1

2 y1
2 = 4 × 1 × 2 = 8

(10) (A). f (x) = xex(1–x)

f '(x) = ex(1–x) + xex(1–x) (1– 2x)
= ex(1–x) [1 + x– 2x2] = – ex(1–x) (x– 1) (2x + 1)

Now f (x) is increasing when f '(x) > 0
 – ex(1– x) (x – 1) (2x + 1) > 0
 (x – 1) (2x + 1) < 0 [ex(1 – x) > 0]
– 1/2 < x < 1.    Also f (x) is decreasing when f '(x) < 0
(x – 1) (2x + 1) > 0x < – 1/2 or x > 1

(11) (D). f '(x) = 2
cos x sin x

1 (sin x cos x)


 

f (x) is monotonic increasing when f '(x) > 0

 2
cos x sin x

1 (sin x cos x)


 
 > 0cos x – sinx > 0

 2 cos (x +/4) > 0
 –/2 < x + /4 < /2

(cos is positive when –/2< < /2)
 –3/4 < x </4

(12) (D). f '(x) = 4x – 1/x
f '(x) is monotonic increasing when f '(x) > 0

4x – 1/x > 0
24x 1
x


 > 0



2

2

4x 1 0 when x 0

4x 1 0 when x 0

   


  
But x > 0, 4x2 – 1> 0x2 > 1/4 | x | > 1/2

x (1/2,)
and x < 0, 4x2 – 1< 0x2 < 1/4 | x | < 1/2

x (–1/2, 0)
 x (–1/2, 0)(1/2,)

(13) (D). f (x) = 2log (x – 2) – x2 + 4x + 1

f '(x) =
2

x 2
 – 2x + 4

 f '(x) = 2
21 (x 2)

x 2

  
 

  
 = – 2

(x 1)(x 3)
x 2
 


  f '(x) = 2
2(x 1)(x 3)(x 2)

(x 2)
  



 f '(x) > 0– 2(x – 1) (x – 3) (x – 2) > 0
 (x – 1) (x – 2) (x – 3) < 0  x(–, 1)(2, 3)
Thus, f (x) is increasing on (–, 1)(2, 3).
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(14) (C). Here,  by2 = (x + a)3 ......... (1)
Differentiating both the sides, we get

2dy2by 3 (x a)
dx
  

2dy 3 (x a)
dx 2by




Length of subnormal
2dy 3 (x a)SN y

dx 2 b


  ........ (2)

Length of subtangent
2

2
dx 2byST y.
dy 3 (x a)

 


........ (3)

p (SN) = q (ST)2


2 3 4

6
p (ST) 8 b y 8b
q (SN) 27 27(x a)
  



2 4

6
b y 1

(x a)

 
 

 


(15) (C).x2 + y2 = 102

A P

Q

O

B

X

y
10m

Given that
dx 2
dt


We have to find
dy
dt

 when x = 6 in x2 + y2 = 100,

we get y = 8.
Now, x2 + y2 = 102

dx dy2x 2y 0
dt dt
  

dx dy6 8 0
dt dt
 


dy dy 36 2 8 0
dt dt 2

       metres/min

(16) (A). f ' (x) = –12 cos3 x sin x–30 cos2x sin x – 12cos x sin x
= – 6 sin x cos x (cos x + 2) (2 cos x + 1)

f ' (x) = 0, for x = 0,
2, ,

2 3
 



Clearly, f ' (x) > 0 for
2x

2 3
 
 

And f ' (x) < 0 ; for 0 < x <
2


  or
2
3


 < x < 

(17) (B). Let f (x) = 2x3 + 15 and g (x) = 9x2 – 12 then
f ' (x) = 6x2  xR
f (x) is increasing function  xR
Also, g ' (x) > 0  18x – 12 > 0 x > 2/3
Thus, f (x) and g (x) both increases for x > 2/3
Let f (x) = f (x) – g (x) ,  F ' (x) < 0
(f (x) increases less rapidly than the function g (x))
 6x2 – 18x + 12 < 0  1 < x < 2

(18) (A). Let the equation of the circle by x2 + y2 = a2

Let A (a, 0), B (–a, 0) be the ends of the diameter and
C (x, y) be any point on the circle.

y

aa OB A

C

y

x

Area of ABC = A =
1 AB y ay
2
    = 2 2a a x

A is maximum if x = 0
i.e. c lies on y-axis and then  CAB is an isosceles
triangle.

(19) (B). f ' (x) =
2

1
2 2

d 1 x 2xcos
dx 1 x | x | (1 x )

  
 

  

f ' (x) < 0 if x < 0
x(–, 0)

or  y = cos–1
2

2
1 x
1 x

 
 
 

 =
1

1

2 tan x, if 0 x

2 tan x, if x 0





   

   

(20) (B).  Let f (x) = x1/x log f (x) =
1 log x
x
 
  

Diff. both the sides, we get

2
x.(1/ x) log xf (x) f (x)

x
 

   

So,  f ' (x) = 0x = e
when 0 < x < ef ' (x) > 0 and e < x <f ' (x) < 0
Thus, f (x) has a maximum at x = e and max. f (x) = e1/e.

(21) (B). Let  be the semi-vertical angle and r be the radius of
the cone at time t. Then,   r = 20 tan 

2dr d20sec
dt dt


 

 2dr 20 sec 30 2
dt
   

A B
O

r r

20cm.

V



          =
160

3
 cm/sec

(22) (B). Since








0);log(
0);log(

||log
xx
xx

x
















0;1)1(
)(
1

0;1

||log
x

xx

x
xx

dx
d

y has extreme values at ,2,1x

So 0
)2()1(
















 dx
dy

dx
dy

. Now 12  bx
x
a

dx
dy
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012
)1(











ba
dx
dy

014
2)2(







 ba
dx
dy

 ;
2
1,2  ba .

(23) (D). Since )(
1
1

1
1

)1(
)1()( 2

2

2

2

2

2
xf

e
e

e
e

e
exf x

x

x

x

x

x

























 



)(xf is an odd function.

Also 22

2222

)1(
)1(22).1()('




 x

xxxx

e
eeeexf

0
)1(

4
)1(

)11(2
22

2

22

222








 x

x

x

xxx

e
e

e
eee

)(' xf is ve , )(xf is an increasing function.

(24) (D). If 193)2()( 23  axaxxaxf  decreases mono-

tonically for all ,Rx  then 0)(' xf for all Rx 

 096)2(3 2  aaxxa for all Rx 

 032)2( 2  aaxxa for all Rx 
 02 a and Discriminant 0
 2a , 0248 2  aa  2a and 0)3( aa
 2a , 3a or 0a  3a  3 a  .

(25) (A). Let (x, y) be the one point of parabola,
y = x2 + 7x + 2
its distance from the line y = 3x – 3 or 3x – y – 3 = 0 is

D =
3x y 3

(10)
 

 =
23x (x 7x 2) 3

(10)
   

      =
2x 4x 5

(10)
  

D =
2x 4x 5

(10)
 

 =
2(x 2) 1

(10)
 

      =
2(x 2) 1

(10)
 

 as
r

r
N
D

 is + ive

dD 2(x 2)
dx (10)


  = 0x = – 2

and hence y is – 8 i.e. point is (–2, – 8)

2

2
d D 2

(10)dx
  =+ ive and hence min. at (–2, –8)

(26) (B). ),(vfyz  (given )
y
xv 










y
xfyz ……(i)

Partially differentiate w.r.t. x and y respectively,
 
y
yxf

x
z /





                      …..(ii)





















2
1

y
x

y
xf

y
z

                     …..(iii)

Now, y
z

x
z

y
x

y
z

x
zv































y
xf

y
x

yy
xf

y
x

2
11

 or 1







y
z

x
zv .

