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REAL NUMBERS

INTRODUCTION
Real number represent actual physical quantities in a meaningful way. These can be represented on the number
line. Number line is geometrical straight line with arbitrarily define zero (origin).
The field of all rational and irrational numbers is called the real numbers, or simply the "reals," and denoted R. The
set of real numbers is also called the continuum, denoted C. The set of reals is called Reals in Mathematica, and a
number can be tested to see if'it is a member of the reals using the command Element [x, Reals].

The real numbers can be extended with the addition of the imaginary number i, equal to /_| .
Numbers of the form x +iy, where x and y are both real, are called complex numbers.

PROPERTIES OF REALNUMBERS
Closure : The set of real numbers is closed under addition and multiplication. This means that the sum of two real
numbers is a real number and the product of two real numbers is a real number. The set of real numbers is also
closed under subtraction (the ditference of two real numbers is a real number), but not under division (the quotient
oftwo real numbers may not be a real number i.e., division by zero does not yield a real number)
Commutative : The set of real numbers is commutative under addition and multiplication. This means that the
order of the terms (addition) or factors (multiplication) is irrelavent to the answer.a+b=b+aandab=ba. The
set of real numbers is not commutative with respect to subtraction and division, however a—b=b—a & a/b#b/a.
Associative : The set of real numbers is associative under addition and subtraction. This means that the grouping
of terms (addition) or factors (multiplication) is irrelevant to the answer. (a+b)+c=a+ (b +c) or (ab) c=a(bc).
The set of real numbers is not associative with respect to subtraction and division, however.
(a—b)—c#a—(b-c)and (a/b)/c=a/(b/c).
Identity : There is an additive identity and a multiplicative identity. The identity is the number that you can add or
multiply by and get the same answer you started with. The additive identity is zero (0) and the multiplicative identity
isone (1). Subtraction and division are defined in terms of addition and multiplication and the same identities hold.
Inverse : There is an additive inverse for all real numbers, and a multiplicative inverse all real numbers except for
the additive identity zero (0). The sum of a number and its additive inverse is the additive identity zero (0). Another
name for additive inverse is opposite. The product of a number and its mulitplicative inverse is the multiplicative
identity one (1). Another name for multiplicative inverse is reciprocal. Every number except zero (0) has a recip-
rocal.
Distributive : There isn't a separate distributive property for addition and multiplication like there were with the
other five properties. This is because the distributive property combines addition and multiplication. Stated simply,
it says that "Multiplication distributes over addition". The left distributive property is: a (b +c)=ab +ac, and the
right distributive property is (a +b) ¢ = ac + bc. With real numbers, it is not important to distinguish between the
left and right distributive properties because of commutativity. When we talk about Matrices, which aren't commu-
tative under multiplication, then we must distinguish between the left and right properties.

FUNDAMENTALTHEOREM OF ARITHMETIC
Fundamental theorem of arithmetic states that 'Every positive composite number can be expressed as the product
of primes, uniquely except the order in which the prime factors occur. This theorem is also known as the 'Unique
Factorisation Theorem' In simple words every natural number has a factorisation into primes which is unique
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except for ordering.

Primes appear many times in arithmetic, hence the reason this is the fundamental theorem.

The Least Common Multiple (LCM) is found by taking each prime factor in all the terms the most number of times
it appears in any of the terms. The Greatest Common Factor (GCF) is found by taking each prime factor in all the
terms the least number of times it appears in any of the terms. When reducing fractions, it is easy to see what to
reduce if the numerator and denominator have been written in terms of primes. Prime numbers can be used in the
divisibility tests to arrive at divisibility tests for composite numbers. Prime factorization is the technique used to find
that unique factorization. For example, 65790 =2 x 3 x 3 x 5 x 17 x 43, and any other factorisation of 65790 into
primes would have the same factors 2, 3, 3, 5, 17 and 43, except perhaps in a different order Let us express
following number as the product of prime factors. (i) 36 (ii) 156

(i) 36

2x18 3x12 4x9
6x6
v A 4 l
2X2x%x9 3Ix3 x4 2XxX2X%x9
2%x3x%6
v v v
2x2x3x3 3x3x2x2 2x2x3x%3 v
2XxX3%x2x%x3
In each of the cases prime factors of 36 are 2 x 2 x 3 x 2,
(i) 156
156
2x78 3x52 4 %39
6x26
v v
2x2x39 3 x2x26 4x3x13 v
6x2x13
\4 \4 v
2x2x3x13 3x2x2x13 2x2x3x13 <
2x3x2x13

So, prime factors of 156 are 2 x 2 x 3 x 13

So, the prime factorisation of a number is unique.

