

MONOHALIDES OR MONOHALOALKANE

On the basis of position of Halogen atom monohalides classified into

(a) Primary halide or 1° alkyl halide : Halogen atom attached with Primary c-atom. Ex. $R - CH_2 - X$ CH_3X halomethane or methyl halide

CH₃CH₂X haloethane or ethyl halide

(b) Secondary halide or 2° alkyl halide : Halogen atom

attached with secondary c-atom. Ex. $R \sim CH - X$

 $CH_3 - CH - CH_3$ 2-halo propane or isopropyl halide

 $CH_3 - CH - CH_2 - CH_3$

2-halobutane or secondary butyl halide

(c) Tertiary halide or 3° alkyl halide : Halogen atom attached with t-c atom

Ex.
$$R - C - X$$
 Tertiary alkyl halide

PREPARATION OF MONOHALIDES

(a) From alkane (Halogenation) :

 $R-H+X-X \longrightarrow R-X + H-X$ Alkane
Monohaloalkane

The reactivity of the alkanes follows the following order : Tertiary alkane > Secondary alkane > Primary alkane

(b) From alkene (Hydrohalogenation) : According to markownikoff's rule

$$\begin{array}{ccc} H & H \\ R - C = C \\ - H + H - X \\ - H \\ - H$$

* The addition of halogen acid is electrophilic addition.

* Addition of HBr to unsymmetrical alkene in the presence of organic peroxide violates Markownikov's rule. This is called Kharasch effect or peroxide effect.

$$CH_{3} - CH = CH_{2} + HBr \xrightarrow[(C_{6}H_{5}CO)_{2}O_{2}]{} CH_{3}CH_{2}CH_{2}Br$$
Propylene
(Propene)
$$(1-Bromopropane)$$

- * Addition of HCl or HI does not show peroxide effect.
 - From alkyne we can obtain only di haloalkane.
- (c) From alcohol :
 - (i) By action of dry H X (Grove's Process) :

$$R-OH + H-X \xrightarrow{Anhydrous ZnCl_2} R-X + H_2O$$

Alcohol

The reactivity order of HX in the above reaction is. HI>HBr>HCl>HF

The reactivity order of alcohols in the above reaction is $3^{\circ} > 2^{\circ} > 1^{\circ} > MeOH$

$$\begin{array}{c} R & OH \\ R & OH \\ R & OH \end{array} + P \begin{array}{c} Cl \\ Cl \\ Cl \\ Cl \\ Chloro alkane \end{array} + H_3PO_3 \\ Phosphorous acid \\ Alcohol \end{array}$$

(iii) Action of PCl₅:

$$\begin{array}{c|c} R & Cl \\ \hline O + \\ \hline H & Cl \end{array} P \xleftarrow{Cl} Cl \\ \hline Cl \\ Cl \\ \hline Cl \\ Cl \\ \hline Chloro alkane \end{array} R - Cl + HCl + POCl_3$$

Alcohol

Bromine or Iodine derivatives can not be obtained from the above reaction because due to larger size of bromine or iodine, PBr_5 or PI_5 are unstable.

(iv) Action of Thionyl chloride (Darzen's Process) : It is the best method for preparation of alkyl halide.

$$R \qquad Cl \qquad S = O \qquad Pyridine \qquad 2RCl + SO_2 \uparrow$$

$$R \qquad Cl \qquad Thionyl Chloride \qquad Fither \qquad Thionyl Chloride \qquad Cl \qquad S = O \qquad Pyridine \qquad Cl \qquad S = O \qquad Pyridine \qquad S = O \qquad Pyridine \qquad S = O \qquad Pyridine \qquad S = O = O = O \qquad S = O = O = O = O = O = O$$

(v) Alkyl bromides can be prepared by heating alcohol with potassium bromide or sodium bromide and concentrated sulphuric acid.

$$\begin{array}{cc} C_2H_5OH + KBr + H_2SO_4 \rightarrow & C_2H_5Br + KHSO_4 + H_2O \\ Ethyl alcohol \\ (Ethanol) & (Bromoethane) \end{array}$$

$$C_2H_5OH + HBr \xrightarrow{H_2SO_4} C_2H_5Br + H_2O$$

Ethyl alcohol Ethyl bromide

Note : Concentrated sulphuric acid should not be used in the preparation of alkyl bromides from 2°, 3° & neo alcohols as these undergo dehydration to form alkenes. For example,

$$\begin{array}{c} CH_{3} & CH_{3} & CH_{3} \\ CH_{3} - \overset{I}{C} - CH_{2}OH + HBr \xrightarrow{H_{2}SO_{4}} & CH_{3} - \overset{I}{C} = CH - CH_{3} + CH_{3} - \overset{I}{C} - CH_{2}Br \\ \overset{(Major)}{(A \text{ rearranged product)}} & \overset{I}{CH_{3}} \end{array}$$

(d) From silver salt of carboxylic acid ('Borodiene-Hunsdiecker'):

(i) A good method for obtaining alkyl halide, but from this reaction we obtain only bromo derivatives because reaction is based upon free radical mechanism.

$$\begin{array}{c} R-C -O-Ag+Br-Br \xrightarrow{CCl_4} R-Br+CO_2 \uparrow +AgBr \downarrow \\ \parallel \\ O \end{array}$$

- (ii) It is also an example of decarboxylation.
- (iii) In the above reaction the reactivity of alkyl group is $1^{\circ} > 2^{\circ} > 3^{\circ}$

(e) From alkyl halide

(i) With NaI (Finkelstein Reaction'):

$$R-Cl + NaI \xrightarrow{Acetone} R-I (Iodoalkane) + NaCl$$

(ii) With AgF, (Swart Reaction) :

 $C_2H_5Cl + AgF \longrightarrow C_2H_5F$ (Floroethane) + AgCl In these reaction only halogen exchange takes place.

(f) By reaction of alkane with sulphuryl chloride :

$$R-H+SO_2Cl_2 \xrightarrow[]{light \&} R-Cl+HCl+SO_2$$

PHYSICAL PROPERTIES

- (i) Alkyl halides are colourless with sweet smell or pleasant oily liquid, where as CH₃F, CH₃Cl, CH₃ CH₂ F, CH₃ CH₂ Cl are gaseous in nature.
- (ii) Alkyl halides having 18-carbon or more than it are solid in nature.
- (iii) These are completely soluble in organic solvents but insoluble in H_2O
- (iv) Reactivity order is RI > RBr > RCl > RF
- (v) For same halide group reactivity order is 3° (halide) > 2° (halide) > 1° (halide)
- (vi) Polarity order is RF > RCl > RBr > RI
- (vii) M.P & B.P. ∝ molecular weight. For same alkyl group the order of B.P. is : RI>RBr > RCl > RF For isomeric alkyl halide order of boiling point Primary > Secondary > Tertiary
- (viii) Fluorides and chlorides are lighter than water whereas bromides and iodides are heavier than H_2O due to more density of bromine than oxygen. $CH_2 I_2$ is heavier liquid after Hg.

CHEMICAL PROPERTIES

Nucleophilic substitution reaction :

Main reaction of alkyl halides are nucleophilic substitution reaction. These are of two types–

(1) $S_N 1$ Reactions (Nucleophilic Unimolecular Substitution Reactions) : These reaction completes in two step. In first step a carbocation is formed from alkyl halide molecule. First step is slow step so it is also rate determining step. In second step an attacking nucleophile attacks on this carbocation and form a final product. In this reaction rate of reaction is dependent on the concentration of alkyl halide molecule only, not on the concentration of nucleophile. So the reaction is called as unimolecular substitution reaction. Molecularity of reaction is two but the order of reaction is one. All tertiary halides and sometimes secondary halides show this type of reaction. Polar medium is necessary for the reaction. Example :

tertiary Butylhalide tertiary Butylalcohol Rate of reaction $\propto [(CH_3)_3C - X]$

- * Relative reactivities of alkyl halides in an $S_N 1$ reaction 3° alkyl halide > 2° alkyl halide > 1° alkyl halide
- Relative reactivities of alkyl halides in an S_N1 reaction RI>RBr>RCl>RF

Carbocation rearrangements :

* A carbocation intermediate is formed in an S_N1 reaction.

Carbocation will rearrange if it becomes more stable in the process. If the carbocation formed in an S_N1 reaction can rearrange, S_N1 and S_N2 reactions of the same alkyl halide can produce different constitutional isomers as products, since a carbocation is not formed in an S_N2 reaction and therefore the carbon skeleton cannot rearrange. For example, the product obtained when HO⁻ is substituted for Br⁻ in 2-bromo-3- methylbutane by an S_N1 reaction. When the reaction is carried out under conditions that favour an S_N1 reaction, the initially formed secondary carbocation undergoes a **1,2-hydride shift** to form a more stable tertiary carbocation.

The product obtained from the reaction of 3-bromo-2,2dimethylbutane with a nucleophile also depends on the conditions under which the reaction is carried out. The carbocation formed under conditions that favour an S_N^1 reaction will undergo a **1,2-methyl shift**. Because a carbocation is not formed under conditions that favour an S_N^2 reaction, the carbon skeleton does not rearrange.

*

$$\xrightarrow{H_2O} CH_3 \xrightarrow{CH_3} CH_3 \xrightarrow{H_2O} CH_3 \xrightarrow{H_2O} CH_3C \xrightarrow{H_2O} CH_3C \xrightarrow{H_2O} CH_3C \xrightarrow{H_3O^+} CHCH_3 + H_3O^+ \xrightarrow{H_2O} OH CH_3 \xrightarrow{H_3O^+} OH CH_3 \xrightarrow{H_3O^+} OH CH_3 \xrightarrow{H_3O^+} OH CH_3$$

(2) S_N2 Reactions (Nucleophilic Bimolecular Substitution **Reactions)**: These reaction completes in single step. In these reactions an attacking nucleophile attacks from back side of the central carbon atom of alkyl halide. This back side attack is called as 'Walden Inversion'. When nucleophile attacks on central atom then a transition state is formed in which attacking nucleophile and halogen atom both are linked with half bond with central atom. This stage is unstable stage, after sometime halogen atom attract bonded electrons towards itself and releases in the form of halide ion while attacking nucleophile forms complete bond with central carbon. In this reaction, bond breaking and bond forming process both can take place simultaneously and rate of reaction is dependent on the concentration of alkyl halide and concentration of attacking nucleophile both. So the reaction is called as biomolecular substitution reaction. Molecularity of reaction is two and the order of reaction is also two. In this reaction product is 100% opposite rotatory than reagent. Polar medium is not necessary for this type of reaction. All primary halides and sometimes 2° halide shows this type or reaction.

Example:
$$CH_3 - X + K - OH \longrightarrow CH_3 - OH + KX$$

$$H \xrightarrow{H} C^{\delta^{+}} X^{\delta^{-}} + OH^{-} \longrightarrow \begin{bmatrix} H \\ HO^{-} - \cdots \\ H \\ H \\ H \end{bmatrix}$$

$$H^{\Theta} \xrightarrow{I} H$$

$$H^{\Theta} \xrightarrow{I} H$$

$$H^{\Theta} \xrightarrow{I} H$$

$$H^{\Theta} \xrightarrow{I} H$$

$$\rightarrow$$
HO $-C \xrightarrow{H}_{H} + X^{-}$

Rate of reaction \propto [CH₃ X] [OH⁻]

* Relative reactivities of alkyl halides in an S_N^2 reaction methyl halide > 1° alkyl halide > 2° alkyl halide > 3° alkyl halide

* Relative reactivities of alkyl halides in an S_N^2 reaction RI > RBr > RCl > RF

(A) Nucleophilic substitution reaction (
$$SN^1$$
):

- (i) Hydrolysis :
 - (a) With aqueous KOH : Alkyl halide are hydrolysed to corresponding alcohols by boiling with aqueous alkali solution. $R-X+K-OH \rightarrow R-OH (Alcohol)+K-X$
 - (b) Using moist Ag_2O : 2R-X+Ag₂O+H₂O \rightarrow 2R-OH (Alcohol) + 2AgX

(a) Reaction with NaOR :

 $R-X + NaOR \rightarrow R-O-R$ (Ether) + NaX Above reaction is called "Williamson's ether synthesis". (b) Using dry Ag₂O : $2R-X + Ag_2O \rightarrow R-O-R + 2AgX$

Ether

(iii) Reaction with Na₂S:

$$\begin{array}{c} R \longrightarrow \\ R \longrightarrow \\$$

- (iv) Reaction with KSH: dialkyl sulphide $R-X+K-SH \rightarrow R-SH + KX$ Alkane thiol
- (v) Reaction with KCN: $R-X+KCN \rightarrow R-C=N + KX$ Alkane nitrile is an important compound which gives

following products.

(a)
$$R-C \equiv N \xrightarrow{\text{LiAlH}_4/\text{Reduction}} R-CH_2-NH_2$$

Alkane amine

(b)
$$R-C \equiv N \xrightarrow{H_2O}_{\text{partial hydrolysis}} \begin{array}{c} R-C-NH_2 \\ \parallel \\ O \end{array}$$
 Alkane amide

(c)
$$R - C \equiv N \xrightarrow{H_3O^+}_{Complete hydrolysis} \begin{array}{c} R - C - O - H \\ \parallel \\ O \end{array} + NH_3$$

(vi) Reaction with AgCN:

$$R-X+AgCN \longrightarrow R-N \stackrel{\rightarrow}{=} C + AgX$$

Alkane isocynide

$$R-N \stackrel{\rightarrow}{=} C \xrightarrow{Hydrolysis} R-NH_2(Alkane amine) + HCOOH$$

$$R-N \stackrel{\rightarrow}{=} C \xrightarrow{Reduction} \begin{array}{c} H \\ | \\ R-N-CH_3 \\ secondary amine \end{array}$$

(vii) Reaction with KNO₂:

$$R-X + K - O - N = O \longrightarrow R - O - N = O + KX$$

alkyl nitrite

(viii) Reaction with AgNO2:

$$R-X+Ag-O-N=O \longrightarrow R-N \swarrow_O^O + AgX$$

nitro alkane

- (ix) Reaction with Na₂SO₃: $R-X + Na_2SO_3 \rightarrow RSO_3Na + NaX$ alkyl sodium sulphonate
- (x) Reaction with silver acetate (Esterification) :

$$R - X + Ag - O - C - CH_3 \rightarrow CH_3 - C - O - R + AgX$$
$$\parallel O O O$$

(xi) Reaction with benzene 'Friedel-craft reaction':

$$H + X - R \xrightarrow{AlCl_3} R + H - X$$

Alkyl benzene

Alkyl halide shows electrophilic substitution in the above reaction, which is exception in alkyl halide.

- **(B)** Elimination Reaction :
 - (i) With alcoholic KOH : (Dehydrohalogenation) Alkyl β -elimination on treatment with alcohol with KOH takes place and alkenes are formed. $R - CH_2 - CH_2 - X + KOH (alc.) \rightarrow R - CH = CH_2$

 $R - CH_2 - CH_2 - X \xrightarrow{300^{\circ}C} R - CH = CH_2 + HX$ Alkene

The decomposition follows the following order : Iodide > Bromide > chloride (when alkyl group is same) and Tertiary > Secondary > Primary (when same halogen is present)

- (C) Reduction : Haloalkanes on reduction produces alkanes frequently. $R-X+2H \rightarrow R-H$ (Alkane)+HX Reduction is done as follows.
- (i) By nascent hydrogen liberated from Na/C₂H₅OH or Sn/ HCl or Zn/HCl or Zn-Cu couple/C₂H₅OH etc. $R - X + 2H \rightarrow R - H (Alkane) + HX$
- (ii) By hydride ion $[H^{\Theta}]$ liberated from LiAlH₄ or NaBH₄. It is completed by nucleophilic substitution reaction.

 $R - X + : H^{\Theta} \rightarrow R - H (Alkane) + : X^{\Theta}$

(iii) By catalytic hydrogenation of haloalkane.

 $R - X + H_2 \xrightarrow{catalyst Pd} R - H + HX$

(iv) By reduction of RI with HI in presence of red P.

 $R-I+HI \xrightarrow{red P/150^{\circ}C} R-H+I_2$

- **(D) Reaction with metals :** Organometallic compounds are formed.
- (i) With Na: (Wurtz reaction)

$$R - X + 2Na + X - R \xrightarrow{dry \text{ ether}} R - R (Alkane) + 2NaX$$
(ii) With Mg : (Grignard reaction)

$$R - X + Mg \xrightarrow{dry \text{ ether}} R - Mg - X$$

Grignard reagent

(iii) With Zn dust : (Frankland reaction)

$$\mathbf{R} + \mathbf{X} + 2\mathbf{Zn} + \mathbf{X} + \mathbf{R} \rightarrow \mathbf{R} - \mathbf{Zn} - \mathbf{R} \text{ (dialkyl zinc)} + \mathbf{Zn}\mathbf{X}_2$$

Dialkyl zinc is known as 'Frankland - Reagent'.