(27) (D). xxy log  x
dx
dy log1 

The slope of the normal = xdxdy log1
1

)/(
1






The slope of the line 322  yx  is 1.

 1
log1
1




x  2log x  2 ex

 22  ey  Co-ordinate of the point is )2,( 22   ee .

(28) (D). Curve is axbey /
Since the curve crosses y-axis (i.e., x = 0) y = b

Now axe
a
b

dx
dy /
 . At point (0, b), a

b
dx
dy

b











),0(

Equation of tangent is, )0( 
 x
a
bby  1

b
y

a
x

.

(29) (D). f (x) = 3x2 + 15x + 5 ; f ' (x) = 6x + 15
Let x = 3 and x +x = 3.02  ; f (3.02) = f (x +x)
y = f (x +x) – f (x)
 f (x +x) = f (x) +y  = f (x) + f ' (x) .x

[y = f ' (x) .x]
 = (3x2 + 15x + 5) + (6x + 15) .x
= [3 × 32 + 15 × 3 + 5] + [6 × 3 + 15] (0.02)
 = [27 + 45 + 5] + [18 + 15] (0.02)  = 77 + 33 × 0.02 = 77 + 0.66
= 77.66

(30) (B). Curve xyeyx 
Differentiating with respect to x







 

dx
dyxye

dx
dy xy1  or xy

xy

xe
ye

dx
dy





1

1

0)(101  yxxxe
dx
dy xy

This hold for 1x , 0y .

(31) (D). Let  y =
1
40

(3x4 +8x3 –18x2 + 60)


dy
dx

 =
1
40

(12x3 + 24x2 –36x)
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and
2

2
d y
dx

 =
1
40

(36x2 + 48x – 36)

Now
dy
dx

 = 0x3 +2x2 – 3x = 0

or x (x–1)(x+3) = 0  or  x = 0, 1 , –3

At x = 0,
2

2
d y
dx

 = –36 < 0

 y is maximum at x = 0
 The given function i.e. 1/y is minimum at x = 0

 minimum value of the function =
40 2
60 3


(32) (C). Consider the function

)200(
)( 3

2



x
xxf  .....(i) ; 0

)200(
)400()(' 23

3






x

xxxf

When )0(,)400( 3/1  xx 

0)(')400( 3/1  xfhx

0)(')400( 3/1  xfhx

 )(xf  has maxima at 3/1)400(x

Since ,8)400(7 3/1  either 7a or 8a is the greatest term
of the sequence.

543
49

7 a and
89
8

8 a and
89
8

543
49


 543
49

7 a is the greatest term.

(33) (A). 1055 345  xxxy

 234 15205 xxx
dx
dy

 )34(5 22  xxx

)1()3(5 2  xxx

0
dx
dy

, gives 3,1,0x

Now, xxx
dx
yd 306020 23
2

2
  = )362(10 2  xxx

and )3126(10 2
3

3
 xx

dx
yd

For 0x : 0,0,0 3

3

2

2


dx
yd

dx
yd

dx
dy

 Neither minimum nor maximum

For negative10,1
2

2


dx
ydx .

 Maximum value 9max. y

For positive90,3 2

2


dx
ydx

 Minimum value 37min. y .

(34) (C). 24
)(

xx
xxf




Differentiate, 22

2

)4(
)21(4)(

xx
xxxxxf






For maximum 0)(' xf  0
)4(

4
22

2




xx
x

 2,2 x
Both values of x are out of interval

 4
1

114
1)1( 





f , 6

1
114

1)1( 


f

(maximum).
(35) (A). Let co-ordinate of R (x, 0)

Given )1,1(P  and )2,3(Q

2222 )20()3()10()1(  xxRQPR

              = 13622 22  xxxx

For minimum value of PR + RQ, 0)(  RQPR
dx
d

 0)136()22( 22  xx
dx
dxx

dx
d


136

)3(

22

)1(
22 








xx

x

xx

x

Squaring both sides, 136
)3(

)22(
)1(

2

2

2

2








xx

x
xx

x

 0523 2  xx  0)1()53(  xx , 1,
3
5
x .

Also 31  x .  )0,3/5(R .

(36) (A). 23
3

4 4)('
3

)( xxxfxxxf 

For increasing 0)14(04 223  xxxx

Therefore, the function is increasing for 4
1
x

Similarly decreasing for 4
1
x .

(37) (B). Let y = 64 secx +27 cosecx


dy
dx

= 64secx tanx – 27 cosecx cotx

2

2
d y
dx

 = 64 sec3x + 64 secx tan2x

+ 27 cosec3x + 27 cosecx cot2x

Now
dy
dx
=  0 64 secx tanx = 27cosecx cotx

tan3x = 27/64 tanx = 3/4
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Also then
2

2
d y
dx

 > 0 (0 < x <
2


 )

So y is minimum when x = tan–1(3/4) and its
min. value = 64 (5/4) + 27 (5/3) = 125

(38) (B).

1 1
2 2

1 2

1 1(cos x sin x)
1 x 1 xf (x)

(cos x)

 



 
    

  


1 1

2 1 2 2 1 2

cos x sin x

1 x (cos x) 1 x (cos x)

 

 

 
 

 
 = +ve

        = f ' (x) > 0 st. Increasing function.

(39) (A).
2

2
x 2x 1g (x)

(x 1)
 




2 2

4
2 (x 1) (x 1) (x 2x 1) 2 (x 1)g (x)

(x 1)
     




= 3
4 0

(x 1)



No point of inflexion

(40) (D). At y-axis dy 3
dx
 , 3ax2 + 2bx + c = 3 at (0, 5)

c = 3

Again dy 0
dx
  at (–2, 0) 12a – 4b + c = 0

12a – 4b + 3 = 0, also P lies on curve
–8a + 4b – 2c + 5 = 0  or  – 8a + 4b – 1 = 0
4a + 2 = 0a = – 1/2, b = –3/4

(41) (A).(i)
dx a (cos 2 sin cos sin 2 ) a sin 3
d cos 2 cos 2

       
  
  

(ii)
dy a sin sin 2a cos 2 .cos
d cos 2

 
   
 

 =
a cos3

cos 2




dy cot 3
dx
  

dy 0
dx 6

            parallel to x-axis.

(42) (C). For curve,  y2 = 6x, 1
dy 3 m
dx y
  ......... (1)

For  9x2 + by2 = 16, 2
dy 9x m
dx by


  ......... (2)

For orthogonally,  1 + m1m2 = 0,  by2 = 27x ......... (3)
Putting value of y2 = 6x in eq. (3)
We get b = 9/2

(43) (D). We have f (x) = 2
| x 1 |

x


 =
2

2

x 2 , x 1
x

1 x , x 1
x

  
  


Clearly, f (x) is not differentiable at x = 0 and x = 1.
So, by definition, these are two of the critical points.
For points other than these two, we have

f ' (x) =
3

2

x 2 , x 1
x

1 x , x 1
x

  
  


Clearly, f ' (x) = 0 at x = 2. So x = 2 is also a critical points.
Hence, f (x) has three critical points, viz. 0, 1 and 2.