Example: Using fundamental theorem of arithmetic prove that 8" cannot end with the digit zero for any natural
number, n. Consider the prime factorisation of (8)? = (2)3"

So, by fundamental theorem of arithmetic 23" is the only prime factorisation of 8™

If 8" is to end with 0 it must contain the prime 5 which is not possible as 2 is the only prime which it contains.
Hence, 8" will not end with zero for any value of n where n € N.
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EUCLID'S LEMMA
The critical element in the proof of the Fundamental Theorem is a lemma called Euclid's Lemma. (A lemmais a
minor theorem which is useful only to help prove some other more important theorem. Sometimes a minor theorem
is originally developed as a lemma, and then everyone decides that the lemma is actually quite important for it's
own sake, but they keep on calling ita "lemma" anyway.)
Euclid's Lemma states that if a prime number p (prime is a number > 1 such that its only factors are itselfand 1)
divides anumber N (i.e. N is a multiple of p), and N is the product of two numbers a and b, then p must divide at
least one of'a or b.
To make this more concrete, let us consider a particular prime, for example 43. So: if43 divides anumber N, and
N is the product of two numbers a and b, then 43 must divide at least one of a or b.
We can think of this as saying that there is a property of "forty-three-ness", which is possessed by any number that
is amultiple 0f43, and that if a number N has this property, and it is decomposed multiplicatively into two factors
aand b, then the "forty-three-ness" will be found in at least one of those factors.
Think of a cake, with at least one raisin in it, which has the property of "raisin-containing-ness". If we cut the cake
into two pieces A and B, at least one of those pieces must have araisin in it. Now you might be thinking: what if the
knife cuts the raisin in half? does that still count?, and to avoid that problem, we'll replace the raisins with marbles,
and use a plastic knife, so that the knife can't possibly cut the marbles in half. (If we push this analogy too far, we'll
eventually discover that the cake is made up entirely of marbles, and there isn't really any edible cake. But we
haven't got there yet.)
What if we cut cake into three pieces? Will there still be at least one marble in at least one piece? We can answer
adefinite yes by considering the division into three pieces to be a sequence of two divisions into two pieces. First
there is a division into two pieces A and BC, and there must be at least one marble in at least one of A or BC. Then
we cut BC into B and C, if there was a marble in BC then there must now be a marble in at least one of B or C.
The same kind of extension holds for Euclid's Lemma. I[f anumber N is a multiple of 43, and N is factorised into
a x b x c, then at least one of a, b or c must be a multiple of 43. We apply the lemma first for the decomposition
of N into a and b x ¢, and then we apply it a second time decomposing b x ¢ into b and c.

Proof of Euclid's Lemma : Euclid's Lemma says that : If a number N is a multiple of a prime number p, and

N =a x b, then at least one of a and b must be a multiple of p.

Another way to express this lemma is to state that there are no divisors of zero in arithmetic modulo p.

Consider an example to understand meaning of modulo arithmetic. For example, what is 3 hours after 11 o'clock?

The answer is 2 o'clock, and this implies that 11 +3 = 2. This equation makes sense if we qualify it by saying that

itholds modulo 12, which is a short-hand for "ignoring multiples of 12".

What makes modulo arithmetic interesting is that it works consistently for addition, subtraction and multiplication.

For example, consider any number equal to 11 modulo 12, such as 23 or 1727 or 120011, and add it to any

number equal to 3 modulo 12, such as 15 or 144003 or even -21, then the answer will be equal to 2 modulo 12.

The same applies to subtraction and multiplication: if we add multiples of 12 to the numbers being subtracted or

multiplied, the answer will change by a multiple of 12, and will be the "same" modulo 12.

Addition, subtraction and multiplication are quite a large part of arithmetic, but what about division? The answer

turns out to be that: Division works properly for arithmetic modulo N, ifand only if N is a prime number.

Showing that it does work properly for a prime number will turn out to be equivalent to Euclid's Lemma.