(iv) With Li: (Corey-House reaction)

 $R-Cl+2Li \xrightarrow{dry ether} RLi (Alkyl lithium) + LiCl$

Note: Isopropyl lithium is more reactive than grignard reagent.

(v) With Na-lead alloy :

(E)

$$\begin{array}{c} 4\text{CH}_{3}-\text{CH}_{2}+4\text{Na}-\text{Pb} \rightarrow & (\text{CH}_{3}-\text{CH}_{2})_{4}\text{Pb}+4\text{NaCl}+3\text{Pb} \\ & \text{TEL} \\ \text{Cl} & (\text{tetra ethyl lead}) \end{array}$$

Tetra ethyl lead is used as antiknocking agent with gasoline.

Rearrangement on heating (Isomerization) When heated at 570 K in the presence of anhydrous aluminium chloride as a catalyst, alkyl halides undergo molecular rearrangement to form an isomeric haloalkanes.

Br sec-butyl bromide (2-Bromobutane) Note:

* *

- The order of elimination reactions is $3^\circ > 2^\circ > 1^\circ$.
- During elimination reactions Saytzeff rule must be taken into consideration. e.g.,

$$CH_3 - CH_2 - CH - CH_3 \xrightarrow{alc. KOH} STR_1$$

 $CH_3 - CH = CH - CH_3 + CH_3 - CH_2 - CH = CH_2$ 2-butene (major) But-1-ene (minor)

It is explained on the basis of stability of alkene formed (Saytzeff's rule).

As per Saytzeff's rule, during elimination the most preferred alkene is that which is most alkylated.

 $R_2C = CR_2 > R_2C = CHR > RCH = CHR$ or $R_2C = CH_2 > RCH = CH_2 > CH_2 = CH_2$ Larger the number of alkyl groups attached to the doubly bonded carbon atoms more will be the stability and hence more will be the ease of its formation.

USES:

- (a) As alkylation agent (Wurtz reaction)
- **(b)** As synthetic reagent
- (c) Lower members used as anaesthetic agent, refrigerant or solvent.

DIHALIDES OR DIHALOALKANES

 $\begin{array}{ll} \mbox{Gen. formula C_nH_{2n}X_2} \\ \mbox{Two H-atom of alkanes, replaced by two halogen atoms to} \\ \mbox{form dihalides.} & \mbox{Dihalides are classified as :} \end{array}$

 (a) Gem dihalide or Alkylidene halide : These are the halides in which two identical halogen atoms are attached on same carbon. Ex. CH₃CHX₂ ethylidene dihalide (1, 1-dihalo ethane)

(b) Vicinal dihalide or Alkylene halides :

In these halides two identical halogen atoms are attatched on adjacent carbon atoms.

ц

$$\mathbf{Ex.} \begin{array}{c} \mathbf{CH}_2 - \mathbf{CH}_2 \\ \mathbf{K}_X \\ \mathbf{X}_X \\ \mathbf{X}_X \end{array} \qquad \begin{array}{c} \mathbf{H}_1 \\ \mathbf{H}_2 - \mathbf{C}_1 - \mathbf{C}_1 \\ \mathbf{H}_2 \\ \mathbf{H}_2 \\ \mathbf{X}_X \\ \mathbf{H}_X \\ \mathbf{X}_X \end{array}$$

Ethylene dihalide Propylene dihalide

(c) α, ω dihalides : Halogen atoms are attached with terminal C-atom. They are separated by 3 or more C-atom. They are also known as polymethylene halides.

Ex.
$$\begin{bmatrix} X & X \\ | & | \\ CH_2 - CH_2 - CH_2 - CH_2 \end{bmatrix}$$

(1,4-dichlorobutane) Tetramethylene dichlorides

PREPARATION OF DIHALIDE

(a) Gem dihalides :

(i) From alkyne (By hydrohalogenation) : Addition of halogen acid to alkynes.

v

194

Ex. $CH \equiv CH + HBr \longrightarrow CH_2 = CHBr \xrightarrow{HBr} CH_3 CHBr_2$ Vinyl bromide 1, 1-Dibromo ethane $CH_3 - C \equiv CH + HBr \rightarrow CH_3 - \stackrel{C}{_} = CH_2 \xrightarrow{HBr} CH_3 - \stackrel{C}{_} - \stackrel{C}{_} - \stackrel{C}{_} CH_3$

Propyne

(ii) From carbonyl compounds :

By action of phosphorous pentachloride on aldehyde and ketones.

$$R \xrightarrow{Cl} C = O+ Cl \xrightarrow{P} Cl \xrightarrow{Cl} R \xrightarrow{Cl} + POCl_3$$

Aldehyde

(terminal gem dihalide)

2, 2-Dibromo propane

$$\mathbf{Ex.} \ \mathbf{CH}_{3} - \mathbf{C} - \mathbf{H} + \mathbf{PCl}_{5} \longrightarrow \begin{array}{c} \mathbf{Cl} \\ \mathbf{CH}_{3} - \mathbf{C} - \mathbf{H} + \mathbf{POCl}_{3} \\ \mathbf{Cl} \end{array}$$

Acetaldehyde Ethylidene chloride (b) Vicinal dihalides :

(i) From alkene (By halogenation) : Addition of halogens to alkene.

$$\begin{array}{c} \text{R-CH=CH}_2 + \text{Cl}_2 \longrightarrow \text{R-CH} - \text{CH}_2 \\ \begin{array}{c} 1 \\ \text{Cl} \end{array} \begin{array}{c} 1 \\ 1 \\ 1 \end{array} \end{array}$$

Alkene

CHEMICAL PROPERTIES

The important chemical properties of dihalides are given below in comparative form.

Alkylene chloride

	Property	Alkylidene halides (Gem dihalide)	Alkylene halides (Vicinal dihalide)
1	Hydrolysis (with aq. KOH)	Form aldehydes or ketones, $H \rightarrow CH_3C \leftarrow OH \rightarrow H_2O \rightarrow CH_3C \leftarrow OH \rightarrow CH_3C \leftarrow OH \rightarrow CH_3C \leftarrow OH \rightarrow CH_3C \rightarrow CH_3C = O$ $Unstable \rightarrow CH_3 \rightarrow CH_$	Form glycols, $\begin{array}{c} CH_2Cl \\ CH_2Cl \\ CH_2Cl \\ Ethylene \\ Chloride \end{array}$ $\begin{array}{c} CH_2OH \\ CH_2OH$
2	Reaction with alcoholic KOH (Dehydrohalog enation)	Form alkynes, $CH_3 CHCl_2 \xrightarrow{KOH} CH \equiv CH$ Acetylene	Form alkynes, $ \begin{array}{c} $
3	Reaction with Zn dust in methanol	Form alkenes, $CH_3 CHCl_2 + Zn \xrightarrow{CH_3 OH} CH_3 CH = CH CH_3$ 2-Butene	Form alkenes, $ \begin{array}{c} CH_2Cl \\ \\ CH_2Cl \\ CH_2Cl \end{array} \xrightarrow{CH_3OH} H^2_{CH_2} \\ CH_2_{CH_2Cl} \\ Ethylene \end{array} $

1, 2-dibromo propane

(ii) From vicinal glycol : By the action of phosphorous pentahalide on glycol.

$$\begin{array}{cccc} R-CH-OH &+ \ PCl_5 &\longrightarrow R-CH-Cl &+ \ 2HCl+2POCl_3 \\ & & & \\ CH_2-OH & PCl_5 & CH_2-Cl \\ & Alkylene \ glycol & Alkylene \ chloride \\ \hline \mathbf{Ex.} & \begin{array}{c} CH_2OH & CH_2-Cl \\ CH_2OH &+ \ 2PCl_5 &\longrightarrow \begin{array}{c} CH_2-Cl \\ CH_2-Cl &+ \ 2POCl_3+2HCl \\ CH_2-Cl &+ \ 2POCl_3+2HCl \\ \hline \end{array}$$

(c) $\alpha - \omega$ dihalides : $CH_2 = CH - CH_2Br + HBr \longrightarrow Br - CH_2 - CH_2 - CH_2Br$ 1, 3-dibromo propane

PHYSICAL PROPERTIES

- (i) Dihalides of lower alkane are colourless with sweet smelling liquids but higher homologues are solids
- (ii) Insoluble in water but soluble in organic solvent.
- (iii) Melting point and boiling points are directly proportional to molecular mass but boiling point of vicinal dihalides are more than gem dihalides. Also, reactivity of vicinal dihalide is more than gemdihalide, but these are less reactive than monohalide.

TRIHALIDES OR TRIHALOALKANES:

Gen formula $C_n H_{2n-1} X_3$

Three H-atom of alkane replaced by three halogen atoms. Trihalogen of methane are also known as haloform Chloroform, bromoform, Iodoform CHI3 CHCl₂ CHBr₂

Colourless liquid Colourless Yellow solid

PREPARATIONS OF CHCl₃

Haloform Reaction : (i)

If any compound contains $CH_3 - C - H$ or $CH_3 - C - R$ Ο

group, (or may be oxidises in this group). When reacts with halogen and conc. alkali, trihalides are produced. Reaction is called as haloform reaction.

(a) $CaOCl_2 + H_2O \longrightarrow Ca(OH)_2 + 2Cl^{\bullet}$ **Bleaching Powder**

(b)
$$CH_3 - CH_2 - OH + 2Cl^{\bullet} \longrightarrow CH_3 - C - H + 2H - Cl$$

Ethyl alcohol

Acetaldihyde

(c)
$$CH_3 - C - H + 6Cl^{\bullet} \longrightarrow CCl_3 - C - H + 3HCl$$

 $\parallel \\ O \qquad O$

chloral

(d)
$$2CCl_3 - C - H + Ca(OH)_2$$

 $\downarrow 0$
 $\xrightarrow{Hydrolysis} 2CHCl_3 + (HCOO)_2Ca$
Chloroform

From acetone :

(a)
$$CH_3COCH_3 + 6Cl^* \rightarrow CCl_3COCH_3 + 3HCl$$

Acetone Trichloro acetone

(b)
$$\begin{array}{c} CH_{3}CO \overline{CCI_{3}} \xrightarrow{H} - O \\ + \\ CH_{3}CO \overline{CCI_{3}} \xrightarrow{H} - O \end{array} \xrightarrow{Ca} \xrightarrow{Hydrolysis} 2CHCl_{3} + (CH_{3}COO)_{2}Ca \end{array}$$

Chloroform

(ii) Preparation of pure Chloroform : Alkaline solution of chlorohydrate is used in the formation of chloroform. Which on distillation gives pure chloroform:

Cl OH

$$H^{-}C^{-}C^{-}H$$
 \xrightarrow{NaOH} CHCl₃ + HCOONa + H₂O
Cl OH
chloral hydrate

(iii) From carbon tetra chloride (Pyrene) :

Reduction process

Cl-

$$CCl_{4} + 2H \xrightarrow{Fe/HCl reduction} CHCl_{3} + HCl$$

If reducing agent is $Fe + H_2O$ then complete reduction occurs and product becomes alkane.

(iv) From Methane:

$$CH_4 + Cl_2 \xrightarrow{hv} CH_3Cl \xrightarrow{hv} CH_2Cl_2 \xrightarrow{hv} CHCl_3$$

PHYSICAL PROPERTIES

- Chloroform is colourless with sweet smelling, liquid. (i)
- (ii) Inslouble in water and soluble in organic solvent.
- (iii) Vapours of chloroform are poisonous in nature. It cause temporary unconsciousness, so used as an anasthetic agent.
- (iv) Boiling point of CHCl₃ is 61°C.
- (v) It is best solvent for fats, oil and wax.
- (vi) Iodoform is yellow crystalline solid. It has melting point 119°C.

CHEMICAL PROPERTIES

1. **Oxidation :** In presence of light it forms poisonous gas phosgene with atmospheric oxygen or with air.

$$\begin{array}{c} \text{CHCl}_3 + 1/2 \text{ O}_2 \xrightarrow{\text{light}} \text{Cl} - \text{C} - \text{Cl} + \text{HCl} \\ \| \\ \text{O} \\ \text{Chloroform} \\ \end{array}$$

Chloroform

Precautions:

- (i) It is kept into dark room in coloured bottle filling completely.
- (ii) For removal of phosgene we can used 1% ethanol solution which converts poisonous phosgene into non-poisonous salt diethyl carbonate.

$$0 = C < C_{1} + H = 0 - C_{2}H_{5} + 0 = C < C_{1} + H = 0 - C_{2}H_{5} + C_{1} + 0 - C_{2}H_{5}$$

Phosgen Ethyl alcohol

diethyl carbonate (Non-poisonous substance) Note : We use silver nitrate solution to check the impurity of phosgene in solution which will form white ppt. of AgCl with HCl.

3. Reaction with Alcoholic KOH :

Sodium formate

5. Reaction with Acetone :

4.

Chloretone is used as a hypnotic agent

6. Reaction with silver powder (Dehalogenation) :

$$CHX_3 + 6Ag + X_3CH \xrightarrow{high temp.} CH = CH + 6AgX$$

Acetylene **Reaction with Primary amine :**

 $\stackrel{\bullet\bullet}{R \, \mathrm{NH}_2} + \mathrm{CHCl}_3 + \mathrm{KOH}(\mathrm{alc.}) \longrightarrow \mathrm{R-N} \stackrel{\rightarrow}{=} \mathrm{C} + \mathrm{KCl}$

$$+H_{2}O$$

7.

Alkane amine Alkane isocynide The reaction is called as "Hoffman–carbylamine Reaction" or "Isocyanide–test". These isocyanides (product) has offensive smell. So, the reaction is used to test 1° amine. Reacting species of reaction is dichloro carbene.

8. Reaction with Phenol:

The reaction is called as "Reimer-tiemann Formylation'.

9. Reaction with 2–Butene :

2-butene

$$\xrightarrow{\text{3NaOH}} \xrightarrow{\text{CH}_3 - \text{CH}_2} \xrightarrow{\text{CH}_2 - \text{CH}_2} \xrightarrow{\text{OH}} \xrightarrow{\text{CH}_3 - \text{CH}_2} \xrightarrow{\text{CH}_3 - \text{CH}_2} \xrightarrow{\text{CH}_2 - \text{CH}_2} \xrightarrow{\text{CH}_3 - \text{CH}_2} \xrightarrow{\text{CH}_2 - \text{CH}_2} \xrightarrow{\text{CH}_3 - \text{CH}_3 - \text{CH}_3 - \xrightarrow{\text{CH}_3 - \text{CH}_3 - \text{CH}_3 - \xrightarrow{\text{CH}_3 - \text{CH}_3 - \xrightarrow{\text{CH}_3 - \text{CH}_3 - \xrightarrow{\text{CH}_3 - \xrightarrow{\text{CH}$$

2-methyl butanoic acid

USES

- 1. As an anaesthetic agent. (CHCl₃. Chloroform) and CHI₃ as antiseptic.
- 2. CHCl₃ as solvent for fat, waxes, rubber etc.
- **3.** In preparation of chloroitone (drug, a hypnotic agent) and nitrochloroform (an insecticide, tear gas)
- 4. CHCl₃ as an preservative for antomical specimen.
- 5. As lab. reagent to identity pr. amine and other analytical test.

TETRA HALIDE OR TETRAHALOALKANE $(C_nH_{2n-2}X_4)$ Obtained by the replacement of 4-H atoms of an alkane by

four C-atom. Ex. CCl₄ [Carbon Tetrachloride (pyrene)]

PREPARATIONS

(i) From Methane (CH_4) : Chlorination of methane with excess of chlorine at 400° C yields impure CCl_4 .

$$CH_4 + Cl_2 \longrightarrow CH_2Cl \xrightarrow{Cl_2} CH_2Cl_2 \xrightarrow{Cl_2} CHCl_3$$
$$\xrightarrow{Cl_2} CCl_4$$

(ii) From carbon disulphide (CS₂) :

$$CS_2 + 3Cl - Cl \xrightarrow{\Delta 500^{\circ}C} CCl_4 + S_2Cl_2$$

sulphur monochloride

$$2S_2Cl_2 + CS_2 \longrightarrow CCl_4 + 6S \downarrow$$
(iii) From CHCl_3 : Chlorination of chloroform.

$$CHCl_3 + Cl - Cl \xrightarrow{ultravioletlight} CCl_4 + HCl_4$$

(iv) From propane :

$$C_{3}H_{8} + 9Cl_{2} \xrightarrow{400^{\circ}C} CCl_{4} + C_{2}Cl_{6} + 8HCl$$

Propane Pyrene

PHYSICAL PROPERTIES

- (i) It is colourless liquid with specific smell.
- (ii) It is insoluble in water and soluble in organic solvent.
- (iii) It is the only organic solvent which is non-combustible. So used as fire-extinguisher called as 'Pyrene'.