(44) (B). 2 2
c (x 1)(x 4) (cx d) (2x 5)f (x)

(x 1) (x 4)
    


 

So, 0 = f ' (2) =
2c (2c d) d

4 4
  

 d = 0

Also, –1 = f (2) =
2c d

2



 = – c c = 1

(45) (C).
n 1

x
n

y

fdy nx y ny
dx f xx


     

Equation of tangent is   Y – y = –
ny
x

 (X – x)

Putting y = 0 then X = 0 the intercepts on axes are

A =
x(1 n)

n


, B = y (1 + n)

=
1
2

 AB =
21 (1 n)

2 n


xy =
21 (1 n)

2 n


 x
n

n
a
x

It will be constant if xn–1 = 1 i.e. n – 1 = 0 or  n = 1
(46) (C). Given curve is x3 – y2 = 0

Differentiating w.r.t. x,

2 dy3x 2y 0
dx

  
2dy 3x

dx 2y

 
  
 


4

32 3(m , m )

dy 3 m 3m
dx 22m

       

Slope of the normal =
2

3m

Slope of given line = m  22 2m m
3m 3
  

(47) (B). At any point of the curve
dy 0
dx


3x2 + 2x + 1 > 0
It is possible only when B2 – 4AC < 0
42 – 12 < 02 – 3 < 0  3 3   
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(48) (B). Given curves meet at x = 1

For first curve
x 1

x 1dy 3 3 log 3log x
dx x


 

x 1

dy 1 0 1
dx 

      

For second curve
xdy x (1 log x)

dx
     

x 1

dy 1.(1 0) 1
dx 

      

If  be the angle between these curves at x = 1, then
tan  = 0cos  = 1.

(49) (D). ey = 1 + x2 ............ (1)
Differentiating w.r.t. x,

 y dye 2x
dx
  y 2

dy 2x 2x m
dx e 1 x

 
    

or 2
2 | x || m |

1 | x |



 | m | 1

(50) (A).f ' (x) = m = ex [cos x – sin x]

x xdm e ( sin x cos x) (cos x sin x) e
dx
    

xdm 2sin xe 0
dx
   x = 0,............

2
x x

2
d m 2 [e cos x e sin x]
dx

  

2

2
x 0

d m 2 0
dx 

 
   

 
 max. at x = 0

(51) (A). D2 = z = (x – 4)2 + (y + 1/2)2

  = (x – 4)2 + (x2 + 1/2)2 [y = x2]
z = x4 + 2x2 – 8x

3dz 4x 4x 8 0
dx
    x = 1

2
2

2
d z 12x 4 0
dx
   .  Minimum at x = 1

So point is (1, 1).
(52) (C). f (x) = x3 + x + 2

f ' (x) = 3x2 + 1 > 0  xR
f (x) is increasing function

0

(0, 2)

(1, 4)

(1, 0)f (0) = 2  ;  f (1) = 4
f (x) has least value = 2

(53) (C). (A) | x2 – 1 | = | x2 – 3 |(x2 – 1) = ± (x2 – 3)

 x ( 2,1) 

(B) At point ( 2,1)

2

( 2,1)

y x 1
dy 2x
dx

dy 2 2
dx

 



    

2

( 2,1)

y (x 3)
dy 2x
dx

dy 2 2
dx

  

 

     


2 2 ( 2 2)tan

1 2 2.( 2 2)
 

 
 

1 4 2tan
7

  
    

 or 1 4 2tan
7

  
    

(54) (D). g' (x) = (f ' (tan x – 1)2 + 3)  (2 tan x – 2) sec2x
Since f '' (x) > 0f ' (x) is increasing.

f ' ((tan x – 1)2 + 3) > f ' (3) = 0  xR 0, ,
4 4 2
           

Also (tan x – 1) > 0  xR ,
4 2
  
  

So, g (x) is increasing in ,
4 2
  
  

(55) (A). 1 22 2
1 2

a ar , r
(1 r ) (1 r )
 
 

2
ax

(1 x)

  has roots r1, r2 and  (say)

1/3
1

y=f(x)

r1 r2
x

x3 – 2x2 + x – a = 0
Let f (x) = x3 – 2x2 + x – a
f ' (x) = 3x2 – 4x + 1 = (3x – 1) (x – 1)

1 4f a 0,
3 27
        f (1) = – a < 0

f (0) = – a < 0
(56) (B). f ' (x) = 3 (x – 3)2 ; f ' (x) = 0x = 3

f '' (x) = 6 (x – 3) ; f '' (3) = 0
f ''' (x) = 6,  f ''' (3) 0
Hence, f (x) neither max. nor min. at x = 3

(57) (B).f (x) = max. {(x – 1)2 + 1, | x – 1| } = (x – 1)2 + 1
f ' (x) = 2 (x – 1) = 0
x = 1[0, 3]
Greatest value of f (x) = max. { f (0). f (1), f (3)}

   = max. {2, 1, 5} = 5
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(58) ( A ) . S-1 :

2
2

2

x 5x 6, x 2
f (x) x 5x 6, 2 x 3

x 5x 6, x 3

   
     
   

2x 5, x 2
f (x) 2x 5, 2 x 3

2x 5, x 3

      
 

f ' (2–) + f ' (2+) = – 1 + 1 = 0

S-2 :
(x a) (x b), x a

f (x) (x a) (x a), a x b
(x a) (x b), x b

       
  

2x a b, x a
f (x) 2x a b, a x b

2x a b, x b

        
  

f ' (a– )  = a – b,  f ' (a+) = – a + b
f ' (a–) + f ' (a+) = 0
Statement 2 explains statement-1.

(59) (B). f (x) = x + cos x

 f ' (x) = 1 – sin x > 0  xR, except at x = 2n +
2


and f '(x) = 0 at x = 2n +
2


 f (x) is strictly increasing
 Statement 2 is true but does not explain statement-1
 Statement-2 gives f ' (x) may vanish at finite number of
points but in S-1 f ' (x) vanishes at infinite no. of points

(60) (D). g(x) x x 1  

1g (x) 0
2 x x 1( x x 1)


 

  
 x > 1

g (x) is decreasing
C + 1 > C    ;      g (C + 1) < g (C)
f (u) < f (v)  (f is increasing function)

(61) (A).
a b

sin A sin B
  or b sin A = a sin B

b cos A dA = a cos B dB

dA dB
a cos B b cos A

 
2 2

dA dB

a 1 sin B b 1 sin A


 


2 2 2 2

2 2

dA dB

b sin A a sin Ba 1 b 1
a b



 


2 2 2 2 2 2

dA dB

a b sin A b a sin B


 
(62) (D). When x = 1, y = 1, y' = 3x2 – 2x – 1y' |x = 1 = 0

equation of tangent is y = 1
Solving with the curve

x3 – x2 – x + 2 = 1 x3 – x2 – x + 1 = 0
The tangent meets the curve again at x = – 1
Statement 1 is false and statement 2 is true.

(63) (C). 2dy 3x 3
dx
 

Statement 1 : 
at (0,1)

dy 3
dx

 

Equation of tangent is y – 1 = – 3 (x – 0) i.e. y = – 3x + 1
–3x + 1 = x3 – 3x + 1x = 0
 The tangent meets the curve at 1 point only.
 statement is true.

Statement 2 : 
at (1, 1)

dy 0
dx 



 Equation of tangent is y + 1 = 0 (x – 1) i.e. y = – 1
–1 = x3 – 3x + 1x3 – 3x + 2 = 0
(x – 1) (x2 + x – 2) = 0    (x – 1)2 (x + 2) = 0
 The tangent meets the curve at 2 point.
 Statement is false.

(64) (A). h (x) = g (f (x)) and f (x) [0,)
h (x) 0 .......... (1)

 h (0) = 0 .......... (2)
h'(x) = g ' (f (x)) f ' (x) 0 .......... (3)

From eq. (1), (2) and (3)
h (x) is a constant function.

(65) (A). Suppose f (x) = 0 has a real root say x = a then
f (x) < 0 for all x < a.
Thus | f (x) | becomes strictly decreasing on (–, a) which
is contradiction.