Showing that it doesn't work properly for a non-prime greater than 1 (i.e. a composite number) is actually quite

easy. For example, consider arithmetic modulo 10. Let's try dividing 6 by 2 modulo 10. It seems easy, because:
6+2=3 Wealsohave: 16+2=38

which is a different answer modulo 10, even though the numbers being divided by (i.e. 6 and 16), were the same

modulo 10. The cause of this "problem" is not hard to find: the difference between 16 and 6 is 10, which is the

modulus, and 10+2 =5 because 2 x 5= 10. This accounts for the two answers 3 and 8 differing by 5 even though
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they would have been the same if division modulo 10 worked properly. We call 2 and 5 zero divisors, because
they divide into "zero" (modulo 10) and this happens because 2 and 5 are factors of the modulus.

So we can see that division cannot work in modulo arithmetic if the modulus isn't prime. But is it guaranteed to
work if the modulus is a prime? If a number a is a zero divisor in arithmetic modulo a prime number p, thena x b
must be a multiple of p for some number b, where neither a nor b are equal to zero modulo p (i.e. neither is a
multiple ofp).

We want to show that this is impossible.

This first thing to do is to simplify the situation which we are trying to prove is impossible. We can subtract multiples
of p from both a and b until they are both less than p (because this won't alter the fact that they multiply to make a
multiple ofp).

The next thing to do is to find a smaller a. Now if a was equal to 1, then we couldn't find a smaller a. But we already
know that a can't be 1, because 1 x b= b, which wouldn't be a multiple of p.

So suppose that a is not equal to 1, but it has the property that a x b =0 modulo p for some non-zero b. The
smaller value of a that we want is the remainder after p is divided by a. This number is smaller than a, because
remainders are always smaller than the number you are dividing by. And, it must have the property of being a zero-
divisor. To show this, suppose that p=a x x +r, wherer is the remainder.

Then we can multiply thisequationbyb: bxp=bxaxx+b xr

Now b x p is amultiple of p, and b x a x x must be amultiple of p because b x a is a multiple of p. Which means
that b x r must be a multiple of p. We can think of r as inheriting the property of "being a multiple of p when
multiplied by b" from a, where the inheritance occurs via the process of dividing the modulus by the divisor and
keeping the remainder.

ris our "new" value for a. And we can repeat the process over and over again, each time inheriting the property of
being a zero divisor of p. Since each new value is smaller than the previous value, we must eventually get a value
of 1. Which we have already shown is impossible. So it must have been impossible for a to be a divisor of zero in
our arithmetic modulo p.

Which means that division does work in arithmetic modulo p.

Which means that Euclid's Lemma does hold true.

. AP . Apply Euclid's Lemma
Euclid's Division Lemma : to number a and b with a > b

Euclid's Division Lemma states that given positive integer asa=cb+dand0<d<b
aand b, there exist unique integers q and r satisfying
a=bq+r;0 < r<b.
Euclid 's Division algorithm for finding the HCF of two numbers.
Euclid's division algorithm is used to find the HCF of two numbers
by the successive use of Euclid's division lemma.
Let us find the HCF of 60 and 108 using this method. b is HCF
Step 1: Since 108> 60 applying Euclid's Lemma to 60 and 108, ofaand b
wehave, 108=60 1+48 where0 < 48 <60
Step 2: Since, remainder 48 « 0
So, again applying the division lemmato 60 and 48, we have,
60 =48 x 1 + 12 where 0 < 12 <48. NO
Step 3: Again remainder 12 » 0 so applying division .
lemmato 48 and 12, we get antmge step 1 _
? > witha=bandb=d
48 =12 x 4+ 0, Here remainder is zero. till remainder = 0
Therefore, 12 is the required HCF.
So, Euclid's algorithm can be summarised as shown in the chart.

MATHEMATICS FOUNDATION -X 6 REAL NUMBERS



Example1:
To find the HCF of 1071 and 1029, using Euclid's division algorithm.
Sol. Since, 1071 > 1029, we apply the division lemmato 1071 and 1029, to get
1071 =1029 x 1 +42
Since, remainder 42 # 0 so again applying division lemma in 1029 and 42, we get,
1029 =42 x 24 +21 again 21 # 0
Applying Euclid's Lemma again in42 and 21, we get, 42=21x 2+0
Since, remainder is zero so HCF is 21.

Example 2 :

Find the quotient and remainder q and r for the pairs of positive integers a and b given below:

(1)23,4 (i) 81,3 (iii) 12,5 (1) 23,4
When 23 is divided by 4 quotient is 5 remainder is 3.
Therefore,23=5x4+3q=5;r=3and0< r<5

(i1) 81,3 : When 81 is divided by 3 quotient is 27 and remainder is 0.
Therefore, 81 =27 x3+0.S0,q=27;r=0and 0 < r<27

(iii) 12,5 : On dividing 12 by 5, we have quotient is 2 and remainder 2.
Therefore, 12=5x2 +2.