CHEMICAL PROPERTIES

(i) Oxidation : It reacts with hot H_2O or with water vapour and forms poisonous gas 'Phosgene'.

$$CCl_4 + H_2O(g) \xrightarrow{\Delta} COCl_2 + 2HCl$$

Phosgene

(ii) Hydrolysis : It reacts with aqueous or alcoholic KOH and forms inorganic salt potassium carbonate.

$$\begin{array}{c} \text{CCl}_4 + 4\text{KOH} \text{ (aq.)} & \underbrace{-4\text{KCl}} & \text{C(OH)}_4 & \underbrace{-2\text{H}_2\text{O}} & \text{CO}_2 \\ & \text{(unstable)} \\ & \underbrace{+2\text{KOH}} & \text{K}_2\text{CO}_3 + \text{H}_2\text{O} \end{array}$$

(iii) Reduction: It is reduced by moist iron filling into chloroform.

 $CCl_4 + 2H \xrightarrow{Fe/H_2O} CHCl_3 + HCl$

(iv) It reacts with phenol and forms salicylic acid.

Phenol Salicylic acid

The reaction is called as "Riemer-Tieman Carboxylation'.

(v) Reaction with benzene :

USES : (a) As a fire extinguisher (Pyrene)

(b) As a Lab reagent.

- (c) As a solvent for fats, oils, resins. in dry cleaning
- (d) In medicine a helminthicide. (e) As a tumigant.

OTHER USEFUL HALOGEN DERIVATIVES

(a) Freens or cfc [Chlorofloro carbon] : The chloro fluoro derivatives of methane and ethane are called freens.
 Preparation of freens :

$$CCl_4 + HF \xrightarrow{SbCl_5} CCl_3F + HCl freon-11$$
$$CHCl_3 + HF \xrightarrow{SbCl_5} CHFCl_2 + HCl freon-21$$
$$C_2Cl_6 + 2HF \xrightarrow{SbCl_5} C_3F_3Cl_4 + 2HCl$$

$$C_2Cl_6 + 2HF \longrightarrow C_2F_2Cl_4 + 2HC$$

hexachloro ethane freon-112

Properties

- (i) Freons are colourless, odourless, unreactive & noncombustible liquids.
- (ii) Also used as a solvent.

Uses of freons : (1) Having very low boiling points. They easily converted from gaseous state to liquid state, therefore they used as a coolant in A.C. & Refrigerator. (2) Used as a aerosole propellant in aeroplane & rockets.

 (ii) Nomenclature of Freons : The common name of freons is Freon - cba or freon C - 1, H + 1, F

where c = no. of carbon atom -1, b = no. hydrogen atom +1a = total no. of atoms of fluorine

Example : CFCl₂

+1=1,F	= 1	Freon – 11	
C-1	H+1	F	Name
1 - 1 = 0	0 + 1 = 1	1	Freon-11
1 - 1 = 0	0 + 1 = 1	2	Freon-12
2 - 1 = 1	0 + 1 = 1	2	Freon-112
2 - 1 = 1	0 + 1 = 1	3	Freon-113
2 - 1 = 1	0 + 1 = 1	4	Freon-114
2 - 1 = 1	0 + 1 = 1	5	Freon-115
	+1 = 1, F C-1 1-1 = 0 1-1 = 0 2-1 = 1 2-1 = 1 2-1 = 1 2-1 = 1	+1 = 1, F = 1 C-1 H+1 1-1 = 0 0+1 = 1 1-1 = 0 0+1 = 1 2-1 = 1 0+1 = 1 2-1 = 1 0+1 = 1 2-1 = 1 0+1 = 1	+ 1 = 1, F = 1 Freon - 11 $C-1$ $H+1$ F $1-1=0$ $0+1=1$ 1 $1-1=0$ $0+1=1$ 2 $2-1=1$ $0+1=1$ 2 $2-1=1$ $0+1=1$ 3 $2-1=1$ $0+1=1$ 4 $2-1=1$ $0+1=1$ 5

(b) Teflon : Produced by polymerisation of

 $CF_2 = CF_2$ (tetrafluoro ethylene).

 $CF_2 = CF_2$ obtained by following reaction -

$$2CHCl_3 + SbF_3 \xrightarrow{-HF} 2CHF_2Cl \xrightarrow{800^{\circ}C} CF_2 = CF_2$$

Polymerisation of $CF_2 = CF_2 -$

$$n \operatorname{CF}_2 = \operatorname{CF}_2 \xrightarrow{\text{Polymerisation}} (-\operatorname{CF}_2 - \operatorname{CF}_2 -)_n$$

Teflon

Properties :

(i) It is chemically inert. (ii) It is stable at high temp.
(iii) Unaffected by strong acids and by boiling aqua-regia.
Uses: (i) Making acid containers.
(ii) For electrical insulation & lubricants.

(iii) Preparation of gasket materials.

(c) Westron (Acetylene tetra chloride) : (Cl₂CH-CHCl₂) Preparation :

$$H-C \equiv CH + 2Cl_2 \xrightarrow{FeCl_3} Cl - CH - CH - Cl$$

$$\downarrow \qquad \downarrow \qquad \downarrow \\Cl \qquad Cl \qquad Cl$$
Westron

Properties :

Heavy, nonflammable, highly toxic liquid, $BP \rightarrow 145^{\circ}C$, Chloroform like smell. When treated with. lime water (Ca(OH)₂).

$$\begin{array}{ccc} Cl-CH-CH-Cl & \xrightarrow{Ca(OH)_2} & Cl_2C = CHCl + HCl \\ | & | \\ Cl & Cl \end{array}$$
We stosol

Uses: (i) In the manufacture of westrosol.

(ii) As an insecticide.

(iii) As a solvent for oil, fats, paints etc.

(d) Westrosol : (Trichloro ethylene) Preparation :

$$\begin{array}{ccc} \text{Cl}-\text{CH}-\text{CH}-\text{Cl} & \xrightarrow{\text{Ca(OH)}_2} & \text{Cl}-\text{C} = \text{CHCl} + \text{HCl} \\ & & & & \\ \text{Cl} & \text{Cl} & & & \\ & & & & \text{Cl} \end{array}$$

Properties : It is less toxic than westron. B.P. 80°C Uses : (i) As a refrigerants. (ii) As an aneasthetic. (iii) As a solvent for oil, fats etc.

(e) **BHC**:
$$C_6H_6 + 3Cl_2 \xrightarrow{\text{Light}} C_6H_6Cl_6 (BHC)$$

It is also called Gammexene or Lindane or 666 and is used as pesticide.

ARYL HALIDES

- * Those compounds in which halogen in directly attached to benzene nucleus are called aryl halides.
- * Physical properties : They are generally colourless liquids or solids at room temperature. Boiling and melting points are in the order ArI > ArBr > ArCl.

In case of aromatic dihalides p-isomer has much higher melting point due to symmetrical structure which leads to the stronger interparticle forces in the lattice.

Aromatic halides are insoluble in water.

CHLOROBENZENE, PHENYL CHLORIDE Preparation :

(i) By direction chlorination of benzene :

$$+ Cl_2 + Cl_2 + Cl_2 + Cl_2 + HCl$$
(Room temperature)
(Darkness) + HCl

Cl

Low temperature and presence of halogen carrier favour nuclear substitution.

(ii) From phenol:

$$C_6H_5OH \xrightarrow{HX,PX_3} X$$
 (No reaction)
SOCl₂

Yield of chlorobenzene in this reaction is poor because POCl₃ reacts with phenol giving triphenyl phosphate. $3C_6H_5OH + POCl_3 \longrightarrow (C_6H_5)_3PO_4 + 3HCl$

 $C_6H_5OH + POCI_3 \longrightarrow (C_6H_5)_3PO_4 + 3HCI Triphenyl phosphate$

(iii) By Sandmeyer's reaction :

When benzene diazonium chloride is treated with Cu_2Cl_2 in conc. HCl, the N₂Cl group is replaced by chlorine atom. This reaction is called Sandmeyer's reaction.

Iodobenzene can be prepared by reacting benzene diazonium chloride with KI solution.

Fluorobenzene can be obtained from diazo salt as follows :

 $+BF_{3}+N_{2}$

This reaction is called Schiemann Reaction (iv) By Hunsdiecker reaction :

Silver benzoate Bromobenzene

(v) Raschig process : It is industrial method for chlorobenzene.

$$2 \bigcirc +2\text{HCl}(g) + O_2(\text{air}) \xrightarrow{\text{CuCl}_2, \Delta} 2 \bigcirc +2\text{H}_2O$$

Chlorobenzene

PHYSICAL PROPERTIES

Chlorobenzene is a colourless, pleasant smelling, heavy liquid. It is insoluble in water, but soluble in alcohol and ether.

CHEMICAL PROPERTIES

1. Nucleophilic substitution : The halogen atom is firmly attached with the benzene nucleus and acquires extra stability due to resonance (+M) effect. Hence, the halogen atom cannot be easily replaced by other atoms or group of atoms. So, aryl halides are less reactive the than alkyl halides.

The halogen atom is replaced by other nucleophiles under forcing conditions.

199

(i) Replacement by-OH group :

(ii) Replacement by -NH₂ group :

The reactivity of halogen atom is increased by the presence of electron attracting atom or group of atoms at ortho and or para position of the halogen atom. Thus, the reactivity order of halogens is :

 $> CH_2 = CHCl$ Vinyl chloride

(iii) Replacement by -CN :

Chlorobenzene

Wurtz-Fittig reaction : Aryl halide and alkyl halide when 3. heated together in the presence of sodium and ether, yield homologues of benzene.

Benzene

$$\underbrace{\text{-Cl}+2\text{Na}+\text{ClCH}_2\text{CH}_2\text{CH}_3}_{\Delta} \underbrace{\xrightarrow{\text{ether}}}_{\Delta} \underbrace{\text{-CH}_2\text{CH}_2\text{CH}_3+2\text{NaCl}}_{n-\text{Propyl benzene}}$$

When only aryl halides are heated with metallic sodium, the reaction is known as Fittig reaction and the product is diaryl,

4. Ullmann Reaction : Chloro and bromo benzenes do not give this reaction. But when there is an electron attracting group at the ortho and/or para position of the halogen atom, Ullmann reaction is responded to by them.

5. Formation of Grignard's reagents :

Phenyl magnesium chloride

6. Reaction with chloral: When chlorobenzene is heated with chloral in the presence of conc. H_2SO_4 , a powerful insecticide, DDT is formed.

7. Reactions due to the benzene ring : The halogen atoms are ortho-para directing but deactivate the benzene ring towards electrophilic substitution reactions. It is due to their strong-I effect ; o-, p-direction is due to +E and +M effects. (a) Halogenation:

Nitration : **(b)**

Sulphonation : (c)

Chloro

benzene

200

+ CH₃Cl AlCl₃

(d)

(e) Elimination addition Reaction :

$$\xrightarrow{\text{Cl}} \xrightarrow{\text{KNH}_2} \xrightarrow{\text{NH}_2}$$

This reaction known as ceny substitution and complete

through benzyne inter mediate

Uses : Chlorobenzene is used for preparation of aniline, phenol, picric acid, DDT, etc.

TRY IT YOURSELF

Q.1 Identify B, $CH_3 - CH_2 - CI \xrightarrow{KF} B$

Q.2 Hunsdiecker reaction is used to prepare alkyl chloride and alkyl bromide starting from –

(A) Diazonium salt

- (B) Silver salt of carboxylic acid
- (C) Sodium salt of carboxylic acids
- (D) Alcohols
- Q.3 The best reagent for converting an alcohol into the corresponding chloride is -
 - (A) PCl_5 (B) PCl_3 (C) $HCl/ZnCl_2$ (D) SOC
- (C) HCl/ZnCl₂ (D) SOCl₂
 Q.4 What is the decreasing order of reactivity of following compounds through S_N2 mechanism?

 CH_3I , CH_3Br , CH_3Cl , CH_3CH_2Cl (I) (II) (III) (IV)

- **Q.5** Most reactive halide towards S_N^1 reaction is (A) n-butyl chloride (B) sec-butyl chloride (C) tert-butyl chloride (D) Allyl chloride
- Q.6 Which of the following is most reactive towards nucleophilic substitution reaction?
 (A) CH₂=CH-Cl
 (B) C₆H₅Cl
 (C) CH=CH=CH
 (D) Ch=CH=CH=CH
- (C) $CH_3 CH = CH Cl$ (D) $Cl CH_2 CH = CH_2$ **Q.7** Which of the following does not form Grignard reagent on reaction with Mg in the presence of ether?
 - (A) Chloroethane (B) 1-chloropropane
 - (C) Bromobenzene (D) Vinyl chloride
- **Q.8** In chlorination of benzene to form chlorobenzene, the attacking species is –

(A) Cl_2	(B) Cl•
(C) Cl^{-}	$(D) Cl^+$

- Q.9 IUPAC name of gammexene is –(A) Hexachlorobenzene(B) Benzene hexachloride
 - (C) 1, 2, 3, 4, 5, 6-hexachlorocyclohexane
 - (D) All of these
- Q.10 'Pyrene' is the trade name of ____ when used as fire extinuisher
 - (A) CO_2 (B) $CHCl_3$ (C) CCl_4 (D) CH_2Cl_2 **ANSWERS** (1) No product (2) (B) (3) (D) (4) I > II > III > IV (5) (D) (6) (D)

rds

Example 3 :

201

Which of the following is most reactive toward $S_N 2$.

Sol. (D). Alkyl halide which produces less stable carbocation are less reactive towards $S_N 1$ – Reaction but more reactive towards $S_N 2$ reaction.

2-Bromobutane on heating with alcoholic alkali forms -

- (A) α-Butylene only(B) β-Butylene only
- (C) 20% of β -Butylene + 80% of α -Butylene

ADDITIONAL EXAMPLES

(D) 80% of β -Butylene + 20% of α -Butylene

Sol. (D). $H_3C - CH_2 - CH - CH_3$ (Reaction occur by Saytzeff's rule)

$$H_{3}C - CH_{2} - CH_{3} = CH_{2} + H_{3}C - CH = CH - CH_{3}$$

 α -Butylene (20%) β -Butylene (80%)

Example 2 :

Example 1 :

In the given pair in which pair the first compound is more reactive than second for $S_{\rm N}1$ reaction.

Stability order of carbocation = III > II > IV

Example 4 :

The order of reactivity of alkyl halide in the reaction : $R - X + Mg \rightarrow RMgX$ is –

- (A) RI > RBr > RCl (B) RCl > RBr > RI
- (C) RBr>RCl>RI (D) RBr>RI>RCl
- Sol. (A). Smaller the bond dissociation energy of R X bond greater will reactivity of R X towards Mg.