(66) (B), (67) (D), (68) (C).

da 2 a 2t c
dt
    c = 0 {a = 0, when t = 0}

 the curve y = x2 – 2ax + a2 + a becomes
y = x2 – 4tx + 4t2 + 2t
if x = 0, then y = 4t2 + 2t

dy 2x 4t
dx
  

at x 0

dy
dx 

 = – 4t

 equation of the tangent
y – (4t2 + 2t) = – 4t (x – 0)

i.e. ,  y = –4t x + 4t2 + 2t
vertex of y = x2 – 4t x + 4t2 + 2t is (2t, 2t)

 distance of vertex from the origin = 2 2t
 rate of change of distance of vertex from origin with

respect to t = 2 2  i.e. k = 2 2  ;    c (t) = 4t2 + 2t


dc 8t 2
dt
  

at t 2 2

dc 16 2 2
dt 

 

 16 2 2    ; m (t) = – 4t
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
dm 4
dt
  

at t

dm 4
dt 

 


(69) (A). Consider a function
f (x)g(x)

x


as f (x) and x are x are differentiable hence g (x) is also
differentiable.

Now
f (a)g(a)

a
  and

f (b)g(b)
b



Since
f (a) f (b)

a b
 g (a) = g (b)

Hence Rolle’s theorem is applicable for g (x)
 some x0(a, b) where g ' (x) = 0

but 2
xf (x) f (x)g (x)

x


 ,

0 0 0
0 2

0

x f (x ) f (x )
g (x ) 0

x


 

  x0 f ' (x0) = f (x0)
(70) (B). For 0 < a 1 the line always cuts y = ax.

O
x

y

y=a , a  (0, 1)x 

For a > 1, say a = e
Consider f (x) = ex – x

O
x

y

a = 1

f ' (x) = ex – 1
f ' (x) > 0 for x > 0 and f ' (x) < 0 for x < 0
f (x) is increasing ( ) for x > 0
and decreasing ( ) for x < 0

x=0
x

II

y = ex always lies above y = x i.e. ex – x 1 for a > 1
Hence never cuts.

(71) (D). A =
2xx e

2


  ; A' =

2 2x 2 x1 [e 2x ·e ]
2
 

=
2x

2e [1 2x ]
2


  = 0    x =

1
2

 gives AAmax.

 Amax =
1 2e 1

2 2 8e




(72) (B).
dy
dx x


  0

 = k2     tan = k2

  cot



2




  = k2





2




  = cot1 k2 = sin1

1

1 4 k
(73) (C). Note the graph of  f(x) . Least value coincides with

local minima
y = (x2 + 3x) (x2 + 3x + 2) = z (z + 2)
   =   (z + 1)2 – 1 = (x2 + 3x + 1)2 – 1
yleast  = –1;  this occurs where z = – 1    i.e. x2 + 3x + 1 = 0

    or
dy
dx

=  2 (2x + 3) (x2 + 3x + 1) = 0

   x =
3 5

2
 

, 
3
2
   or

3 5
2

 

Here   x =
3 5

2
 

  &  x =
3 5

2
 

  are the points of

local minima and  x = –3/2  is the point of local maxima .
Local maximum value  =  9/16

(74) (A). Slope of the normal at (1, 1) is – 1/a
Slope of the tangent at (1, 1) is a  i.e.,

(1, 1)

dy
dx

  = a ...... (1)
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We are given that
dy
dx  y

dy
dx  = ky, where k is some constant

dy
y

 = k dx

log | y | = kx + c, where c is a constant
| y | = ekx + c

y = ± ec ekx = Aekx, where A is a constant.
Since the curve passes through (1, 1),
therefore 1 = AekA = e–k

Therefore, y = e–k . ekx = ek (x – 1)


dy
dx  = kek (x – 1)

(1, 1)

dy
dx

  = k a = k[Using (1)]

Thus, the required curve is y = ea (x – 1).
(75) (D). f(x) has a period equal to  & can take values (,)

   3 is the local minimum value.

y =
 

 
 
 

2 sin x cos x sin 2 x sin

2 sin x cos x sin 2 x sin
6 6 6

6 6 6

  


  

  

  

   =  1 +  
1

2 6 6sin sinx   

y  is minimum if  2 x +

6 =


2

    x =

6     ymin =  1 + 2 = 3  ]

(76) (C). Let f (x) = 1 + x log  2x x 1   – 21 x

f ' (x) = 1 . log  2x x 1 

+ x .
2

1

x x 1 
 × 2

x1
x 1

 
   

 –
2

x

1 x

= log  2x x 1 

 +
2

x

x 1
 –

2

x

x 1
 = log  2x x 1  .

Clearly, f’(x) 0, for x 0
f (x) is increasing for x  0
f (x)  f (0), for x 0.

1 + x log  2x x 1   – 21 x  0,

  for x 01 + x log  2x x 1   21 x ,   for x 0.

(77) (A). Let tan x = t

 f (x) = n24

n

t....t....t1
t



n n 1
n n 1

1
1 1 1t t ....... t 1

tt t





                    


1

2n 1
[Equality holds at x = /4 ]

also f (0) = 0   range of  f (x)  is
10,

2n 1
 
  

(78) (A).
dy
dx

 = 3x2 = 3t2  at 'A'

 3t2 =
3 3T t
T t



 = T2 + Tt + t2

T2 + Tt – 2t2 = 0
(T – t) (T + 2t) = 0 T = t or T = – 2t

(T = t  is not possible)

now, mA =
3t
t

 = t2 ; mB = T2

2 2
B

2 2
A

m T 4t
m t t
     (using T = – 2t)

mB = 4

(79) (C).
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Function is inc. in (– , –2)  (0 ,)
function is dec. in (–2,0)
x = –2  local maxima
x = 0  local minima
Derivable

x R   – {0,1} –

f '(0 ) 0 , f '(0 ) 4

f '(1 ) 1/ 2, f '(1 ) 3

 

 

 

  

Continuous x R  .

(80) 8. f (x) =
2 2sin x cos x7e e 2 

Let 2sin xe t t [1,e]  

eg(t) 7t 2
t

    ; 2
eg (t) 7 0
t

   no critical point

g (1) = 9 – e = minimum value
g (e) = 7e + 1 = maximum value

min max7f f 8 

(81) 5040. We have  F (x) =
3

2x (a 3) x x 13
3
    .

 For F (x) to have negative point of local minimum, the
equation F '(x) = 0 must have two distinct negative roots.
Now, F '(x) = x2 + 2 (a – 3) x + 1
Following condition(s) must be satisfied simultaneously.
(i) Discriminant > 0; (ii) Sum of roots < 0 ; (iii) Product of
roots > 0
Now, D > 0
4 (a – 3)2 > 4(a – 3)2 – 1 > 0(a – 2) (a – 4) > 0
a(–, 2)(4,) ......... (i)
Also,  – 2 (a – 3) < 0a – 3 > 0 a > 3 ......... (ii)
And product of root(s) = 1 > 0  a R
(i)(ii)(iii)a(4,) ........ (iii)
Hence sum of value(s) of a = 5 + 6 + 7 + ..... + 100 = 5040

(82) 12. F (x) =
2

1/2
3 2

2x log (k 6k 8), 2 x 1
x 3x 4x 1 , 1 x 3

       


     
Also F (x) is increasing on [–1, 3] because

F ' (x) > 0  x[–1, 3]
And F ' (x) = – 2  x[–2, –1), so F (x) is decreasing on
[–2, –1).
If F (x) has smallest value at x = – 1, then we must have

h 0
lim F( 1 h) F( 1)


   

2 + log1/2 (k2 – 6k + 8) –1
log1/2 (k2 – 6k + 8) – 3
k2 – 6k + 8 8k2 – 6k 0k [0, 6] ..... (1)
But in order to define log1/2 (k2 – 6k + 8)
We must have k2 – 6k + 8 > 0
(k – 2) (k – 4) > 0k < 2 or k > 4 ........ (2)
From (1) and (2), we get k [0, 2) (4, 6]
 Possible integer(s) in the range of k are 0, 1, 5, 6

Hence the sum of all possible positive integer(s) in the
range of k = 1 + 5 + 6 = 12

(83) 4.
O 1 2

x

y

–1

x
lim P(x)


  and
x

lim P(x)
 

 

minimum number of zeroes using IVT is 4.
Hence, R 4
The roots using lie in (–, 0) ; (0, 1) ; (1, 2) ; (2,)

(84) 4000. Given S = x2 + 4xh = 1200 and V = x2h

V(x) =
2 2x (1200 x )

4x


 ; 31V(x) (1200x x )
4
 

Put V ' (x) = 0 gives x = 20
If x = 20, h = 10
Hence, Vmax. = x2h = (400) (10) = 4000 cubic cm.