So,q=2;r=2and 0 < r<S5.

RATIONALNUMBERS

These are real numbers which can be expressed in the form of p/q where p and q are integers and q = 0 eg.

2/3,37/15,-17/19.
All natural numbers, whole numbers and integers are rational.

Fractions :

Common fraction : Fractions whose denominator is not 10.

Decimal fraction  : Fractions whose denominator is 10 or any power of 10.
Proper fraction  : Numerator < Denominator

Improper fraction : Numerator > Denominator, mixed fraction.

Examples :

(i) 0can be written as 9 , which is rational. .. 0 isarational number.

1

a
(ii) Every integer a can be written as — , which is rational. .. Every integer is a rational number.

1
(iii) The square root of every perfect square number is rational.

e.g.. /4 =2, which s rational similarly, /9, \/16, </25 etc. are all rational.
(iv) Every terminating decimal is a rational number.

e.g.,07= l, which isrational, 0.375= ﬁ , which is rational
10 1000

(v) Every recurring decimal is a rational number
Let us consider the recurring decimal 0.333 .........

Letx=0.3333 . (1
Then, 10x=3.3333 ... 2)
1
On subtracting (1) from (2) ,we get, 9x =3 <> x = 3 = L 0.333.......... =3 which is rational.
9 3
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Irrational number :
Every non-terminating and non-repeating decimal number is known as an irrational number e.g.

0.101001000100001.... Example : \/2,/5, &t etc.

Properties of Rational numbers : If a, b, c are three rational numbers.
(i) Communicative property of addition.a+b=b+a

(ii) Associative property of addition (a+b)+c=a+(b+c)
(iii) Additive inverse at+(-a)=0

0 is identity element, —a is called inverse of a.

(iv) Communicative property of multiplicationa.b=b.a

(v) Associative property of multiplication (a.b).c=a.(b.c)

(vi) Multiplication inverse a. 1/a=1

1 is called multiplication identity & — is called multiplicative inverse of a or reciprocal of a.
a
(vii) Distributive property a.(b+c)=a.b+a.c

a c
Operations on rational numbers : For any rational numbers —~ and —, we have

b d’
S Additi 3+£_ad+bc i) Subtracti a ¢ _ad-—bc
(i) ition: "+ bd (ii) Subtraction : b d bd
a ¢ ac a ¢ a d ad
(iii) Multiplication : b X q = bd (iv) Division : b + q = b X < = e’ when ¢ # 0

Density property of Rational numbers :

Between any two different rational numbers, there are infinitely many rational numbers.
Theorem 1 :

Let p be a prime number. If p divides a2, then p divides a, where a is a positive integer.
Proof : Let the prime factorisation of a be as follows :

a=pp,...p, wherep.p,, ..., p, are primes, not necessarily distinct.

Therefore, a2 = (ppy---P) (P1Py---Py) = plng ........ P
Now, we are given that p divides a2. Therefore, from the Fundamental Theorem of Arithmetic, it follows that pis
one of the prime factors of a2. However, using the uniqueness part of the Fundamental Theorem of Arithmetic, we
realise that the only prime factors of a2 are Py»Pys -+ Py SOpisoneofpy, py, ..o Py

Now, sincea=p; p,...p,. p dividesa.

We are now ready to give a proof that /3 is irrational.
The proof'is based on a technique called ‘proof by contradiction’.

Example3:
Provethat /3 is irrational.

a
Sol. Let us assume, to the contrary, that /3 is rational. That is, we can find integers aand b (= 0) such that \/_ = b

Suppose a and b have a common factor other than 1, then we can divide by the common factor, and assume that

aand b are coprime. So, b\/§ =a
Squaring on both sides, and rearranging, we get 3b% = aZ.
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Therefore, a2 is divisible by 3, it follows that a is also divisible by 3.
So, we can write a= 3¢ for some integer c.

Substituting for a, we get 3b%2=9c2, that is, b2 = 3c2.

This means that b is divisible by 3, and so b is also divisible by 3.
Therefore, a and b have at least 3 as a common factor.

But this contradicts the fact that a and b are coprime.

This contradiction has arisen because of our incorrect assumption that /3 is rational.

So, we conclude that /3 is irrational.