QUESTION BANK

Q	UESTION BANK CHAPTER 9	: HAL	OALKANES AND HALOARENES
EXERCISE - 1 [LEVEL-1]			
Choo	se one correct response for each question.		(A) allyl (B) aryl
	PART - 1 : CLASSIFICATION AND		(C) vinyl (D) secondary
	NOMENCLATURE	Q.12	Which of the following statement $\{s\}$ is/are true for
Q.1	Which of the following halide is 2°		geminal halide?
	(A) Isopropyl chloride (B) Isobutyl chloride		(A) Alkylene dihalide
	(C) n-propyl chloride (D) n-butyl chloride		(B) Halogen present on adjacent carbon atom
Q.2	Which of the following is not an allylic halide?		(C) Alkylidene dihalide
	(A) 4-Bromopent-2-ene	0.12	(D) Both (B) and (C) $(f + f + h + h + h + h + h + h + h + h + $
	(B) 3-Bromo-2-methylbut-1-ene	Q.13	The IUPAC name of tertiary butyl chloride is
	(C) 1-Bromobut-2-ene		(A) 2-chloro-2-methylpropane
	(D) 4- Bromobut -1-ene		(D) 3-chlorobutane
Q.3	The IUPAC name of		(D) 1.2 chloro 3 methylpropane
	$(CH_3)_2CH - CH_2 - CH_2Br$ is –		(D) 1,2-chloro-3-meurypropane
	(A) 1-bromopentane	D	ΔΤ 2. ΜΕΤΉΛΝς ΛΕΦΡΕΡΑΡΑΤΙΛΝ
	(B) 1-bromo-3-methylbutane	<u>1</u> F	$\mathbf{X}\mathbf{X}\mathbf{I} = 2 \cdot \mathbf{M}\mathbf{E} \mathbf{I} \mathbf{H} \mathbf{O} \mathbf{D} \mathbf{S} \mathbf{O} \mathbf{F} \mathbf{I} \mathbf{K} \mathbf{E} \mathbf{I} \mathbf{A} \mathbf{K} \mathbf{A} \mathbf{H} \mathbf{O} \mathbf{N}$
	(C) 2-methyl-4-bromobutane	Q.14	Silver acetate + $Br_2 \xrightarrow{CS_2}$. The main product of this
0.4	(D) 2-methyl-3-bromopropane.	-	reaction is
Q.4	(A) Isographic dide		$(A) CH_2 - Br$ (B) CH_2COI
	(A) isopiopyi iodide (B) Secondery butyl iodide		(C) CH ₂ COOH (D) None of these
	(C) Tertiary butyl bromide	0.15	The reaction of alkyl chlorides/bromides with NaI in dry
	(D) Neo hexyl chloride	C ¹	acetone produces –
			(A) Alkyl iodides (B) Alkyl fluorides
0.5	The IUPAC name of H H is –		(C) Alkyl bromides (D) None of these
C	$H \longrightarrow Br$	Q.16	Preparation of alkyl halides in laboratory is least preferred
	Н		by –
	(A) 3-bromo-2-methylpropene		(A) halide exchange
	(B) 1-bromo-2-methylbut-2-ene		(B) direct halogenation of alkanes
	(C) 4-bromopent-2-ene		(C) treatment of alcohols
0((D) 4-bromopent-1-ene	0.4	(D) addition of hydrogen halides to alkenes.
Q.0	$I \cup PAC$ name of m-Dibromobenzene is – (A) 1.2 Dibromobenzene (P) 1.2 Dibromobenzene	Q.1 7	When ethyl alcohol and KI reacted in presence of
	(A) 1,5-Didioiniobenizene (B) 1,2-Didioiniobenizene (D) 1,2-Didioiniobenizene (D) 1,2-Didioiniobenizene		Na_2CO_3 , yellow crystals of are formed
			$(A) CHI_3 (B) CH_3 I (C) CHI I (D) CHI I (D)$
0.7	The IUPAC name of H_3C H_1 is –	0.19	$(C)C\Pi_2 I_2$ $(D)C_2\Pi_5 I$
2	$H' \rightarrow Br$	Q.10	of the following is formed
	H ₃ C		(A) Ethanol (B) Iodoform
	(A) 2-bromopent-4-ene (B) 2-bromopent-3-ene		(C) Ethyl iodide (D) Methyl iodide
	(C) 4-bromopent-2-ene (D) 4-bromopent-1-ene	0 10	A cotone resets with L in presence of NeOH to form
Q.8	Common name given to 2-chloropropane	Q.19	(A) C H I (B) C H I
	(A) n-propyl chloride (B) isopropyl chloride		$(C) CHI_{2}$ (D) CH ₂
0.0	(C) isobutyl chloride (D) None of these	0.20	Ethanol is converted into ethyl chloride by reacting with
Q.9	Which of the following is an example of vic-dihalide?	Q.20	(A) Cla (B) SOCla
	(A) Dichloromethane (B)1,2-dichloroethane (C) Γ the lifetime difference (B) Alle leftimide		$\begin{array}{c} (C) HCl \\ (D) NaCl \end{array}$
0.10	(C) Emylidene chioride (D) Allyl chioride	Q.21	Propene on treatment with HBr gives
Q.10	Choose the context statement – $(A) \circ Br C H CH(CH) CH CH is a southelide$	L .===	(A) Isopropyl bromide (B) Propyl bromide
	(A) \cup -DI- $\cup_6 \Pi_4 \cup \Pi(\cup \Pi_3) \cup \Pi_2 \cup \Pi_3$ is a dryi nalloe. (B) m CICH C H CH C(CH) is a bomovia primery		(C) 1, 2-dibromoethane (D) None of the above
	balide	Q.22	Benzene reacts with chlorine to form benzene
	(C) CH CH = CHC(Br)(CH) is a allulic tertiary holida	-	hexachloride in presence of –
	(D) All of these		(A) Nickel (B) AlCl ₃
0.11	The position of $-Br$ in the compound in		(C) Bright sunlight (D) Zinc
2.11	$CH_2CH = CHC(Br)(CH_2)_2$ can be classified as –		
	city (city) cut of citosined us		

- Q.23 In the reaction, $CH_3CH = CH_2 + HI$, major product is (A) CH₂CHICH₂
 - (B) CH₂CH₂CH₂I
 - (C) Both (A) and (B) are formed in equal proportion..
 - (D) None of these
- Q.24 Name the reagent used in this reaction. т

$$\bigcirc + I_2 \rightarrow \bigcirc$$

(A) HNO₃ $(C)H_2O$

(B)HF $(D) SO_2$

- Q.25 Which of the following compounds can yield only one monochlorinated product upon free radical chlorination? (A) 2,2-Dimethylpropane (B) 2-Methylpropane (C) 2-Methylbutane (D) n-Butane **Q.26** Alkyl chloride is prepared by passing the gas
- through solution of alcohol. (A) H₂SO₄ (B)HCl (C) dry HCl (D) None of these

PART - 3 : PHYSICAL PROPERTIES

- Q.27 Which of the following compounds will have highest melting point?
 - (A) Chlorobenzene (B)o-Dichlorobenzene
 - (C) m-Dichlorobenzene (D) p-Dichorobenzene
- **Q.28** Arrange the following compounds in increasing order of their density.

(i) CH_2Cl_2	(ii) CHCl ₃	(iii) CCl ₄
$(A)(iii) \overline{<}(ii) \overline{<}$	(i)	$(B)(iii) \leq (i) \leq (ii)$
(C)(iii) < (i) =	(ii)	(D)(i) < (ii) < (iii)

- Q.29 Which of the following compounds has the highest boiling point? (A) CH₂CH₂CH₂CH₂Cl (B) CH₂CH₂CH₂CH₂CH₂CH
- (C) CH₃CH(CH₃)CH₂Cl $(D)(CH_3)_3\overline{CCl}$ Q.30 Which is the correct increasing order of boiling points
 - of the following compounds?

1-Iodobutane, 1-Brornobutane, 1-Chlorobutane, Butane (A) Butane < 1-Chlorobutane

- <1-Bromobutane<1-Iodobutane
- (B) 1-Iodobutane < 1-Bromobutane

- (C) Butane < 1-Iodobutane <1-Bromobutane<1-Chlorobutane
- (D) Butane < 1-Chlorobutane < 1-Iodobutane

<1-Bromobutane

Q.31 Arrange the following compounds in the increasing order of their melting point.

(A) (i)>(ii)>(iii) (C) (iii)>(i) \geq (ii) (B)(iii) > (i) = (ii)(D)(iii) > (i) > (ii)

- Q.32 Alkyl halides are immiscible in water though they are polar because
 - (A) they react with water to give alcohols.
 - (B) they cannot form hydrogen bonds with water.
 - (C) C X bond cannot be broken easily.
 - (D) they are stable compounds and are not reactive.

PART - A · CHEMICAL PROPERTIES

	1ANI - 4. CHEMIN	
Q.33	A Grignard's reagent may	be made by reacting magnesium
	with	
	(A) Methyl amine	(B) Diethyl ether
	(C) Ethyl iodide	(D) Ethyl alcohol
0 34	Ethyl bromide can be co	nverted into ethyl alcohol by
Q.54	(A) Heating with dilute	hydrochloric acid and zing
	(A) Heating with dilute I	hydroemone actu and zine
	(B) Boiling with an alco	none solution of KOH
	(C) The action of moist	silver oxide
	(D) Refluxing methanol	
Q.35	Reaction of ethyl chloric	le with sodium leads to
	(A) Ethane	(B) Propane
	(C) n-butane	(D) n-pentane
Q.36	$2CHCl_2 + O_2 \xrightarrow{X} 2CHCl_2 + O_2 + $	$COCl_2 + 2HCl$
-	In the above reaction V	atonda for
	In the above feaction, A	(D) A us lost sut
	(A) An oxidant	(B) A reductant
~	(C) Light and air	(D) None of these
Q.37	The reactivity of ethyl cl	nloride is
	(A) More or less equal to	o that of benzyl chloride
	(B) More than that of be	nzyl chloride
	(C) More or less equal to	o that of chlorobenzene
	(D) Less than that of chl	orobenzene
O.38	The reactivities of methy	al chloride, propyl chloride and
C · · · ·	chlorobenzene are in the	order
	(A) Methyl chloride $>$ pi	convl chloride > chlorobenzene
	(B) Propyl chloride $> m$	ethyl chloride > chlorobenzene
	(C) Methyl chloride $> ch$	lorobenzene > propyl chloride
	(C) We therefore $r = r$	norobenzene > propyremoride
0.20	(D) Chlorobenzene > pro	spyremoride > metnyremoride
Q.39	The dehydrobromination	n of 2-bromobutane gives
	$CH_3CH = CHCH_3$. The	e product is
	(A) Hofmann product	
	(B) Saytzeff product	
	(C) Hoffmann-Saytzeff p	product
	(D) Markownikoff produ	ict
O.40	Ethyl bromide reacts wit	h lead-sodium alloy to form
C C	(A) Tetraethyl lead	(B) Tetraethyl bromide
	(C) Both (A) and (B)	(D) None of the above
0 41	1-chlorobutane reacts wi	th alcoholic KOH to form
Q.71	(Λ) 1 butono	(\mathbf{D}) 2 butono
	(A) 1-butene	$(\mathbf{B}) 2 - butane$
0.40	(C) 1-butanoi	(D) 2-butanoi
Q.42	Which metal is used in	Wurtz synthesis
	(A) Ba	(B)Al
	(C)Na	(D) Fe
Q.43	The reaction of an aroma	atic halogen compound with an
	alkyl halides in presence	of sodium and ether is called
	(A) Wurtz reaction	(B) Sandmeyer's reaction
		-

(C) Wurtz-fittig reaction (D) Kolbe reaction

QUESTION BANK

Q.44 The reaction, $CH_3Br + Na \rightarrow Product$ is called

(A) Perkin reaction (B) Levit reaction

- (D) Aldol condensation (C) Wurtz reaction
- Q.45 Which one of the following chlorohydrocarbons readily undergoes solvolysis?

(A)
$$CH_2 = CHCl$$
 (B) \bigcirc $-Cl$
(C) \bigcirc $-CH_2Cl$ (D) \bigcirc $-CH_2CH_2Cl$

Q.46 An alkyl halide, RX reacts with KCN to give propane nitrile. RX is-(R) C.H₂Br $(A) C_2 H_7 B$

$$C_3H_7Br$$
 (B) C_4H_9

 $(C)C_2H_5Br$ $(D)C_5H_{11}Br$

Q.47 Which of the following will give enantiomeric pair on reaction with water due to presence of asymmetric carbon atom?

(A)
$$C_{2}H_{5} - C - Br$$
 (B) $C_{2}H_{5} - C - Cl$
 $C_{2}H_{5} - C - Cl$
 $C_{2}H_{5} - C - Cl$
 $C_{2}H_{5} - C - Cl$

(C)
$$C_2H_5 - C_{-1}$$
 (D) None of these
CH₂

- Q.48 The allylic and benzylic halides undergoe (A) S_N1 mechanism
 - (B) S_N^2 mechanism
 - (C) Both S_N1 and S_N2 mechanism
 - (D) None of the above
- Q.49 Which of the following haloalkanes is most reactive? (A) 1-Chloropropane (B) 1-Bromopropane (D) 2-Bromopropane
 - (C) 2-Chloropropane
- Q.50 Which of the following molecule is chiral? (A) Butan-1-ol (B) Butan-2-ol (C) Butan-4-ol (D) All of these
- Q.51 Which would undergo S_N2 reaction faster ?

$$(A) \longrightarrow F \qquad (B) \longrightarrow Cl \\ (C) \longrightarrow Br \qquad (D) \longrightarrow I$$

Q.52 Which of the following is most reactive towards aqueous NaOH? (A)C₂H₂Cl (B) C_cH_cCH₂Cl

(C)
$$C_6H_5Br$$
 (D) C_6H_4Br

Q.53 In the reaction given below:

$$\begin{array}{c} CH_{3}CH_{2}\\ CH_{3} \textcircled{}{}{} C - Cl + OH^{-} \end{matrix} \rightarrow HO - C \overbrace{}{}^{CH_{2}CH_{3}}_{H} CH_{3} + Cl^{-} \end{array}$$

Which of the following statements is correct?

- (A) The reaction proceeds via S_N^2 mechanism hence inversion of configuration takes place.
- (B) The reaction proceeds via $S_N 1$ mechanism hence inversion of configuration takes place.

- (C) The reaction proceeds via S_N^2 mechanism hence their is no change in the configuration.
- (D) The reaction proceeds via $S_N 1$ mechanism hence there is no change in the configuration.
- Q.54 Ethyl alcohol is obtained when ethyl chloride is boiled with -
 - (A) alcoholic KOH (B) aqueous KOH (C) water (D) aqueous KMnO₄
- Q.55 $C_3H_8 + Cl_2 \xrightarrow{\text{Light}} C_3H_7Cl + HCl$ is an example of which of the following types of reactions (A) Substitution (B) Elimination (C) Addition (D) Rearrangement
- Q.56 Which of the following is the most reactive towards nucleophilic substitution reaction? (A) $ClCH_2 - CH = CH_2$ $(B) CH_2 = CH - Cl$
- $(C) CH_3 CH = CH Cl$ $(D)C_6H_5Cl$ Q.57 2-Chloro-2-methylpropane on reaction with alc. KOH gives X as the product. X is -(A) but-2-ene (B) 2-methylbut-l-ene
- (C) 2-methylprop-1-ene (D) 2-methylbutan-2-ol Q.58 Ethyl iodide on reduction with Zn-Cu couple and alchol produces -
 - (A) ethane (B) methane (C) butane (D) propane

PART - 5 : POLYHALOGEN COMPOUNDS

Q.59	Haloforms are trihalogen derivatives of		
	(A) Ethane	(B) Methane	
	(C) Propane	(D) Benzene	
Q.60 Which compound needs chloral in its synth		eeds chloral in its synthesis	
	(A) D. D. T.	(B) Gammexane	
	(D) Michler's Ketone		

- **Q.61** It exposure in air causes impaired hearing and vision. Higher level exposure causes nausea and numbness in finger and trees. Direct skin contact causes intense burning and mild redness of skin, and even burn cornea. Which of the following solvent is responsible for it? (A) Methylene chloride (B) Chloroform
- (C) Iodoform (D) Carbon tetrachloride Q.62 Chloroform for anesthetic purposes is tested for its purity

(C) Ammoniacal
$$Cu_2Cl_2$$
 (D) Lead nitrate

- Q.63 Chloroform, when kept open, is oxidised to $(A) CO_2$ $(B) COCl_2$ $(C)CO_{2},Cl_{2}$ (D) None of these
- Q.64 Freon (dichlorodifluoro methane) is used (A) As local anaesthetic
 - (B) For dissolving impurities in metallurgical process
 - (C) In refrigerator
 - (D) In printing industry
- **Q.65** In fire extinguisher, pyrene is
 - $(A) CO_2$ $(B) CCl_{4}$ $(C)CS_2$ (D) CHCl₂