(85) 2.  2A = xy sin ; 4A2 = x2 y2 sin2  ;

f (x) =
1x2

x4


 ; f ' (x) = 0   x = 3

2

(86) 2.   A = (x2 – x1)y
y = 3x1  and y = 30 – 2x2

A (y) = 





 


3
y

2
y30

y

6A(y) = (90 – 3y – 2y)y
        = 90y – 5y2

6A' (y) = 90 – 10y = 0
 y = 9 ;    A''(y) = – 10 < 0
x1 = 3 ;   x2 = 21/2

Amax= 





  3

2
21

9 = 2
9·15

 = 2
135

(87) 10.
dv
dx  = 3x (10  x) = 0   x = 0 ;  x = 10 ;

d v
dx x

2

2
10







< 0   v  is max at  x = 10   EF = 10 cm.

(88) 40.  tan  = x/r  x = r tan 
dx/dt = r sec2  (d/dt) = r  sec2 = v sec2

where  = /8,   dx/dt = v sec2(/4) = 2 v = 40 km/hr  ;
 = 45º

(89) 33. c
dt
dr
  and h = ar + b.  Also dt

dh
 = 3 dt

dr
  (given)
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 dt
dr3

dt
dra   a = 3.  Hence  h = 3r + b

when   r = 1 ;  h = 6 6 = 3 + bb = 3
 h = 3 (r + 1)
V =  r2 h = 3 r2(r +1)

= 3 (r3 + r2)

dV
dt

 = 3 (3r2 + 2r)
dr
dt

where   r = 6 ;
dV
dt

 = 1 cc/sec

  1 = 3 (108 + 12)
dr
dt
360

dr
dt

 = 1

again  when r = 36 ,
dV
dt

 = n

n = 3 ((3.36)2 + 2.36 )
dr
dt

n = 3 . 36 (110) . 360
1

 ; n = 33

(90) 1. The maximum value of f (x) = cos x + cos ( 2x ) is 2
which occurs at x = 0.  Also, there is no value of x for
which this value will be attained again.

(91) 5. To maximise area ofAPB; we know, OP = 10 and
sin  = r/10, where  (0, /2) ...... (1)

A

x' x

y'

y

r

O
Q

B



P (6, 8)



Area =
1 (2AQ) (PQ)
2

 = AQ . PQ = (r cos ) (10 – OQ)

= (r cos ) (10 – r sin )
= 10 sin  cos  (10 – 10 sin2)  [From eq. (1)]

 A = 100 cos3 sin 


dA
d

 = 100 cos4 – 300 cos2 . sin2

Put
dA 0
d



cos2 = 3 sin2


1tan

63


    

At which
dA 0
d



, thus when
6


  , area is maximum

From eq. (1), r 10sin
6


  = 5 unit.

(92) 1. At x = 0, y = 1
log (x + y) – 2xy = 0

1 dy dy1 0
x y dx dx

    


(0,1)

dy 2y (x y) 1 dy 1
dx 1 2 (x y)x dx

 
  
 

(93) 6. g (x) =
d

dx
 (f (x) f (x))

To get the zero of g (x) we take function
h (x) = f (x) . f ' (x)

between any two roots of h(x) there lies at least one
root of h' (x) = 0
 g (x) = 0

h (x) = 0
 f (x) = 0 or f ' (x) = 0

f (x) = 0 has 4 minimum solutions
f ' (x) = 0 minimum three solution
h (x) = 0 minimum 7 solution

 h' (x) = g (x) = 0 has minimum 6 solutions.
(94) 2. Local maximum at x = – 1

and local minimum at x = 0

–3
–2      –1

1

0 2

Hence total number of local maxima and local minima
is 2.

(95) 7.  A = {x |x2 + 20 9x} = {x |x [4, 5]}

O

y

2    3 (5,7)
x

–20
–21

Now, f ' (x) = 6 (x2 – 5x + 6)
f ' (x) = 0 x = 2, 3
f (2) = – 20, f (3) = – 21, f (4) = – 16, f (5) = 7
From graph, maximum of f(x) on set A is f(5) = 7.

(96) 1. f (x) = ln{g (x)}
g (x) = ef (x)

g' (x) = ef(x) . f ' (x)
g' (x) = 0 f ' (x) = 0 as ef(x)  0

 2010 (x – 2009) (x – 2010)2 (x – 2011)3 (x – 2012)4 = 0
so there is only one point of local maxima.
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(97) 2.  (0,0)

y = f '(x)

f (x) = x4 – 4x3 + 12x2 + x – 1
f ' (x) = 4x3 – 12x2 + 24x + 1
f '' (x) = 12x2 – 24x + 24
          = 12 (x2 – 2x + 2) > 0  x R

 f ' (x) is S.I. function
Let  is a real root of the equation f ' (x) = 0

 f (x) is MD for x(–,) and M.I. for x(,)
where  < 0

 f (0) = – 1 and < 0
 f () is also negative
 f (x) = 0 has two real & distinct roots.

(98) 5. f (x) = | x | + | (x + 1) (x – 1) |

 f (x) =

2
2
2

2

x x 1 x 1
x x 1 1 x 0
x x 1 0 x 1

x x 1 x 1

   
     
    
  

–1 0 1 x

y

 f has 5 points where it attains either a local
maximum or  local minimum.

(99) 9. Let P'(x) = k (x – 1) + (x – 3) = k (x2 – 4x + 3)

 P (x) =
3

2xk 2x 3x c
3

 
   

 
P (1) = 6

4k c 6
3
  ......... (1)

P (3) = 2  c = 2 ......... (2)
By eq. (1) and (2),  k = 3

 P'(x) = 3 (x – 1) (x – 3)
 P' (0) = 9

(100) 2. Let f (x) = x2 – x sin x – cos x
 f ' (x) = 2x – x cos x

x
lim f (x)




x
lim f (x)




(0, –1)f (0) = –1
Hence 2 solutions.

EXERCISE-3
(1) (D). f (x) = 2x3 – 9ax2 + 12a2x + 1  ;  a > 0

f (x) = 6x2 – 18ax + 12a2

For maxima and minima
f ' (x) = 0
 6x2 – 18ax + 12a2 = 0
 6 (x – a) (x – 2a) = 0  x = a, 2a and f ' (x) = 12 – 8a
 6 (2x – 3a)
also f '' (a) = 6 (2a – 3a) = – 6a < 0
and f '' (2a) = 6 (4a – 3a) = 6a > 0
 f has a local maximum at a and local minimum at 2a
 p = a and q = 2a
p2 = q a2 = 2a
 a (a – 2) = 0 a = 0 or a = 2  but a > 0  a = 2

(2) (C). According to question,
21 1x x 2 2

x x
 

        x > 0

This means that minimum value of
1x
x
  is 2 and it

occurs when
1x 0
x

   i.e. when x = 1

if x < 0,
1x 2
x
  

minimum of
1x
x
  is –

or
1x as x
x
    

(3) (D).
2 2 2 2 2 2 2 2u a cos b sin a sin b cos       

2 2 2 2 2 2 2 2 2u a cos b sin a sin b cos       

+ 2 2 2 2 2 2 2 22 a cos b sin a sin b cos     

= 2 2 4 4 2 2 2 2 4 4a b 2 (a b )sin cos a b (sin cos )        

=
4 4 2 2 2 2 2 2 22 2

2 2
(a b )sin cos a b [(sin cos )a b 2

2sin cos ]
       

   

= 2 2 2 2 4 4 2 2 2 2a b 2 sin cos [a b 2a b ] a b       

2 2 2 2 2 2 2 2 2 2u a b 2 (a b ) sin cos a b      
a & b are constant
u2 will be minimum or maximum if sin2 cos2 is min.
or max. respectively but we know that

sin2 cos20

 2 2 2 2 2 2 2 2
minu a b 2 (a b ) (0) a b     

= 2 2 2 2a b 2 a b   = a2 + b2 + 2ab = (a + b)2
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We know that  A.M. G.M.


2 2

2 2sin cos sin cos
2
  

  

 2 21 sin cos
2
    2 2 1sin cos

4
  

 2 2
max

1(sin cos )
4

  

 2 2 2 2 2 2 2 2
max

1u a b 2 (a b ) a b
4

    

= 2 2 2 2 21a b 2. (a b )
2

  

= a2 + b2 + a2 + b2 = 2 (a2 + b2)

= 2 2 2 2 2
max minu u 2 (a b ) (a b)    

= a2 + b2 – 2ab = (a – b)2

(4) (B). f '' (x) = 6 (x – 1)

f (x) =
26x 6x c

2
   = 3x2 – 6x + c

f (x) represents slope of tangent
  slope of tangent at (2, 1) is

= 3 × 22 – 6 × 2 + c = c .......... (1)
Now equation of tangent at this point is y = 3x – 5
  slope of tangent = 3 .......... (2)
From (1) and (2), c = 3

Now f ' (x) = 3x2 – 6x + 3  and f (x) =
3 23x 6x 3x k

3 2
  

f (x) = y = x3 – 3x2 + 3x + k
  curve passes through (2, 1)
 1 = 23 – 3.22 + 3 × 2 + k k = – 1
 y = f (x) = x3 – 3x2 + 3x – 1 = (x – 1)3

(5) (A). x = a (1 + cos ) and y = a sin 


dx a sin
d
  


 and
dy a cos
d
 



dy dy / d a cos cot
dx dx / d a sin

 
    

  
– cot is the slope of tangent at point 
slope of normal w ill be = tan 
Now equation of normal is

y – a sin  = tan [x – a (1 + cos )]
x tan  – y = a tan (1 + cos ) – a sin 
x tan  – y = a tan 
Clearly normal passes through (a, 0).

(6) (A). Let f (x) =
3 2ax bx cx

3 2
   in [0, 1]

f (0) = 0

and f (1) =
a b c
3 2
   =

2a 3b 6c
6
 

= 0  {2a + 3b + 6c = 0 given}

 f (0) = f (1)
Clearly f (x) is continuous in [0,1] and differentiable in
(0, 1)
 By Rolle’s  theorem f ' (x) = 0 for at least one x(0, 1)
ax2 + bx + c = 0 has at lest one root in (0, 1)

(7) (B). anxn + an–1xn–1 + ...... + a1x = 0 has one root x = .
Let f (x) = anxn + an–1xn–1 + ...... + a1x = 0
f (0) = 0 and f () = 0
f (x) is polynomial of degree n
It is continuous in [0, ) and differentiable in (0, )
f ' (x) = 0 has at least one root in (0, )
nanxn–1 + (n – 1) an–1 xn–2 + ..... + a1 = 0 has at least
one root is  (0, )
one root of nanxn–1 + (n – 1) an–1xn–2 + ...... + a1= 0
less than .

(8) (BD). x = a (cos   +  sin ) and y = a (sin  –  cos )

dx
d

 = a [– sin  +  cos  + sin ] = a [ cos ] and

dy
d

= a [cos  +  sin  – cos ] = a [ sin ]


dy dy / d a sin tan
dx dx / d a cos

  
   

  
this is slope of tangent
slope of normal to the curve will be – cot 
equation of normal is

y = – a (sin  –  cos ) = – cot  [x – a (cos  +  sin )]
x cot  + y =  a cot   (cos  +  sin ) + a (sin  –  cos )

=
2cosa cos sin cos

sin

 
       

  


2x cos cosy a sin

sin sin

  
    

   
x cos  + y sin  = a (cos2 + sin2)
x cos  + y sin  = a (cos2 + sin2)
x cos  + y sin  = a .......... (1)
y = – cot x + a = tan (/2 + ) x + a
Clearly,  m = tan (/2 + )
Normal make angle /2 +  with the x-axis anddistance

of normal from origin is 2 2

0cos 0sin a a constant
cos sin

   


  

(9) (B). Let the thickness of ice is x
Now volume of sphere with ice layer is

34v (10 x)
3
  

2dv 4 dx3 (10 x)
dt 3 dt
  

50 = 4 × × 15 × 15 ×
x 5

dx
dt 

 
  

10cm x
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
x 5

dx
dt 

 
    =

1 cm / min .
18

(10) (D). If f (x) is increasing ; f ' (x) 0
Now if f (x) = x3 – 3x2 + 3x + 3
f ' (x) = 3x2 – 6x + 3  = 3 (x2 – 2x + 1) = 3 (x – 1)2

if function is increasing
f (x) 0
3 (x – 1)2 > 0  xR
If f (x) = 2x3 – 3x2 – 12x + 6
f ' (x) = 6x2 – 6x – 12 = 6 (x2 – x – 2)
If f (x) is increasing
f ' (x)  0
6 (x2 – x – 2)2 06 (x – 2) (x + 1) 0
x(–, –1][2,)
If f (x) = 3x2 – 2x + 1
f ' (x) = 6x – 2 f (x) is increasing
f (x)  06x – 2 0x 1/3
If f (x) = x3 + 6x2 + 6f' (x) = 3x2 + 12x   [f is increasing]
 f ' (x)  03x2 + 12x 0 3x (x + 4)  0
x(–, – 4][0,)

(11) (A). f (1) = – 2 and f ' (x) 2


dy
dx
2 dy 2 dx  dy 2 dx  



f (6) 6

f (1) 1
dy 2 dx 

 f (6) – f (1) 2 (6 – 1) f (6) – f (1) 10
 f (6) 10 + f (1) f (6) 10 – 2  {f (1) = – 2}
 f (6) 8

(12) (A). y = x2 – 5x + 6 ;
dy 2x 5
dx
 

At point (2, 0)  1
dym 2 2 5 1
dx
       m1 = – 1

and at (3, 0), 2
dym 2 3 5 1
dx
    

m1m2 = (–1) × 1 = – 1
 angle between the tangents at (2, 0) and (3, 0) is /2.

(13) (D).
x 2f (x)
2 x
   ; 2

1 2f (x)
2 x
 

For maxima and minima f ' (x) = 0

2
1 2f (x) 0
2 x
    2

1 2
2 x
  x2 =  4 x = ± 2

Again  f ''(x) = 3 3
2.2 40
x x
  ;  At x = 2 f '' (x) = 3

4 0
2


 Function local minima at x = 2
(14) (B). Let ABC =   and ACB = 

Angle opposite to equal sides are equal

 

–2

A

B C

x x

 BAC =  – 2

 A =
1
2

x × x sin ( – 2) = 21 x sin 2
2



Area will be maximum is sin 2 will have it maximum value
1.