Q.66	At normal temperature iodo	form is		(B) They damage the refrig	erators and air conditioners.	
	(A) Thick viscous liquid	(B) Gas		(C) They eat away the ozor	ne in the atmosphere.	
	(C) Volatile liquid	(D) Solid		(D) They destroy the oxyge	en layer.	
Q.67	The molecular formula of D	DT has	Q.71	An organic halogen com	pound which is used as	
-	(A) 5 chlorine atoms	(B) 4 chlorine atoms	-	refrigerant in refrigerators a	ind air conditioners is	
	(C) 3 chlorine atoms	(D) 2 chlorine atoms		(A) BHC	(B)CCL	
0.68	Iodoform can be used as	(_)		(C) freen	(D) CHCl	
2.00	(A) Anaesthetic	(B) Antisentic	0 72	Which one is correct?	(2) errerg	
	(C) Analgesic	(D) Antifebrin	Q.12	(A) Ereon 14 is CE Freen	13 is CF Cl	
O 60	Which of the following is a	(D)Antheorm		(A) Freen 12 is CF Cl & F	$\frac{11}{10} \frac{11}{10} 11$	
Q.09	which of the following is a			(D) Error are chlorefluer	contang	
	$(A) C_2 \Pi_4$			(B) Fleons are chlorofluor	is a second se	
0 F 0	(C)CH ₃ Cl	$(D)C_2H_5OH$		(C) Freens are used as refr	igerants.	
Q.70	Use of chlorofluoro carbon	s is not encouraged because		(D) All the above.		
	(A) They are harmful to the	e eyes of people that use it.				
		EXERCISE -	2 [LE	VEL-2]		
Choos	se one correct response for e	each question.	Q.8	An organic halide is shaken v	vith aqueous NaOH followed	
Q.1	What is the main product	of the reaction between 2-		by the addition of dil. HNO	P_3 and silver nitrate solution	
	methyl propene with HBr			gave white ppt. The substa	nce can be	
	(A) 1-bromo butane			$(A) C_6 H_4 (CH_3) Br$	$(B)C_6H_5CH_2Cl$	
	(B) 1-bromo-2 methyl propa	ane		$(C)C_6H_5Cl$	(D) None of these	
	(C) 2-bromo butane		Q.9	When chloroform is treated	with conc. HNO ₃ it gives –	
	(D) 2-bromo-2 methyl propa	ane		$(A) CHCl_2NO_2$	$(B) CCl_3 NO_2$	
Q.2	In methyl alcohol solution, b	promine reacts with ethylene		(C) CHCl ₂ HNÕ ₃	(D) None of these	
	to yield BrCH ₂ CH ₂ OCH ₂	in addition to 1, 2 dibromo-	Q.10	2, 6 - Dimethylheptane on	monochlorination produces	
	ethane because	, ,	-	derivatives	1	
	(A)The ion formed initially m	nav react with Br ⁻ or CH ₂ OH.		$\overline{(A)5}$	(B)6	
	(B) The methyl alcohol soly	vates the bromine		(C)	(D)4	
	(C) The reaction follows Ma	arkownikoff's rule	0.11	Vinvl chloride reacts with H	Cl to form	
	(D) This is a free-radical me	echanism	Q.11	(A) 1 1- dichloro ethane		
03	The product formed on res	action of ethyl alcohol with		(\mathbf{R}) 1, 1- dichloro ethane		
Q.J	blooching nouder is	letton of emyr alconor with		(C) Tatrachlara athulana		
	(A) CHCl			(C) retraction ethylette (D) Minture of 1, 2 and 1, 1	dichlana athana	
	$(A) CHCl_3$	(B) CCl_3CHO	0.10	(D) Mixture of $1, 2$ and $1, 1$ -	dichloro ethane	
~ ((C) CH ₃ COCH ₃	(D) CH_3CHO	Q.12	Elimination of hydrogen br	omide from 2-bromobutane	
Q.4	Which of the following com	pound will make precipitate		results in the formation of –		
	most readily with AgNO ₃			(A) equimolar mixture of 1 a	and 2-butene	
	(A) CCl ₃ CHO	(B) CHCl ₃		(B) predominantly 2-butene	;	
	$(C)C_6H_5CH_2Cl$	(D) CHI ₃		(C) predominantly 1-butene		
0.5	$C_{c}H_{c}CH_{2}Cl + KCN(aq) =$	\rightarrow X + Y		(D) predominantly 2-butyne	e	
Z.C	Compounds V and V are	,	Q.13	Which of the following is ob	tained when chloral is boiled	
	Compounds X and 1 are $(A) \subset H + KC^{1}$	$(\mathbf{D}) \subset \mathbf{H} \subset \mathbf{H} \subset \mathbf{N} + \mathbf{K} \subset \mathbf{N}$		with NaOH –		
	(A) C_6H_6 + KCl	$(B)C_6H_5CH_2CN+KCI$		(A) CH ₃ Cl	(B) CHCl ₃	
0.4	(C) $C_6H_5CH_3 + KCI$	(D) None of these		$(C)CCl_4$	(D) None of these	
Q.6	lodoform heated with Ag p	owder to form	0.14	Acetone is mixed with blea	ching powder to give	
	(A) Acetylene	(B) Ethylene	-	(A) Chloroform	(B) Acetaldehvde	
~ -	(C) Methane	(D) Ethane		(C) Ethanol	(D) Phosgene	
Q .7	Which of the following rea	ctions gives		CCI	()8	
	$H_2C = C = C = CH_2$			$\mathbf{\lambda}$ 1 equ of Bra/Fe		
	(Λ) CII Dr CDr CII	Zn/CH ₃ OH	Q.15	$\bigcirc \xrightarrow{\operatorname{IcqV. Of Bi_2/IC}} A$	A. Compounds A is	
	$(A) CH_2BI - CBI = CH_2 - CH$			\bigcirc		
	(B) $HC = C - CH_{2} - COOH_{2}$	Aq.K ₂ CO ₃		CCl ₃	CCl ₃	
	$(D) HC = C CH_2 COOH$	40°C		$(\mathcal{W} \widehat{\frown})$	$(B) \xrightarrow{Br} Br$	
		7				
	(C) $CH_2Br - C \equiv C - CH_2Br$	$3r \xrightarrow{2n}$		DI	~	
	-	Heat		CCl ₃	CCl ₃	
	(D) $2CH = CH = CH$	、 、		\bigcirc	ന്ന	
	$(D) 2CH_2 = CH - CH_2I$	7		$() \underset{Br}{\longrightarrow} Br$		
				DI	Br	
		2	06			

QUESTION BANK

Br⁻

Q.16	6 Reaction of t-butyl bromide with sodium methoxide			(A)
	(A) Isobutane	(P) Isobutylana	0.31	Whi
	(C) Sodium t butovide	(D) t butyl methyl ether	Q.31	w III nucl
0.17	Alcoholic caustic potash on c	chloroform and aniline gives		(Δ)
Q.17	(A) Phenyl isocyanide	(B) Nitrobenzene		(C)
	(C) Phenyl cyanide	(D) Phenyl isocyanate		(0)1
0 18	Chlorine reacts with ethanol	(D) Then yt isocyanate	0 32	Whi
2.110	(A) Ethyl chloride	(B) Chloroform	2.02	
	(C) Acetaldehvde	(D) Chloral		(A)
0.19	$C_{c}H_{c}C_{l}$ on treatment with a	alcoholic KOH, vields –		
C	$(A) C_{c}H_{c}$	$(B)C_{H_2}C_{L_2}$		(B) (
	$(C) (C_H)OH$	(D) $C_{H_2}C_{I_4}$		
O.20	For a given alkyl group the d	ensities of the halides follow		
L.	the order			(C) (
	(A) RI < RBr < RCl	(B) $RI < RCl < RBr$		
	(C) RBr $<$ RI $<$ RCl	(D) $RCl < RBr < RI$		
Q.21	Two percent of ethanol is ad	ded during the oxidation of		(D) (
	chloroform to stop the form	ation of carbonyl chloride.		(2)
	In this reaction ethanol acts	as		
	(A) Auto catalyst	(B) Negative catalyst	Q.33	Whi
	(C) Positive catalyst	(D) None of these		(A)
Q.22	Among the following, the	molecule with the highest		(C) (
	dipole moment is		Q.34	The
	(A) CH ₃ Cl	$(B) CH_2 Cl_2$		reac
	(C) CHCl ₃	(D) CCl ₄		$\langle \cdot \rangle$
Q.23	Among the following one v	with the highest percentage		IC
	of chlorine is			\searrow
	(A) Chloral	(B) Pyrene		
	(C) PVC	(D) Gammexene		(A)
Q.24	Reduction of acetyl chloride	e with H_2 in presence of Pd		
	gives			
	$(A)CH_3COCH_3$	$(B)C_2H_5OH$		(C)
0.25	(C) CH ₃ COOH	$(D)CH_3CHO$	0.25	
Q.25	The compound added to p	revent chloroform to form	Q.35	Arra
	(A) C II OII			of th
	$(A)C_2\Pi_5 O \Pi$	$(\mathbf{D})C\mathbf{H}$		æ
0.26	Chloroform on warming wi	th Ag powder gives		(1)
Q.20	$(A) \subset H$	(B) C H		(III)
	$(\Gamma) C_2 \Pi_6$	$(D)C_{4}H_{8}$		(II)
0 27	When alkyl halide is heated	with dry Ag_0 it produces		
~·- /	(A) Ester	(B) Ether		
	(C) Ketone	(D) Alcohol		(111)
0.28	In the following reaction X	is		
L	CH NH + X + KOH	-		(A)
	$C_{113}N_{112} + \Lambda + KO_{11}$			(A)
	$\rightarrow CH_3N$	C (highly offensive odour)	0 36	Iden
	$(A) CH_2 Cl_2$	(B) CHCl ₃	Q.50	Tuell
	$(C) CH_3Cl$	$(D) CCl_4$		CH
Q.29	Which of the following is lic	quid at room temperature		-
	(A) CH ₃ I	(B) CH ₃ Br		
	$(C)C_2H_5Cl$	(D) CH ₃ F		(A)
Q.30	The hybridization state of c	arbon atoms in the product		. /

formed by the reaction of ethyl chloride with aqueous potassium hydroxide is

(A) sp	(B) sp ²
(C) sp^3	(D) sp ³ d
Which of the followin	g compounds does not undergo
nucleophilic substitution	on reactions

- (A) Vinyl chloride (B) Ethyl bromide (C) Benzyl chloride (D) Isopropyl chloride
- **Q.32** Which of the following is the example of S_N^2 reaction

(A)
$$CH_3Br + OH^- \longrightarrow CH_3OH + Br^-$$

(B) $CH - CH - CH_3 + OH^- \longrightarrow CH CH CH_3 + H_3 + OH^-$

(C)
$$CH_3CH_2OH \xrightarrow{-H_2O} CH_2 = CH_2$$

(D) $CH_3 \xrightarrow{C} CH_3 + OH^- \rightarrow CH_3 \xrightarrow{C} CH_3 + Br^-$
Br H

H

- Q.33 Which of these do not form Grignard reagent (A) CH₃F (B) CH₃Cl $(C)CH_{3}Br$ $(D)CH_{3}I$
- Q.34 The end product (Q) in the following sequence of reactions is

Q.35 Arrange the following compounds in increasing order of their boiling points.

(I)
$$\begin{array}{c} CH_{3} \\ CH_{3} \\ CH_{2}CH_{2}CH_{2}Br \\ CH_{3}CH_{2}CH_{2}CH_{2}Br \\ CH_{3} \\ (III) \\ H_{3}C - CH_{3} \\ H_{3}C - CH_{3} \\ Br \end{array}$$

$$\begin{array}{c} (A) & (II) < (I) < (III) \\ (C) & (III) < (I) < (II) \\ (II) < (I) < (II) \\ (III) < (II) < (II) \\ (III) < (II) < (II) \\ (III) < (II) \\ (III) \\ (III) < (II) \\ (III) \\ (IIII) \\ (IIII) \\ (III) \\ (III) \\ (III) \\ (III) \\ (IIII) \\ (III) \\$$

Q.36 Identify the products X & Y in the given reaction,

$$CH_{3} - CH - CH_{3} + Mg \xrightarrow{Dry \text{ ether}} X \xrightarrow{D_{2}O} Y$$

Br
(A) $X = CH_{3} - CH - CH_{2}Mg, Y = CH_{3}CH_{2}CH_{2}OH$
Br

208

(B)
$$X = CH_3 - CH - CH_3$$
, $Y = CH_3 - CH - CH_3$
 \downarrow
MgBr D

(C)
$$X = CH_3 - CH - CH_3$$
, $Y = CH_3 - CH - CH_3$

$$| HgBr OD$$

(D)
$$X = CH_3 - CH - CH_2Mg$$
, $Y = CH_3 - CH - CH_3$
Br OH

- **Q.37** The reaction of toluene with chlorine in presence of $FeCl_3$ gives predominantly
 - (A) a mixture of o-and p-chlorotoluene.
 - (B) benzyl chloride
 - (C) m-Chlorotoluene
 - (D) benzoyl chloride.
- Q.38 Ethylene dichloride and ethylidene chloride are isomeric compounds. The false statement about these isomers is that they
 - (A) are both hydrolysed to the same product.
 - (B) contain the same percentage of chlorine.
 - (C) are position isomers.

(D) react with alcoholic potash and give the same product.

Q.39 Which of the following alcohols will yield the corresponding alkyl chloride on reaction with concentrated HCl at room temperature?

(A)
$$CH_3CH_2 - CH_2 - OH$$

(B)
$$CH_3CH_2 - CH - OH$$

(C)
$$CH_3CH_2 - CH - CH_2OH$$

(D)
$$CH_3CH_2 - C - OH_1$$

Q.40 Which of the following reactions will give the major and minor products?

$$CH_{3} - CH_{2} - CH_{2} - CH_{3} \xrightarrow{\text{alc. KOH}}_{\text{heat}} \rightarrow Br$$

$$CH_{3} - CH = CH - CH_{3} (a) + CH_{3} - CH_{2} - CH = CH_{2} (b)$$

$$(A) (c) \text{ is unique and at } \theta (b) \text{ is unique and at } b$$

- (A) (a) is major product & (b) is minor product.
- (B) (a) is minor product & (b) is major product.
- (C) Both (a) and (b) are major products.
- (D) Only (b) is formed and (a) is not formed.
- **Q.41** Classify the following compounds as primary, secondary and tertiary halides.
 - (i) 1-Bromobut-2-ene
 - (ii) 4-Bromopent-2-ene
 - (iii) 2-Bromo-2-methylpropane
 - (A) (i) secondary, (ii) tertiary, (iii) primary
 - (B) (i) secondary, (ii) primary, (iii) tertiary

- (C) (i) primary, (ii) tertiary, (iii) secondary
- (D) (i) primary, (ii) secondary, (iii) tertiary
- **Q.42** Among the isomers of $C_5H_{11}Cl$, the one which is chiral is –

(i)
$$\begin{array}{c} CH_{3} \\ (i) \\ CH_{3} - C - CH_{2}Cl \\ CH_{3} \\ CH_{3} \\ 2.2\text{-Dimethyl-1-chloropropane} \end{array}$$
(ii)
$$CH_{3}CH_{2}CH_{2} - CH - CH_{3} \\ CH_{3} \\ 2\text{-Chloropentane} \\ Cl \\ 2\text{-Chloropentane} \end{array}$$

(iii) $CH_3CH_2 - C - CH_3$ (iv) $CH_3CH_2 - CH - CH_2CH_3$ Cl Cl Cl 2-Methyl-2-chlorobutane 3-Chloropentane

(A) (i) and (ii) (C) (i) and (iii) (D) only (ii)

- (A) 1-propanol(B) 1-butanol(C) 1-chlorobutane(D) 1-chloropentane
- **Q.44** Which of the following structures is enantiomeric with the molecule (I) given below:

- **Q.46** The main difference in C X bond of a haloalkane and a haloarene is
 - (A) C–X bond in haloalkanes is shorter than haloarenes.
 - (B) In haloalkanes the C attached to halogen in C X bond is sp³ hybridised while in haloarenes it is sp² hybridised.
 - (C) C–X bond in haloarenes acquires a double bond character due to higher electronegativity of X than haloalkanes.
 - (D) haloalkanes are less reactive than haloarenes due to difficulty in C–X cleavage in haloalkanes.
- Q.47 A mixture of 1-chloropropane and 2-chloropropane when treated with alcoholic KOH gives – (A) prop-1-ene (B) prop-2-ene (C) prop-1-ene (B) Dyperson for the pro-

(C) propanol. (D) None of these

Q.48 Which alkyl halide is preferentially hydrolysed by S_N1 mechanism? (A) (CH₃)₃CCl (B) CH₃CH₂CH₂Cl

 $(C) CH_3 CH_2 Cl$ (D) CH_3 Cl

- Q.49 Which one of the following is not correct order of boiling points of the alkyl/aryl halides?(A) CHCl₃ > CH₂Cl₂
 - (B) $CH_3(CH_2)_3Cl > CH_3(CH_2)_3Cl$
 - (C) $(CH_3)_3CCl>(CH_3)_5CHCH_5Cl$
 - (D) $CH_3(CH_2)_3Cl > CH_3CH_2CH_2CH_2$
- **Q.50** Halogen acids react with alcohols to form alkyl halides. The reaction follows a nucleophilic substitution mechanism. What will be the major product of the following reaction?

 $\begin{array}{c} CH_{3} \\ | \\ CH_{3} - CH - CH - CH_{3} + HCl \longrightarrow \end{array}$

(A)
$$CH_3 CH - CH - CH_3(B) CH_3 CH - CH - CH_3$$

 $| | | | CH_3 Cl Cl CH_3$

Q.51 Arrange the following alkyl halides in order of dehydrohalogenation; C_2H_5I , C_2H_5CI , C_2H_5Br , C_2H_5F , $(A) C_2H_5F > C_2H_5CI > C_2H_5Br > C_2H_5I$ (B) $C_2H_5I > C_2H_5Br > C_2H_5CI > C_2H_5F$ (C) $C_2H_5I > C_2H_5CI > C_2H_5Br > C_2H_5F$ (D) $C_2H_5F > C_2H_5I > C_2H_5Br > C_2H_5CI$

- Q.52 An alkyl chloride produces a single alkene on reaction with sodium ethoxide and ethanol. The alkene further undergoes hydrogenation to yield 2-methylbutane. Identify the alkyl chloride from amongst the following (A) ClCH₂CH(CH₃)CH₂CH₃ (B) ClCH₂CH₂CH₂CH₃ (C) ClCH₂CH(CH₃)CH₂CH₃ (D) CH₃C(Cl)(CH₃)CH₂CH₃
- Q.53 Which of the carbon atoms present in the molecule given below are asymmetric?

$$\begin{array}{c} HO & OH & H \\ & Iii & Iiii & Iv \\ O & C & C & C & C \\ & I & OH \\ H & OH \end{array}$$
(A) (i), (ii), (iii), (iv) (B) (ii), (iii)

- **Q.54** A mixture of two haloalkanes was treated with sodium metal in ether solution. After the reaction, the product formed was 2-methylpropane. The two haloalkanes present in the mixture were
 - (A) 2-chloropropane and chloromethane
 - (B) chloropropane and chloroethane
 - (C) 2-chloropropane and chloroethane
 - (D) chloroethane and chloromethane.
- **Q.55** Which of the following alkyl halides will undergo S_N1 reaction most readily?
- (A) $(CH_3)_3C-F$ (B) $(CH_3)_3C-CI$ (C) $(CH_3)_3C-Br$ (D) $(CH_3)_3C-I$ Q.56 Identify the products in the reactions. $RX + AgCN \rightarrow \underline{\qquad} + AgX;$ $RX + KCN \rightarrow \underline{\qquad} + KX$ (A) RCN, RCN (B) RCN, RNC (C) RNC, RCN (D) RNC, RNC
- **Q.57** Chloromethane on treatment with excess of ammonia yields mainly

(A) N, N-dimethylmethanamine
$$(CH_3-N\langle CH_3 \rangle)$$

(B) N-methylmethanamine
$$(CH_3-NH-CH_3)$$

- (C) methanamine (CH_3NH_2)
- (D) mixture containing all these in equal proportion.
- Q.58 Which of the following alkyl halides undergoes hydrolysis with aqueous KOH at the fastest rate? (A) CH₂CH₂CH₂Cl (B) CH₃CH₂Cl (C) CH₃CH₂CH₂CH₂Cl (D) CH₃CH₂CH(Br)CH₃

EXERCISE - 3 (NUMERICAL VALUE BASED QUESTIONS)

NOTE : The answer to each question is a NUMERICAL VALUE. Q.5

Q.1
$$\xrightarrow{Cl_2}$$
 Products

Total number of theoratically products (including stereo) are :

- **Q.2** In above question how many products are resolvable.
- **Q.3** In Q.1, how many fractions are present on fractional distillation.
- Q.4 How many isomeric bromides having molecular formula $C_6H_{13}Br$ on conversion into Grignard reagent followed by treatment with water would yield 2,3-dimethylbutane?

Sum of molecular mass of iodides produced in following reaction is

Q.6 The total number of alkenes possible by dehydrobromination of 3-bromo-3-cyclopentylhexane using alcoholic KOH is

Q.7 The maximum number of isomers (including stereoisomers) that are possible on monochlorination of the fol-

QUESTION BANK

EXERCISE - 4 | PREVIOUS YEARS JEE MAIN QUESTIONS

Q.1	The reaction $(CH_3)_3 CBr + H_2$	$O \rightarrow (CH_3)_3 COH + HBr is$
	a	[AIEEE-2002]
	(A) Substitution reaction (B)Debromination reaction
	(C) Rearrangement reaction ((D) Elimination reaction
Q.2	The compound formed on he	eating chlorobenzene with
	chloral in the presence of con	centrated sulphuric acid is
	(A) gammexane	(B)DDT [AIEEE-2004]
	(C) freon	(D) hexachloroethane
Q.3	Acetyl bromide reacts with ex	xcess of CH ₃ MgI followed
-	by treatment with a saturated	solution of NH_4Cl gives –
	5	[AIEEE-2004]
	(A) acetone	(B)acetamide
	(C) 2-methyl-2-propanol	(D) acetyl iodide
Q.4	The correct order of the the	rmal stability of hydrogen
	halides $(H - X)$ is –	[AIEEE-2005]
	(A) HF > HCl > HBr > HI	(B) HI>HBr>HCl>HF
	(C) HI>HCl <hf>HBr</hf>	(D)HCl <hbr>HBr<hi< th=""></hi<></hbr>
Q.5	Tertiary alkyl halides are prac	ctically inert to substitution
	by $S_N 2$ mechanism because	of – [AIEEE-2005]
	(Å) instability	(B) insolubility
	(C) steric hindrance	(D) inductive effect
Q.6	Alkyl halides react with diall	cyl copper reagents to give
	(A) alkyl copper halides	(B) alkenes [AIEEE-2005]
	(C) alkenyl halides	(D) alkanes
Q.7	Elimination of bromine from	2-bromobutane results in
	the formation of –	[AIEEE-2005]
	(A) predominantly 2-butene	
	(B) equimolar mixture of 1 ar	nd 2-butene
	(C) predominantly 2-butyne	
	(D) predominantly 1-butene	
Q.8	Among the following the	one that gives positive

iodoform upon reaction with I2 and NaOH is -[AIEEE 2006]

CH₃

(B) CH₃ – CHCH₂OH $(A) C_6 H_5 C H_2 C H_2 O H$

(D) CH₃CH₂CH(OH)CH₂CH₃ (C) PhCHOHCH₂

- 0.8 Which of the following is the correct order of decreasing $S_N 2$ reactivity? [AIEEE 2007] (A) $RCH_2X > R_3CX > R_2CHX$ (B) $RCH_{2}X > R_{2}CHX > \bar{R}_{3}CX$ $(C) R_3 CX > R_2 CHX > RCH_2 X$ (D) $\tilde{R_{2}CHX} > R_{3}CX > RCH_{2}X$ (X = a halogen)
- Q.10 The organic chloro compound, which shows complete stereochemical inversion during a $S_N 2$ reaction , is

[AIEEE 2008] $(A)(CH_2)_2CCl$ (B)(CH₂)₂CHCl

(11)(0113)3001	(B)(eng)/2ener
$(C) CH_3 Cl$	$(D)(C_2H_5)_2CHCl$

Q.11 A solution of (-) – 1-chloro-1–phenylethane in toluene racemises slowly in the presence of a small amount of SbCl₅, due to the formation of -[**JEE MAIN 2013**] (A) carbanion (B) carbene (C) carbocation (D) free radical

Q.12 Compound (A), C_8H_9Br , gives a white precipitate when warmed with alcoholicAgNO3. Oxidation of (A) gives an acid (B), C₈H₆O₄. (B) easily forms anhydride on heating. Identify the compound (A). [JEE MAIN 2013]

Q.13 The synthesis of alkyl fluorides is best accomplished by [**JEE MAIN 2015**]

(A) Sandmeyer's reaction (B) Finkelstein reaction

(C) Swarts reaction (D) Free radical fluorination Q.14 2-chloro-2-methylpentane on reaction with sodium methoxide in methanol yields : [**JEE MAIN 2016**]

(a)
$$C_{2}H_{5}CH_{2} - C_{-}C-OCH_{3}$$
 (b) $C_{2}H_{5}CH_{2} - C_{-}C=CH_{2}$

(c)
$$C_2H_5CH = C - CH_3$$

(

(A)(a) and (c)(B)(c) only (C)(a) and (b)

0.15 Which of the following, upon treatment with tert-BuONa followed by addition of bromine water, fails to decolourize the colour of bromine? [**JEE MAIN 2017**]

Q.16 The increasing order of the reactivity of the following halides for the S_N1 reaction is: [**JEE MAIN 2017**]

I.
$$CH_3 CH CH_2 CH_3$$
 II. $CH_3 CH_2 CH_2 CI$

Q.17 The major product obtained in the following reaction is

$$C_6H_5 \xrightarrow{\text{Br}} C_6H_5 \xrightarrow{\text{tBuOK}} \Delta$$
 [JEE MAIN 2017]

(A) (-)
$$C_6H_5CH(O^tBu)CH_2C_6H_5$$

(B) (±) $C_6H_5CH(O^tBu)CH_2C_6H_5$
(C) $C_6H_5CH=CHC_6H_5$
(D) (+) $C_6H_5CH(O^tBu)CH_2C_6H_5$

Q.18 The major product of the following reaction is $\beta = \frac{Br}{2}$

(A) (B) (C) (D) (D) (D)

Q.19 The compounds A and B in the following reaction are, respectively: [JEE MAIN 2019 (Jan)]

$$\xrightarrow{HOCl+HCl} A \xrightarrow{AgCN} B$$

- (A) A = Benzyl alcohol, B = Benzyl isocyanide
- (B) A = Benzyl alcohol, B = Benzyl cyanide
- (C)A = Benzyl chloride, B = Benzyl cyanide
- (D) A = Benzyl chloride, B = Benzyl isocyanide
- **Q.20** The major product of the following reactions:

[JEE MAIN 2019 (April)]

Q.21 The major product of the following reaction is:

Q.22 Increasing order of reactivity of the following compounds for S_N1 substitution is: [JEE MAIN 2019 (APRIL)]

Q.23 An 'Assertion' and a 'Reason' are given below. Choose the correct answer from the following options.

[JEE MAIN 2019 (APRIL)]

Assertion (A) : Vinyl halides do not undergo nucleophilic substitution easily.

Reason (R) : Even though the intermediate carbocation is stabilized by loosely held π -electrons, the cleavage is difficult because of strong bonding.

- (A) Both A and R are wrong statements.
- (B) Both A and R are correct statements and R is the correct explanation of A.
- (C) Both A and R are correct statements but R is not the correct explanation of A.
- (D) A is a correct statement but R is a wrong statement.
- Q.24 The number of chiral carbons in chloramphenicol is

[JEE MAIN 2020 (JAN)]

Q.25 Which of the following reactions are possible ?

[JEE MAIN 2020 (JAN)]

QUESTION BANK

Q.26 Arrange the following compounds in order of Q.27 Which of these will produce the highest yield in Friedel dehydrohalogenation (E1) reaction.

NH₂

NO₂

Π

 $C_6H_5CH_2Br \xrightarrow{1.Mg \text{ Ether}} X$, the product 'X' is

(B) II < III < I < IV

(D) III \leq II \leq IV

[AIPMT (MAINS) 2010]

(A) I < II < IV < III

(C) IV < III < I < II

In the following reaction,

Q.7

(A) Enantiomers

(C) Diastereomers

(A) 100% retention

(B) 100% inversion

(C) 100% racemization

recemization.

Q.13 In an S_N reaction on chiral centres, there is :

(D) inversion more than retention leading to partial

(B) Mesomers

(D) Atropisomers

[RE-AIPMT 2015]

QUESTION BANK

Q.14 Which of the following biphenyl is optically active? [NEET 2016 PHASE 1]

Q.15 Which of the following can be used as the halide component for Friedel Crafts reaction?

[NEET 2016 PHASE 2]

(A) Chlorobenzene (B) Bromobenzene (C) Chloroethene (D) Isopropyl chloride Q.16 Consider the reaction $CH_{2}CH_{2}CH_{2}Br + NaCN \rightarrow CH_{2}CH_{2}CH_{2}CN + NaBr$ This reaction will be the fastest in

[NEET 2016 PHASE 2] (B) Methanol

- (A) Ethanol
- (C) N, N'-dimethylformamide (DMF) (D) Water
- Q.17 An example of a sigma bonded organometallic compound [NEET 2017] is :
 - (A) Grignard's reagent
 - (B) Ferrocene (C) Cobaltocene (D) Ruthenocene
- Q.18 Identify the major products P, Q and R in the following sequence of reactions: [NEET 2018]

Q.19 The compound C₇H₈ undergoes the following reactions:

$$C_7H_8 \xrightarrow{3Cl_2/\Delta} A \xrightarrow{Br_2/Fe} B \xrightarrow{Zn/HCl} C$$

[NEET 2018]

- (A) 3-bromo-2,4,6-trichlorotoluene
- (B) o-bromotoluene

The product 'C' is

- (C) m-bromotoluene
- (D) p-bromotoluene
- Among the following, the reaction that proceeds through Q.20 an electrophilic substitution, is: [NEET 2019]

ANSWER KEY

											EX	ERC	ISE	- 1											
Q	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
Α	А	D	В	D	А	А	С	В	В	D	А	С	А	А	А	В	А	С	С	В	А	С	А	А	А
Q	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50
Α	С	D	D	В	А	С	В	С	С	С	С	В	А	В	А	А	С	С	С	С	С	С	А	D	В
Q	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	72			
Α	D	В	А	В	А	А	С	А	В	А	А	А	В	С	В	D	А	В	В	С	С	D			

											EX	ERC	ISE	- 2											
Q	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
Α	D	А	А	D	В	А	С	В	В	D	А	В	В	А	А	В	А	D	В	D	В	А	В	D	А
Q	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50
Α	D	В	В	А	С	А	А	А	С	С	С	А	А	D	А	D	D	С	А	А	В	А	А	С	С
Q	51	52	53	54	55	56	57	58																	
Α	В	С	В	А	D	С	С	D																	

		E	XERC	SISE -	3		
Q	1	2	3	4	5	6	7
Α	8	6	5	2	454	5	8

	EXERCISE - 4																									
Q 1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27
ΑΑ	В	С	А	С	D	А	С	В	С	С	D	С	D	В	С	С	D	D	D	D	С	D	2	В	В	С

								E	XEF	RCIS	6E -	5								
Q	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Α	D	А	С	D	С	А	С	А	С	D	D	А	D	В	D	С	А	D	С	В

TRY IT YOURSELF

- (1) No product because KF in C_2H_5OH cannot replace Cl.
- **(2)** (B)
- (**3**) (D)
- (4) I > II > III > IV

From I to III C - X bond energy increases hence $S_{\rm N}^{}2$ reactivity decreases. In IV compound alkyl group is large.

(6) (D)(7) (D)

(D)

- (8) (D). Electrophillic attack of Cl^+
- **(9)** (C)
- (10) (C)

ODM ADVANCED LEARNING

(9) (B). Vicinal dihalides (halogen atoms are present on the adjacent carbon atoms).

It is also known as alkylene dihalide.

$$\begin{array}{c|c} H_2C-CH_2\\ & | & |\\ Cl & Cl \end{array}$$

(10) **(D).** (i)
$$\overset{CH_3}{\bigcup} Br$$

1-bromo-2-(1-methylpropyl) benzene (Aryl halide)

(ii)
$$\begin{array}{c} CH_2 - C - CH_3 \\ CH_2 - C - CH_3 \\ CH_3 \\ CH_2 \\ CH_$$

3-(2, 2-dimethyylpropyl) benzylchloride (Benzylic, Primary)

iii)
$$CH_3 - CH = CH - C - CH_3$$

Br

(

4-bromo-4-methylpent-2-ene (Allylic, Tertiary)

- (11) (A). Allylic halides are the compounds in which the halogen atom is bonded to an sp³-hybridised carbon atom next to carbon-carbon double bond (C = C) i.e. to an allylic carbon.
- (12) (C). The dihalo-compounds having same type of halogen atoms on same carbon atom are known as geminal halides (halogen atoms are present on the same carbon atom). These are also called alkylidene dihalides.
- (13) (A). The IUPAC name of tertiary butyl chloride is 2-chloro-2-methypropane (CH₂)₃CCl
- (14) (A). $CH_3COOAg + Br_2 \xrightarrow{CS_2} CH_3Br + AgBr + CO_2$
- (15) (A). Alkyl iodides are often prepared by the reaction of alkyl chlorides/bromides with NaI in dry acetone.
 R X + NaI → R I + NaX
 X = Cl, Br
- (16) (B). Direct halogenation of alkanes give mixture of alkyl halides. For example,

$$\mathrm{CH}_4 + \mathrm{Cl}_2 \xrightarrow{h\nu} \mathrm{CH}_3 \mathrm{Cl} + \mathrm{CH}_2 \mathrm{Cl}_2 + \mathrm{CH} \mathrm{Cl}_3 + \mathrm{CCl}_4$$

(17) (A).
$$C_2H_5OH \xrightarrow{KI}_{Na_2CO_3}CHI_3$$

(18) (C).
$$C_2H_5 - O - C_2H_5 + 2HI \rightarrow 2C_2H_5I + H_2O$$

Ethyliodide

(19) (C).
$$CH_3COCH_3 + 3I_2 + 4NaOH \rightarrow$$

CHI₃ + 3Na + CH₃COONa + 3H₂O

(20) (B).
$$C_2H_5OH + SOCl_2 \xrightarrow{Pyridine} C_2H_5Cl + SO_2 + HCl$$

(21) (A).
$$CH_3 - CH = CH_2 + HBr \xrightarrow[rule]{Markovnikov's} CH_3 - CH_2 - CH_3$$

Q.B. - SOLUTIONS

- (23) (A). $CH_3CH = CH_2 + H I \rightarrow CH_3CH_2CH_2I + CH_3CHICH_3$ (Minor) (Major)
- (24) (A). Iodination of benzene occur in the presence of oxidising agent i.e., HNO₃.
- (25) (A). All the hydrogen atoms in 2, 2-dimethylpropane are equivalent, hence it can form only one monochlorinated product.
- (26) (C). The preparation of alkyl chloride is carried out either by passing dry hydrogen chloride gas through a solution of alcohol or by heating a solution of alcohol in concentrated aqueous acid.
- (27) (D). p- isomer is symmetrical hence closely packed due to which it shows higher boiling point than o- and m-isomers.
- (D). The density increases with increase in number of carbon atoms, halogen atoms and atomic mass of halogen atoms.
 (i)<(ii)<(iii)
- (29) (B). For the same halogen, boiling point of alkyl halide decreases as the size of the alkyl group decreases. For isomeric alkyl halides, boiling point decreases as branching increases. So the decreasing order of boiling point is

$$\begin{array}{c} CH_{3}CH_{2}CH_{2}CH_{2}CI > CH_{3}CH_{2}CH_{2}CI \\ > CH_{3}CH(CH_{3})CH_{2}CI > (CH_{3})_{3}CCI \end{array}$$

- (30) (A). For the same alkyl halide, boiling point increases as the mass of halogen increases.
- (C). Boiling point of isomeric dihalobenzenes are very nearly the same. However, the para-isomers are high melting as compared to their ortho and meta-isomer. It is due to symmetry of para-isomer that fits in crystal lattice better as compared to ortho and meta-isomers. (iii) > (i) ≥ (ii)
- (32) (B). Though polar, alkyl halides cannot form hydrogen bonds with water hence they are insoluble in water.