A =
2x

2
(15) (A). According to mean value theorem if f (x) is continu-

ous in [a, b] and derivable in (a, b) then at least one point

c (a, b) such that f ' (c) =
f (b) f (a)

b a



Here in question f (x) = logex holds mean value theorem
on the interval [1, 3]

c[1, 3]  and f (x) = logex  f ' (x) =
1
x

 and f ' (c) =
1
c

Now,
f (3) f (1)f (c)

3 1






1 log3 log1
c 2


 

1 log 3
c


 3
e

2c 2log e
log 3
 

(16) (B). f (x) = tan–1 (sin x + cos x)

f ' (x) = 2
1 (cos x sin x)

1 (sin x cos x)
 

 

For increasing function f ' (x) > 0

 2
cos x sin x 0

1 (sin x cos x)



 

1 + (sin x + cos x)2 is always > 0  xR
 cos x – sin x > 0

= 2 cos (x / 4) 0  


xx

2 4 2
 
    

3 x
4 4
 

   ...... (1)

From given option (–/2, /4) lies in (1)

(17) (D).Let f (x) = p + q

f (x) = 2p 1 p         {p and q +ve & p2 + q2 = 1
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q = 21 p

2 2

1 pf (x) 1 2p 1
2 1 p 1 p

     
 

For maxima and minima

f ' (x) = 0
2

p1 0
1 p

 



2

p1
1 p




1 – p2 = p22p2 = 1
1p
2




p + q  = p + 21 p

=
21 1 1 1 21 2

2 2 2 2 2
 

       

(18) (D). Let f (x) = x3 – px + q
f ' (x) = 3x2 – p
For maxima and minima f ' (x) = 0

 3x2 – p = 0  x = ±
p
3

Now,  f '' (x) = 6x

at  x =
p
3

 f '' (x) > 0   {p > 0, q > 0}

 at x =
p
3

 f (x) has local minima and at

x =
p
3

  f '' (x) < 0  at x =
p
3

 f (x) has local maxima

(19) (B). P (x) = x4 + ax3 + bx2 + cx + d

–1 10

(–1,P(–1))
(1,P(1))

Now, P' (0) = 0c = 0
P (x) = x4 + ax3 + bx2 + d
Clearly P(1) is maximum but P(–1) is not minimum.

(20) ( A ) . O x

P
N

y
(r , t)2

x – y + 1 = 0

x = y2
2y

2y
  ;

1 1m 1 t
2t 2
     ;

1 1P ,
4 2
 
  

So,

1 1 1
3 3 24 2PN

82 4 2

 
  

(21) (C). Parallel to x-axis
dy 0
dx
  3

81 0
x
 

x = 2 y = 3
Equation of tangent is y – 3 = 0 (x – 2)
y – 3 = 0

(22) (C). f (x) = k – 2x      if  x –1
        = 2k + 3     if x > – 1

k–2x
2x+3

1

–1 This is true
where k = –1

f(x)  –1<lim
x— –1–>

(23) (D).
x

0
f (x) t sin t dt   ; f (x) x sin x

+ +–

0 2 5 /2
local maximum at   and local minimum at 2

(24) (B).  y – x = 1

    y2 = x  ;
dy2y 1
dx
  ;

dy 1 1
dx 2y
   ;

1y
2
  ;

1x
4


Tangent at
1 1,
4 2
 
    ;

1 1 1y x
2 2 4

    

1y x
4

   ;
1y x
4

 

Distance =

11 3 3 24
82 4 2


 

(25) (C).
3

34 4 rV r ; 4500
3 3


     ;

2dV dr4 r
dt dt

     

45 × 25 × 3 = r3 ;  r = 15m
After 49 min = (4500 – 49.72) = 972m3

972 = 34 r
3
  ; r3 = 3 × 243 = 3 × 35 ;  r = 9

72 = 4 × 9 × 9
dr
dt
 
    ;

dr 2
dt 9

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(26) (B).
1f (x) 2bx a
x
  

At x = –1,        –1 – 2b + a = 0
                         a – 2b = 1 ............ (1)

At x = 2,
1
2

 + 4b + a = 0

                       a + 4b = –
1
2

............ (2)

On solving, (1) and (2),  a = 1/2, b = –1/4
21 x 1 2 x x (x 1) (x 2)f (x)

x 2 2 2x 2x
    

    

+ +
– ––1 2– 

So maxima at x = –1, 2
(27) (D). f (x) =  2x3 + 3x + k

f '(x) = 6x2 + 3 > 0  x R
 f (x) is strictly increasing function
 f (x) = 0 has only one real root, so two roots are not

possible.

(28) (A).
dy | x | 2
dx
   ; x = ± 2 ; Points

2

0
y | t | dt 2


  

 Equation of tangent is
y – 2 = 2 (x – 2) or y + 2 = 2 (x + 2) x-intercept = ± 1.

(29) (D). Let h (f) = f (x) – 2g (x) as h (0) = h (1) = 2
Hence, using Rolle’s theorem, h '(c) = 0

 f '(c) = 2g '(c)

(30) (C). f (x) 2 x 1
x

     = 0 at x = –1 and 2.

–  – 2+ 1 = 0+ 2 = 1

4 1 0 8 2
2

         

–––––––––––––––

16 3
2

        = 2

(31) (B). Let f (x) = a0 + a1x + a2x2 + a3x3 + a4x4

Using
2x 0

f (x)lim 1 3
x

 
  
 


2x 0

f (x)lim 2
x



2 3 4

0 1 2 3 4
2x 0

a a x a x a x a x
lim 2

x

   


So, a0 = 0, a1 = 0, a2 = 2
i.e., f (x) = 2x2 + a3x3 + a4x4

Now, f ' (x) = 4x + 3a3x2 + 4a4x3 = x [4 + 3a3x + 4a4x2]
Given, f ' (1) = 0 and f ' (2) = 0

 3a3 + 4a4  + 4 = 0 ..... (i)
and 6a3 + 16a4 + 4 = 0 ..... (ii)
Solving, a4 = 1/2, a3 = –2

i.e., f (x) = 2x2 – 2x3 +
1
2

x4  i.e.,  f (2) = 0

(32) (C). Curve is x2 + 2xy – 3y2 = 0.   Differentiate wr.t. x,

dy dy2x 2 x y 6y 0
dx dx

      


(1,1)

dy 1
dx
    

So equation of normal at (1, 1) is
y – 1 = – 1 (x – 1)y = 2 – x
Solving it with the curve, we get
x2 + 2x (2 – x) – 3 (2 – x)2 = 0

 – 4x2 + 16x – 12 = 0x2 – 4x + 3 = 0  x = 1, 3
So points of intersections are (1, 1) & (3, –1) i.e. normal
cuts the curve again in fourth quadrant.