(33) (C).
$$C_2H_5I + Mg \xrightarrow{Dry \text{ ether}} C_2H_5 - Mg - I$$

Ethyl iodide Ethyl magnesium iodide

(34) (C).
$$Ag_2O + H_2O \rightarrow 2AgOH$$

 $C_2H_5Br + AgOH \rightarrow C_2H_5OH + AgBr$

(35) (C).
$$C_2H_5Cl + 2Na + ClC_2H_5 \xrightarrow{Dry} C_2H_5 - C_2H_5 + 2NaCl$$

Cl

(36) (C).
$$2CHCl_3 + O_2 \xrightarrow{\text{Light}} 2COCl_2 + 2HCl_{\text{air}} Phosene$$

(37) (B). $C_2H_5 - Cl > C_6H_5 - CH_2 - Cl$ more reactive less reactive

(38) (A).
$$CH_3 - Cl > CH_3 - CH_2 - Cl > CH_3 - CH_3 - CH_2 - Cl > CH_3 - CH_$$

(39) (B).
$$CH_3 - CH - CH_2 - CH_3 + KOH_{(alc)}$$

Br

$$\xrightarrow{\text{Saytzeff's rule}} \text{CH}_3 - \text{CH} = \text{CH} - \text{CH}_3 + \text{KBr} + \text{H}_2\text{O}$$

(40) (A).
$$4C_2H_5Br + 4Pb / Na \rightarrow (C_2H_5)_4Pb + 4NaBrTetra Ethyl lead(TEL)$$

(41) (A).
$$CH_3CH_2CH_2CH_2 - Cl + KOH(alc.)$$

$$\rightarrow$$
 CH₃CH₂ - CH = CH₂ + KCl + H₂O
1-butene

42) (C).
$$CH_3Br + 2Na + Br - CH_3 \xrightarrow{Dry} CH_3CH_3 + 2NaBr$$

$$C_6H_5Br + CH_3Br \xrightarrow{Na} C_6H_5CH_3 + 2NaBr$$

(44) (C). It is a common method to prepare alkanes. Methane cannot be prepared by Wurtz reaction.

$$CH_3Br + 2Na + BrCH_3 \rightarrow C_2H_6 + 2NaBr$$

ethane

(45) (C). Solvolysis is related to stability of carbocation formed and among these benzyl carbocation is most stable. So, it will undergo solvolysis readily.

(46) (C).
$$C_2H_5Br + KCN \rightarrow C_2H_5CN + KBr$$

Propane nitrile

(47) (C). It has asymmetric carbon atom which is joined to four different groups hence it will give optically active

products or a pair of enantiomers.
$$C_2H_5 - C - I$$

- (48) (A). Allylic and benzylic halides show high reactivity towards the S_N^1 reaction. The carbocation thus formed gets stabilised through resonance.
- (49) (D). The alkyl halides are highly reactive, the order of reactivity is : Iodide > Bromide > Chloride (nature of the halogen atom). Tertiary > Secondary > Primary. Thus 2-bromopropane is the most reactive.
- (50) (B). Butan-2-ol has four different groups attached to the tetrahedral carbon and as expected is chiral.
- (51) (D). I is good leaving group so S_N^2 reaction occur faster.
- (52) (B). Aromatic halides are less reactive than alkyl or aralkyl halides.
- (53) (A). Inversion of configuration takes place in S_N2 mechanism.
- (54) (B). $C_2H_5Cl + KOH(aq) \rightarrow C_2H_5OH + KCl$

(55) (A).
$$C_3H_8 + Cl_2 \xrightarrow{\text{Light}} C_3H_7Cl + HCl$$

This is an example of substitution reaction. Hydrogen atom of alkane is replaced by halogen atom.

(56) (A). Order of reactivity of different halo compounds towards nucleophilic substitution reactions are: Allyl chloride > Vinyl chloride > Chlorobenzene

(

Br

(57) (C).
$$CH_3 - \begin{array}{c} Cl \\ - C - CH_3 \xrightarrow{alc. KOH} \\ CH_3 \end{array} \xrightarrow{CH_3} \begin{array}{c} CH_3 - C = CH_2 \\ CH_3 \\ 2-Methylprop-1-ene \end{array}$$

(58) (A).
$$C_2H_5I \xrightarrow{Zn-Cu}{alcohol} C_2H_6 + HI$$

(59) (B).
$$CH_4 \xrightarrow{-3H} CHX_3 (X = Cl, Br, I)$$

- (60) (A). DDT is formed by reaction of chloral with chloro benzene.
- (61) (A). Methylene chloride harms the human central nervous system.
- (62) (A). If CHCl₃ sample contains phosgene (COCl₂) then it will give a white ppt. When treated with cold AgNO₃.
- (63) (B). Chloroform is oxidised to a poisonous gas, phosgene (COCl₂) by atmospheric gas.

 $CHCl_3 + O \rightarrow COCl_2 + HCl$

- (64) (C). Freon (CCl_2F_2) is an odourless, non-corrosive, non toxic gas which is stable even at high temperatures and pressures. It has low boiling point, low specific heat and can be easily liquified by applying pressure at room temperature. It is therefore, widely used in refrigerant (cooling agent) in refrigerators and air conditioners.
- (65) (B). CCl_4 is stable to red heat. Its vapours are highly non-inflammable i.e. do not catch fire. It is because of this property CCl_4 is used as a fire extinguisher. But now a days its use as a fire extinguisher is restricted because with water vapours. It forms highly poisonous phosgene gas

$$CCl_4 + H_2O \rightarrow COCl_2 + 2HCl_{Phosgene}$$

- (66) (D). At room temperature iodoform is the yellow solid.
- (67) (A). DDT

$$CCl_3 - CH$$
 $Cl_3 - Cl_5$ chlorine atoms.

- (68) (B). Iodoform is used as an antiseptic for dressing wounds. When it comes in contact with skin (organic matter), Iodine is set free which responsible for antiseptic action.
- (69) (B). Inhalation of CHCl₃ vapours produces loss of consciousness and is therefore, used as a general anaesthetic agent in surgery.
- (70) (C). Chlorofluorocarbon is used in air-conditioning and in domestic refrigerators for cooling purposes. Its main drawback is this, it is responsible for ozone depletion.
- (71) (C). Chlorofluorocarbons (CFC's) or freons are used as refrigerant in refrigerators and air conditioners.
- (72) (D). All the given points about freons are correct.

EXERCISE-2

(1) (D).
$$CH_3 - CH = CH_2 + HBr \rightarrow CH_3 - CH_3 - CH_3$$

 $CH_3 - CH_3 - CH_3$
 $CH_3 - CH_3$
 $CH_3 - CH_3$
 2 -bromo-2-methyl propane

(3) (A).
$$CaOCl_2 + H_2O \rightarrow Ca(OH)_2 + Cl_2$$

 $CH_3CH_2OH + Cl_2 \rightarrow CH_3CHO + HCl$
 $CH_3CHO + Cl_2 \xrightarrow{Ca(OH)_2}$

$$CHCl_3 + (CH_3COO)_2Ca$$

(4) (D). CHI_3 gives a yellow ppt. of AgI.

(5) (B).
$$C_6H_5 - CH_2 - Cl + KCN (aq)$$

$$\rightarrow C_6H_5 - CH_2 - C \equiv N + KCl$$

(6) (A).
$$CHI_3 + 6Ag + I_3CH \rightarrow CH \equiv CH + 6AgI_{Acetylene}$$

(7) (C).
$$CH_2Br - C \equiv C - CH_2Br \xrightarrow{Zn} CH_2 = C = C = CH_2$$

(8) (B).
$$C_6H_5 - CH_2 - Cl \xrightarrow{\text{NaOH}}_{(aq)}$$

$$C_6H_5 - CH_2 - OH \xrightarrow{\text{dil HNO}_3} C_6H_5 - CHO$$

White ppt of AgCl are obtained.

(9) (B).
$$CHCl_3 + HNO_3 \rightarrow CCl_3 - NO_2 + H_2O$$

Chloroform Conc. Chloropicrin

(10) (D).
$$CH_3 - CH - CH_2 - CH_2 - CH_2 - CH_3 - CH_3$$

has four methyl groups on the corner so it can produce four derivatives.

(11) (A).
$$CH_2 = CH - Cl + HCl \rightarrow CH_3 - CHCl_2$$

1,1-dichloro ethane

(12) (B).
$$CH_3CH_2CHCH_3 \xrightarrow{KOH(alc.)} 2$$
-Bromobutane

р.

$$CH_{3}CH = CHCH_{3} + CH_{3}CH_{2}CH = CH_{2}$$

2-Butene (80%) 1-Butene (20%)

In elimination reaction of alkyl halide major product is obtained according to Saytzeff's rule, which states that when two alkenes may be formed, the alkene which is most substituted one predominates.

(

Q.B. - SOLUTIONS

- (13) (B). $CCl_3CHO + NaOH \xrightarrow{Boil} CHCl_3 + HCOONa$ Chlorol Chloroform
- (14) (A). Acetone forms chloroform when heated with bleaching powder.

$$CaOCl_2 + H_2O \rightarrow Ca(OH)_2 + Cl_2$$

$$CH_3COCH_3 + 3Cl_2 \rightarrow CCl_3COCH_3 + 3HCl$$

$$2\text{CCl}_3\text{COCH}_3 + \text{Ca}(\text{OH})_2 \rightarrow 2\text{CHCl}_3 + (\text{CH}_3\text{COO})_2\text{Ca}$$

Chloroform

(15) (A).
$$\bigcirc$$
 $\xrightarrow{\text{CCl}_3} \xrightarrow{\text{Br}_2} \xrightarrow{\text{CCl}_3} \xrightarrow{\text{CCl}_3} \xrightarrow{\text{Br}_2} \xrightarrow{\text{CCl}_3} \xrightarrow{\text{CCl}_3} \xrightarrow{\text{Br}_2} \xrightarrow{\text{Br}_2} \xrightarrow{\text{CCl}_3} \xrightarrow{\text{Br}_2} \xrightarrow{\text{CCl}_3} \xrightarrow{\text{Br}_2} \xrightarrow{\text{CCl}_3} \xrightarrow{\text{Br}_2} \xrightarrow{\text{CCl}_3} \xrightarrow{\text{Br}_2} \xrightarrow{\text{CCl}_3} \xrightarrow{\text{Br}_2} \xrightarrow{\text{CCl}_3} \xrightarrow{\text{Br}_2} \xrightarrow{\text{Br}_2} \xrightarrow{\text{Br}_2} \xrightarrow{\text{CCl}_3} \xrightarrow{\text{Br}_2} \xrightarrow{\text{Br}_2} \xrightarrow{\text{Br}_2} \xrightarrow{\text{CCl}_3} \xrightarrow{\text{Br}_2} \xrightarrow{\text{CCl}_3} \xrightarrow{\text{Br}_2} \xrightarrow{\text{CCl}_3} \xrightarrow{\text{Br}_2} \xrightarrow{\text{CCl}_3} \xrightarrow{\text{Br}_2} \xrightarrow{$

As -CCl₃ is a m-directing group.

(16) (B).
$$CH_3 - \overset{|}{\overset{C}{C}} - Br + CH_3ONa \xrightarrow{\text{Elimination}} \overset{|}{\overset{C}{C}} H_3$$

CH₃

 $CH_3 - C = CH_2 + CH_3OH + NaBr$ Isobutylene

CH₃ONa → CH₃O⁻ + Na⁺ Methoxide ion (CH₃O⁻) is a strong base, therefore it abstract proton from 3° alkyl halide and favours elimination reaction.

(17) (A).
$$\bigcirc^{\mathrm{NH}_2} + \mathrm{CHCl}_3 + \overset{\mathrm{3KOH}}{\underset{\mathrm{alcoholic}}{\longrightarrow}} \rightarrow \bigcirc^{\mathrm{NC}} + \overset{\mathrm{NC}}{\underset{\mathrm{3KCl}}{\longrightarrow}} + \overset{\mathrm{NC}}{\underset{\mathrm{3KCl}}{\longrightarrow} + \overset{\mathrm{NC}}{\underset{\mathrm{3KCl}}{\longrightarrow}} + \overset{\mathrm{NC}}{\underset{\mathrm{3KCl}}{\longrightarrow}} + \overset{\mathrm{NC}}{\underset{\mathrm{3KCl}}{\to} + \overset{\mathrm{NC}}{{\to} + \overset{\mathrm{NC}}{\underset{\mathrm{3KCl}}{\to} + \overset{\mathrm{NC}$$

(18) (D).
$$CH_3CH_2OH + Cl_2 \rightarrow CH_3CHO + 2HCl$$

 $CH_3CHO + 3Cl_2 \rightarrow CCl_3CHO + 3HCl$
Chloral

- (19) (B). $C_6H_6Cl_6 + 3KOH \rightarrow C_6H_3Cl_3 + 3KCl + 3H_2O$ Thus Benzene hexahalides decomposes when heated with alc. KOH and yield trichloro benzene.
- (20) (D). Density of alkyl halide increases as the size of halogen atom increases. RF < RCl < RBr < RI</p>
- (21) (B). Any substance which when added to a chemical reaction inhibit or decrease the rate of reaction is called negative catalyst. In CHCl₃ when two percent ethanol is added, it stops the formation of carbonyl chloride. So ethanol acts as negative catalyst.
- (22) (A). CH₃Cl have one Cl atom which is more electronegative so it will have highest dipole moment.

(23) (B). % of chlorine =
$$\frac{\text{Mass of chlorine}}{\text{Mass of organic compound}} \times 100$$

Chloral (CCl₃CHO) =
$$\frac{106.5}{147.5} \times 100 = 72.20$$

Pyrene (CCl₄) = $\frac{142}{154} \times 100 = 92.20$

Gammexene (C₆H₆Cl₆) =
$$\frac{213}{291} \times 100 = 73.19$$

- (24) (D). $CH_3COCl + H_2 \xrightarrow{Pd} CH_3CHO + HCl$
- (25) (A). Because it float over chloroform and prevent its oxidation.
- (26) (D). $HCCl_3 + 6Ag + Cl_3CH$ chloroform chloroform

$$\xrightarrow{\text{heat}} \text{HC} \equiv \text{CH} + 6\text{AgCl}$$
Acetylene

(27) (B). Alkyl halide on reaction with dry silver oxide furnish

ether.
$$2CH_3Cl + Ag_2O \xrightarrow{\Delta} CH_3OCH_3 + 2AgCl$$

(methoxy methane)

$$CH_{3}NH_{2} + CHCl_{3} + 3KOH \rightarrow 3KCl + CH_{3}NC + 3H_{2}O$$
(X)

(29) (A). CH_3F , CH_3Cl , CH_3Br and C_2H_5Cl are gases at room temperature. CH_3I is a liquid at room temperature and solidifies at -66.5°C.

(30) (C).
$$CH_3 - CH_2 - Cl + aq$$
. $KOH \rightarrow CH_3 - CH_2 - OH + KCl$
Ethylalcohol

- (31) (A). As a result of resonance, the carbon-chloride bond acquires some double bond character. Hence, vinyl chloride does not undergo nucleophillic substitution reactions.
- (32) (A). Only 1° alkyl halides, i.e. CH₃Br undergoes S_N2 reaction.
- (33) (A). The C–F bond energy is maximum in CH₃F. Thus fluoride is the less reactive to form the grignard reagent with Mg.

$$\bigcirc \xrightarrow{Cl_2/FeCl_3} \bigoplus_{(P)}^{Cl} \xrightarrow{Na/ether} \bigodot (Q)$$

(35) (C). Boiling point increases as the branching decreases.

(36) (C).
$$CH_3 - CH - CH_3 + Mg \xrightarrow{Dry \text{ ether}} Br$$

$$\begin{array}{c} CH_3 - CH - CH_3 \xrightarrow{D_2O} CH_3 - CH - CH_3 \\ | \\ MgBr \\ (X) \end{array} \xrightarrow{OD} (Y)$$

$$(37) \quad (A). \bigcirc \overset{CH_3}{\bigcup} + Cl_2 \xrightarrow{FeCl_3} \bigoplus \underset{Cl}{\overset{CH_3}{\longleftrightarrow}} + \bigoplus \underset{Cl}{\overset{CH_3}{\bigcup}} \overset{CH_3}{\bigcup}$$

(38) (A). On hydrolysis both gives different compounds.

$$CH_2Cl-CH_2Cl \xrightarrow{aq.KOH} CH_2OH-CH_2OH$$

(Ethylene dichloride) (Glycol)

$$\begin{array}{c} CH_3 - CH \begin{pmatrix} CI \\ CI \\ CH_3 - CH \end{pmatrix} \xrightarrow{} CH_3 - CH \begin{pmatrix} OH \\ OH \end{pmatrix} \xrightarrow{} -H_2O \\ Acetaldehyde \\ Acetaldehyde \\ \end{array}$$

- (39) (D). 3° alcohols being most reactive, react with conc. HCl at room temperature.
- (40) (A). According to Saytzeff's rule, the more substituted product is more stable and is formed as major product. Hence (a) is the major product (80%) while (b) is the minor (20%) and less stable product.

(41) (D).
$$CH_3CH = CH - CH_2Br$$
,
1-Bromobut-2-ene (primary)
 $CH_3 - CH = CH - CH_3$
Br

4-Bromopent-2-ene (secondary)

$$CH_{3} - CH_{3} - CH_{3}$$

2-Bromo-2-methylpropane (tertiary)

тт

(42) (D).
$$(CH_3CH_2CH_2CH_2CH_3)^{H}$$

2-Chloropentane has a chiral carbon atom.

 $\xrightarrow{Zn/H_2O}$ CH₃CH₂CHO+HCHO

(44) (A). Compound (A) is enantiomer of compound (I) because the configuration of two groups, i.e., CH_3 and C_2H_5 in them is reversed at the chiral carbon.

(46) (B). In haloarenes, carbon of C – X is sp² hybridised while in haloalkanes it is sp³ hybridised,

$$x$$

 sp^2 hybridised C ; R H
 H x sp^3 hybridised C

(47) (A).
$$CH_3 - CH_2 - CH_2 - Cl + CH_3 - CH - CH_3$$

1-Chloropropane 2-Chloropropane

$$\xrightarrow{\text{alc. KOH}} \text{CH}_3 - \text{CH} = \text{CH}_2$$
Prop-1-ene

(48) (A).
$$S_N l$$
 mechanism
(i) $(CH_3)_3 CCl \rightarrow (CH_3)_3 C^+ + Cl^-$
 3° carbocation

(ii)
$$(CH_3)_3C^+ \longrightarrow (CH_3)_3C - OH_{OH}$$

For $S_N 1$ mechanism the reactivity of carbocation are $3^\circ > 2^\circ > 1^\circ$.

(49) (C). $(CH_3)_3CCl > (CH_3)_2CHCH_2Cl$ is not correct as boiling point of $(CH_3)_3CCl$ is smaller than $(CH_3)_2CHCH_2Cl$. It is due to large surface area and shorter alkyl chain.

(

$$\begin{array}{c} CH_{3} \\ CH_{3} \\ CH_{3} \\ CH \\ H \\ OH \\ OH \\ CH_{3} \\ CH_{3} \\ CH_{2} \\ CH_{3} \\ CH_{2} \\ CH_{2} \\ CH_{3} \\ CH_{2} \\ CH_{3} \\ CH_{$$

The intermediate in the reaction is secondary carbocation that can change to more stable tertiary carbocation by 1, 2-hydride shift.

$$CH_{3} \xrightarrow[]{} (H_{3} \xrightarrow[]{} (H_$$

(51) (B). The reactivity order can be explained on the basis of C-X bond strength. Lower the bond strength, higher is the reactivity.

(52) (C).
$$Cl - CH_2 - CH - CH_2CH_3 \xrightarrow{\text{NaOEt}}_{\text{EtOH}} \rightarrow CH_3$$

$$CH_{2} = C - CH_{2}CH_{3} \xrightarrow[Catalyst]{H_{2}} CH_{3} - CH - CH_{2}CH_{3}$$

$$CH_{3} \xrightarrow[CH_{3}]{CH_{3}} CH_{3}$$

$$CH_{3}$$

$$2-methylbutane$$

(53) (B).
$$\begin{array}{c} HO & OH & H \\ HO & (i) & *[(ii)] & *[(iii)](iv) \\ O & C & C & C & C \\ H & OH \\ H & OH \end{array}$$

(ii) and (iii) carbon atoms are asymmetric.

(

$$\begin{array}{c} \mathrm{CH}_{3}-\mathrm{CH}-\underbrace{\mathrm{CH}_{2}\mathrm{Na}+\mathrm{Cl}}_{\mathrm{Ch}_{3}\mathrm{Ch}_{3}\mathrm{CH}_{3}} \rightarrow \mathrm{CH}_{3}-\mathrm{CH}-\mathrm{CH}_{3}+2\mathrm{Na}\mathrm{Cl}_{3}\\ \mathrm{CH}_{3}&\mathrm{CH}_{3}\\ \text{2-Chloropropane}& 2\mathrm{-Methylpropane} \end{array}$$

(55) (D). As C – I bond is weakest, $(CH_3)_3C$ –I will undergo S_N^1 reaction most readily.

Q.B. - SOLUTIONS

(6)

- (56) (C). $RX + AgCN \rightarrow RNC + AgX; RX + KCN \rightarrow RCN + KX$ Both C and N can donate electron pairs. Since KCN is predominantly ionic and C - C bond is more stable than C – N bond in case of KCN, attack takes place through carbon atom. AgCN is predominantly covalent hence only nitrogen pair is available for bonding resulting in formation of isocyanide.
- (57) **(C)**. $CH_3Cl + NH_3 \rightarrow CH_3NH_2 + HCl$ Chloromethane (excess) Methanamine Primary amine is obtained as a major product by taking large excess of ammonia.

(58) (D). $CH_3CH_2CHCH_3$ will undergo hydrolysis at the Βr

> fastest rate because rate of reaction for hydrolysis of alkyl halides is in the order $3^\circ > 2^\circ > 1^\circ$.

EXERCISE-3

(1)(8), (2)(6), (3)(5).

(4)

Br MgBr $CH_3 - C - CH - CH_3 - Mg_{dry ether} + CH_3 - CH_3 - CH - CH_3$ CH₃ CH₃ CH₃ CH₃ $\xrightarrow{\text{H}_2\text{O}} \text{CH}_3 - \text{CH} - \text{CH} - \text{CH}_3$

$$CH_3 - CH - CH - CH_2Br$$

 $|$ |
 $CH_3 CH_3$

454. (5)

> 156 $I = 127 C_2H_5 = 29$ (a) I=127 Me=15 (b) 156 142 (c) Me-I

Total 5 products.

$$\begin{array}{c} CH_{3} \\ \downarrow \\ \mathbf{8.} \quad CH_{3} - CH_{2} - CH - CH_{2} - CH_{3} \\ \hline \\ \hline \\ \hline \\ \hline \\ CH_{2} - CH_{2} - CH_{2} - CH_{2} - CH_{2} - CH_{3} \\ \downarrow \\ CH_{2} - CH_{2} - CH_{2} - CH_{3} \\ \hline \\ \\ \hline \\ CH_{2} - CH_{2} - CH_{2} - CH_{3} \\ \hline \\ \\ \hline \\ CH_{2} - CH_{2} - CH_{3} \\ \hline \\ \\ \end{array}$$

+
$$CH_{3} - CH_{-}CH_{-}CH_{-}CH_{2}CH_{3} + CH_{3} - CH_{-}CH_{-}CH_{2}CH_{3} + CH_{2}CH_{3} + CH_{2}CH_{2} +$$

$$CH_3 - CH_2 - CH_2 - CH_2 - CH_3$$

$$CH_3 - CH_2 - CH_2 - CH_3$$

$$CI$$

$$+ CH_3 - CH_2 - CH_2 - CH_2 CH_3$$

EXERCISE-4

- (A). (1)
- Conc. H₂SO₄ DDT (2) **(B).**_{CCl₃CHO + 2} Chloral Chlorobenzene

(3)

(4) (5) (6)

(7) (8)

(a)
$$CH_{3} = C - Br + CH_{3}MgI \longrightarrow CH_{3} - C - CH_{3}$$

 $CH_{3} = C - CH_{3} + CH_{3}MgI \longrightarrow CH_{3} - C - CH_{3}$
 $CH_{3} = C - CH_{3} + CH_{3}MgI \longrightarrow CH_{3} - C - OHgi
 $CH_{3} = C - CH_{3} + CH_{3}MgI \longrightarrow CH_{3} - C - OHgi
 $CH_{3} = C - CH_{3} + CH_{3}MgI \longrightarrow CH_{3} - C - OHgi
 $CH_{3} = C - CH_{3} + CH_{3}MgI \longrightarrow CH_{3} - C - OHgi
 $CH_{3} = C - CH_{3} + CH_{3}MgI \longrightarrow CH_{3} - C - OHgi
 $CH_{3} = C - CH_{3} + CH_{3}MgI \longrightarrow CH_{3} - C - OHgi
 $CH_{3} = C - CH_{3} + CH_{3}He^{-1}$
 $CH_{3} = C - CH_{2} - CH_{3} + CH_{3}He^{-1}$
 $CH_{3} = C - CH_{2} - CH_{3} + CH_{3}He^{-1}$
 $CH_{3} = C - CH_{2} - CH_{3} + CH_{3} + AgBr \downarrow$
 $CH_{3} = C - CH_{2} - CH_{3} + CH_{3}He^{-1}$
 $CH_{3} = C - CH_{2} - CH_{3} + CH_{3}He^{-1}$
 $CH_{3} = C - CH_{2} - CH_{3} + CH_{3}He^{-1}$
 $CH_{3} = C - CH_{2} - CH_{3} - CH_{3} + CH_{3} + CH_{3}He^{-1}$
 $CH_{3} = C - CH_{2} - CH_{3} - CH_{3} + CH_{3} + CH_{3} + CH_{3}He^{-1}$
 $CH_{3} = C - CH_{2} - CH_{3} - CH_{3} + CH_{3} + CH_{3} + CH_{3}He^{-1}$
 $CH_{3} = C - CH_{2} - CH_{3} - CH_{3} + CH_{$$$$$$$

(27)

So, order of reactivity

$$CH_2CI \qquad CI \\ I \\ > CH_3-CH-CH_2-CH_3 > CH_3CH_2CH_2CI \\ OCH_3$$

- (17) (C). Elimination reaction is highly favoured if
 - (a) Bulkier base is used
 - (b) Higher temperature is used Hence in given reaction biomolecular ellimination reaction provides major product.

(18) (D). $\xrightarrow{\text{Br}} \xrightarrow{\text{NaOH/MeOH}} + \text{NaBr} + \text{MeOH}$

(22) (C). $S_N 1$ Reactivity order

(23) (D). Vinyl halide $CH_2 = CH - Cl$ do not undergo SN reaction. This is due to formation of highly unstable carbocation ($CH_2 = C^{\oplus}H$); which cannot be delocalised by the π -electron, also C-Cl has double bond character because of resonance. Hence statement (B) is wrong.

- (25) (B). Vinyl halides and aryl halides do not give Friedel craft's reaction.
- (26) (B). Carbocation formed from d is most stable Carbocation formed from a is least stable.

(C).
$$\bigcup_{i=1}^{C-NH_2}$$
 (Deactivated ring due to -R effect of amide)

 $\overset{\mathrm{NH}_2}{\bigcirc} , \overset{\mathrm{OH}}{\bigcirc}$

(l.p.e. of $-NH_2$ and -OH group do acid-base reaction with lewis acid AlCl₃, so ring is deactivated)

(Highest yield produced)

EXERCISE-5

(1) (D). S_N1 reaction is favoured by heavy groups on the carbon atom attached to halogen i.e.

Benzyl > allyl > tertiary > primary > secondary > primary > alkyl halides

$$\bigcirc \overset{\mathrm{CH}_{2}\mathrm{Cl}}{\longrightarrow} \overset{-\mathrm{Cl}}{\longrightarrow} \overset{\bigoplus}{\overset{\oplus}{\overset{\mathrm{CH}_{2}}{\longrightarrow}}} \overset{\oplus}{\overset{\mathrm{CH}_{2}}{\longrightarrow}}$$

(Benzyl cation)

Obtained from S_N1 path.

This molecule is resonance stabilised.

(2) (A). S_N2 mechanism is followed in case of primary and secondary alkyl halides i.e., S_N2 reaction is favoured by small groups on the carbon atoms attached to halogen so,

 $CH_3 - X > R - CH_2 - X > R_2 CH - X > R_3 C - X$

Primary is more reactive than secondary and tertiary alkyl halides.

 S_N^2 order : Methyl > Ethyl > Isopropyl > Tertiary butyl > Allyl > Benzyl

(3) (C).

$$\begin{array}{c} 1,2\text{-hydride shift} \\ \hline 1,2\text{-hydride shift} \\ \hline \\ & CH_3 - CH - CH_2 - CH_3 \\ & CH_3 \\ (3^\circ \text{ carbocation}) \text{ (more stable)} \end{array}$$

$$\xrightarrow{\text{Br}^{\Theta}} CH_3 \xrightarrow{\text{C}} CH_2CH_3$$

- (4) (D). Nucleophiles are either negative charge or lone pair of electrons bearing species, X⁻ is replaced by OH⁻
- (5) (C). $S_N 1$ reaction involves the formation of carbocation intermediate. More the stability of carbocation, more is the reactivity of alkyl/aryl haldies towards $S_N 1$ reaction. The intermediate carbocations formed by given halides are as

(1)
$$C_6H_5CH(C_6H_5)Br \rightarrow (C_6H_5)_2CH + Br$$

(2)
$$_{6}H_{5}CH(CH_{3})Br \rightarrow C_{6}H_{5}CH(CH_{3}) + Br$$

(3)
$$C_6H_5C(CH_3)(C_6H_5)Br \rightarrow (C_6H_5)_2C(CH_3) + Br^-$$

(4) $C_6H_5CH_2Br \rightarrow C_6H_5CH_2 + Br^-$ The order of stability of these carbocations is as

 $(C_6H_5)_2 \overset{+}{C} (CH_3) > (C_6H_5)_2 \overset{+}{C} H > +$

$$(C_6H_5)_2 C H(CH_3) > C H_2$$

Thus, $C_6H_5C(CH_3)(CH_3)(C_6H_5)Br$ Br is most reactive towards S_N1 reaction.

(6) (A). Alkyl halides are more reactive toward nucleophilic substitution. Reactivity depends upon the stability of carbocation intermediate formed.

Among the given halides, aryl halide (C_6H_5X) is least reactive towards nucleophile as in it the C – X bond acquire some double bond character due to resonance. Presence of electron withdrawing groups like – NO₂ at ortho and para positions facilitate the nucleophilic displacement of –X of aryl halide. Among alkyl halides, 3° halides are more reactive as compared to 2° halides due to the formation of more stable carbocation. Hence, the order of reactivity of C – X bond towards nucleophile is as

$$\bigcup_{\substack{(I)\\ II}}^{X} < \bigcup_{\substack{NO_2\\ II}}^{X} < (CH_3)_2CH - X < (CH_3)_3C - X$$

(7) (C).
$$C_6H_5CH_2Br \xrightarrow{Mg, Ether} C_6H_5CH_2MgBr$$

Grignard reagent

$$\xrightarrow{H_3O^+} C_6H_5CH_3 + Mg < OH^{Br}$$

- (A). First reaction is S_N1 reaction because C₂H₅OH used as solvent which is a weak nucleophile. Second reaction is S_N2 reaction because C₂H₅O⁻ is strong nucleophile.
 (P). Tertiary halide can show ionic reaction with MF so,
 - (C). Tertiary halide can show ionic reaction with MF so, MF should be most ionic for reaction to proceed forward. Hence 'M' should be 'Rb'. Lattice energy of RbF less than LiF, NaF, KF.
- (10) (D). Out of the compound (C) or (D), the (D) results in formation of racemic product due to chirality.

(11) (D).
$$\bigcirc$$
 $CH = CH - CH_3 \xrightarrow{HBr}$
 \bigcirc $\stackrel{\oplus}{CH} - CH_2 - CH_3 \xrightarrow{Br^-}$ \bigcirc $\stackrel{CH}{CH} - CH_2CH_3$
More stable
(Renzel extenderation)

(12) (A).
$$H \xrightarrow{\text{COOH}}_{\text{CH}_3} \llbracket HO \xrightarrow{\text{COOH}}_{\text{HO}} H$$

Both are enantiomers.

- (13) (D). $S_N 1$ reaction gives racemic mixture with slight predominance of that isomer which corresponds to inversion because $S_N 1$ also depends upon the degree of 'shielding' of the front side of the reacting carbon...
- (14) (B). Due to steric hindrance, arising due to presence of bulkier groups at ortho-positions of benzene rings, the biphenyl system becomes non-planar i.e., optically active.
- (15) (D). Isopropyl chloride would form stable carbocation.

$$H_3C - \overset{\oplus}{\overset{}_{U}C} - CH_3$$

- (16) (C). The reaction is S_N^2 , most suitable solvent should be polar aprotic i.e., DMF.
- (17) (A). $RMgX_2$ is a organometallic compound and it has only sigma bonds.

Q.B. - SOLUTIONS

Cl

 \frown +HCl

:Ël[⊕]+ĀlCl4 Electrophile

→ etc

Cl Ъ Ð

Cl

Cl⁺