(33) (B). 4x + 2r = 2 2x + r = 1 
1 2xr 



f (x) = x2 +r2

        =
2

2
2

[1 2x]x 
  



2
2 (1 2x)x 

 


2 (1 2x) (2)f (x) 2x 0 
  


;

2 (1 2x)x 




 x = 2 – 4x 
1 rx 2 4

2
       

 x = 2 – 2 (1 – r)
 x = 2 – 2 + r x = 2r

(34) (A). 1 1 sin xf (x) tan , x 0,
1 sin x 2

          

1 1f (x) 1 sin x 1 sin x1 21 sin x 1 sin x

 
 
 

2
(1 sin x) (cos x) (1 sin x) ( cos x)

(1 sin x)

      
  

At x
6

 :

2
1 1 2 3 / 2f 16 1 11 12 2 21 21 11 12 2

 
 

                    
 

1 1 3 1 1 14 3
1 3 1/ 4 4 22 3 2 3
       


Slope of normal = –2
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Point at x
6

 ,

1 1

11
2f tan tan 316 31
2

 
       


 Equation y ( 2) x
3 6
       


2y 2x y 2x

3 3 3
  
      

(35) (D). 6y = 6 (0, 1)
y = 1
(x – 2) (x – 3) y' + (x – 3) + (x – 2) y = 1
6y' – 3 – 2 = 1  ;   y’ = 1
y'(x=0) = 1  Slope of normal = –1
(y – 1) = –x   ;    y + x = 1

(36) (A). Given  2r + r = 20 .... (i)

Area = 21 r A
2
 

From (i),
20 2r

r


 

r

r r

2
21 (20 2r) 20r 2rA r

2 r 2
 

  = 10r – r2

dA 10 2r 0
dr
    ;   r = 5  ;

2

2
d A 2 0
dr
  

r =5 will given maximum area

20 2 (5) 2 rad
5


      ; 21A (5) 2 25
2
  

(37) (B). 2yy' = 6 ;
1

6 3y
2y y
 

18x1 + 2by1y' = 0

1 1 1
2

1 1 1

18x 9x 27x
y 1

2by by by


        1
2
1

27x
b

y


y1
2 = 6x1 b = 9/2

(38) (B). Let  g (x) =
1x
x
  = t

(–1,0) (1,0)

y=g'(x)

g'(x)=1+1/x  > 02

2
1g (x) 1 0

x
  

2t R {0} ; t (0, )   

2
2

2
1 1f (x) x x 2

xx
       

2t 2 (2, )   

f (x)h (x)
g (x)
  ;

2f (x) t 2 2t
g (x) t t


  

Let 2h (t) t
t

 

2
2h (t) 1
t

  + +– –
0 22–

Local
maxima

Local
minima

Local minimum value occurs at t 2

Local minimum value
2h ( 2) 2 2 2
2

   

(39) (C).  = 3 (given) h = 3 cos  ;  r = 3 sin 

2 21V r h (9sin ) (3cos )
3 3


    


dV 20 sin
d 3
   


h

r

 = 3(given) 

Also,
2

2 2sin
3

d V
d 




 
  = negative

 Volume is maximum, when sin 2 / 3 

 max
2V sin 2 3
3

 
     

  (in cu. m)

(40) (D). Point of intersection is P(2,6).

Also, 1
P (2,6)

dym 2x 4
dx
       

2
P (2,6)

dym 2x 4
dx
     


1 2

1 2

m m 8| tan |
1 m m 15


  


(41) (A).

y

x-axis

y=x
y = x–22

(2 + t , t)2 9
4

1
2

,
O(0,0)

We have,

2P (2 t ,t)

dy dy 12y 1 1
dx dx 2t

    t = 1/2

 P (9/4, 1/2)

So, shortest distance
9 2

74 4
2 4 2


 
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(42) (A). f (x) = 9x4 + 12x3 – 36x2 + 25
f '(x) = 36x3 + 36x2 – 72x
        = 36x (x2 + x – 2)
       = 36x (x – 1) (x + 2)

+
–2 0 1

Points of minima = {–2, 1} = S1
Point of maxima = {0} = S2

(43) (B). (x) = f (x) + f (2 – x)
 '(x) = f '(x) – f '(2 –x) ......(1)
Since f ''(x) > 0

 f '(x) is increasing x (0, 2)
Case-I : When x > 2 – x x > 1

  '(x) > 0 x  (1, 2)
 f (x) is increasing on (1, 2)

Case-II : When x < 2 – xx < 1
  '(x) < 0 x (0, 1)
 (x) is decreasing on (0, 1)

(44) (A).
h = 2r sin a = 2r cos 
v =  (r cos )2 (2r sin )

h

a

r

v = 2r3cos2sin 

3 2 3dv r ( 2cos sin cos ) 0
d
       


or
1tan
2

    ;
1h 2 3 2 3
3

   

(45) (C). f (1) = 1 – 1 – 2 = –2
f (–1) = –1 – 1 + 2 = 0

f (1) f ( 1) 2 0m 1
1 1 2
   

   


dy
dx  = 3x2 – 2x – 2

 3x2 – 2x – 2 = –13x2 – 2x – 1 = 0
 (x – 1) (3x + 1) = 0x = 1, –1/3

(46) (B). y = x3 + ax – b
(1, –5) lies on the curve

 –5 =1 + a – ba – b = –6 ... (i)
Also, y' = 3x2 + a
y' (1, –5) = 3 + a (slope of tangent)
This tangent is  to –x + y + 4 = 0

 (3 + a) (1) = –1a = –4 ....(ii)
By (i) and (ii) : a = –4, b = 2

 y = x3 – 4x – 2.
(2,–2) lies on this curve.

(47) (A). f (x) = ax5 + bx4 + cx3

5 4 3

3x 0

ax bx cxlim 2 4
x

  
  

 

 2 + c = 4 c = 2
f '(x) = 5ax4 + 4bx3 + 6x2

        = x2 (5ax2 + 4bx + 6)

f '(1) = 0 5a + 4b + 6 = 0
f '(–1) = 0 5a – 4b + 6 = 0
b = 0
a = – 6/5

f (x) = 5 36 x 2x
5




f '(x) = –6x4 + 6x2

= 6x2 (–x2 +1)
= –6x2 (x + 1) (x – 1)
    –1        +        1–
–––––––––––––––––
     1–                       1
Minima at x = –1
Maxima at x = 1

(48) (A). f (x) is a polynomial function
It is continuous and differentiable in [0, 1]
Here f (0) = 11, f (1) = 1 – 4 + 8 + 11 = 16
f ' (x) = 3x2 – 8x + 8

 f ' (c) =
f (1) f (0) 16 11

1 0 1
 




=3c2 – 8c + 8

 3c2 – 8c + 3 = 0

8 2 7 4 7C
6 3
 

   ;
4 7c (0,1)

3


 

(49) (A). f (3) = f (4) = 12
2

2
x 12f (x)

x (x 12)





 f '(c) = 0 c 12

 f "(c) = 1 / 12
(50) (D).  f ' (x) = x ( – cos–1 (sin | x |))

1x sin (sin | x |)
2

          
x | x |

2
    

x x x 0
2

f (x)

x x x 0
2

       
      

;

2x x 0
2

f (x)

2x x 0
2

   
  

f '(x) is increasing in (0, /2) and decreasing in (–/2, 0)
(51) 4. P  (x1, y1)

2yy' – 6x + y' = 0 1

1

6xy
1 2y



1 1

1 1

3 y 1 2y2
x 6x

             

9 – 6y1 = 1 + 2y1 y1 = 1 x1 = ± 2
 Slope of tangent = ±12 / 3 = ± 4 | n | = 4

(52) 3.00.
Let f (x) = ax3 + bx2 + cx + d

1a
4


35d
4


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3b
4



9c
4



f (x) = a (x3 – 3x2 – 9x) + d

f ' (x) =
3
4 (x2 – 2x – 3)

 f ' (x) = 0 x = 3, –1

–1      3
+     –

Local minima exist at x = 3
(53) (C). Let thickness of ice be 'h'.

Volume of ice, 3 34v ((10 h) 10 )
3


  

2dv 4 dh(3 (10 h) )
dt 3 dt


  

Given
dv
dt  = 50cm3 / min and h = 5cm

 24 dh50 (3 (10 h) )
3 dt


  

 2
dh 50 1 cm / min
dt 184 15
 

 

(54) (A). F'(x) = x2 g (x) = x2
x

1
f (u) du F'(1) = 0

F"(x) = x2 f (x) – 2x
x

1
f (u) du

F"(1) = 1. f (1) – 2 × 0 = 3
F'(1) = 0 and F"(1) = 3 > 0 So, Minima
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