Example4 :
Prove that 2 ++/3 isan irrational number.
Sol. If possible, let 2 + \/5 be arational number
(2++/3)? isrational
(4+3+2x2x.[3)isrational ; (7+4./3 )isrational.

But /3 isirrational 4 \/3 isirrational ; (7+4./3 ) is irrational which is a contradiction.
So, our supposition is wrong.

Hence (2 + /3 ) is an irrational number.

Decimal Expansion of Rational Numbers :
Theorem 2 : Letx be arational number whose decimal expansion terminates. Then x can be expressed in the

form P where p and q are coprime, and the prime factorisation of q is of the form 2"5™, where n, m are non-
q
negative integers. If we have arational number of the form P and the prime factorisation of q is of the form 2"5™,
q

. p .. . .
where n, m are non negative integers, then does — have a terminating decimal expansion?

. 4 . .
Let us see if there is some obvious reason why this is true. You will surely agree that any rational number of the form

a
b where b is a power of 10, will have a terminating decimal expansion. So it seems to make sense to convert a

rational number of the
a

form % , Where q is of the form 2"5™, to an equivalent rational number ofthe form b where b is a power of 10.

3 3 3x5 375 13 13 13x2° 104

—=0.375 (i) —=— =—==0.104
Examples: (i) = 3 23 23 5 103 (i) 125 53 23 $3 0
7 Ix5 875 14588 2% x7x521 _2°x7x521 _ 233408
_ =0.0875 (i = = =23.3408

(i) 55 80 2'x5 2'x5' 10’ ) ~625 5* 2 x5 10*

So, these examples show us how we can convert a rational number of the form p , where q is of the form 275™,
q

a
to an equivalent rational number of the form —

b where b is a power of 10. Therefore, the decimal expansion of

such arational number terminates.
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Theorem 3: Letx= p be a rational number, such that the prime factorisation of q is of the form 2"5™, where n,

q
m are non-negative integers. Then x has a decimal expansion which terminates. 0.1428571
We are now ready to move on to the rational numbers whose 7) 1;)
decimal expansions are non-terminating and recurring. 30
Once again, let us look at an example to see what is going on. 28
Here, remaindersare 3,2, 6,4,5,1,3,2,6,4,5,1, ...and divisor is 7. 20
Notice that the denominator here, i.e., 7 is clearly not of the form 275™. 14
Therefore, from Theorems 2 and 3, we know that 2(6)
1

7 will not have a terminating decimal expansion. Hence, 0 will ;‘g
not show up as a remainder and the remainders will start repeating after a Z 8
certain stage. So, we will have a block of digits, namely, 142857, repeating in 10

1 7
the quotient of 7 30

1

What we have seen, in the case of =, is true for any rational number not covered by Theorems 3 and 4. For such

7
numbers we have:

Theorem 4 : Letx= b be arational number, such that the prime factorisation of q is not of the form 2"5™, where

n, m are non-negative integers. Then, x has a decimal expansion which is non-terminating repeating (recurring).
From the discussion above, we can conclude that the decimal expansion of every rational number is either termi-
nating or non-terminating repeating.

ExampleS5:
Without performing the long division, state whether the following rational numbers will have a terminating or non-
terminating repeating decimal expansion:

.13 o 1 25 i 75
0 (i) 5o () 3 57 <7 () 1230

13
Sol. (i) o Here denominator q = 64, Prime factors of 64 = 26, which is of the form 2°5™ withn=6 and m =0

Therefore, decimal expansion will terminate.

7
(ii) 20" Here denominator =80, Prime factors of 80, which is given of the form 2"5™ withn=4 and m = 0.

Therefore, decimal expansion will terminate.
25 5 1

(i1 25" x7 2 %57 x7 B 2P x5 %7

Denominator of the above rational number is not of the form 2"5™ hence the number is repeating.
. 75 3x5x5 3

M 1230 7 25" 2x5

Since, the prime factorisation of denominator is of form 2"5™ withn=1, m=2.
So, the decimal expansion will terminate.
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Divisibility Tests : A positive integer is divisible by the given integer if the condition is met.

Every positive integer is divisible by 1. 2. Ifthe last digitisa 0,2, 4, 6, or 8

Ifthe sum of'the digits is divisible by 3 4. Ifthe last two digits are divisible by 4
Ifthe last digitisa 0 or 5 6. If the number is divisible by both 2 and 3.
Ifthe last three digits are divisible by 8 8. Ifthe sum of'the digits is divisible by 9
Ifthe last digitisa 0

. Subtract the sum of the digits in the even positions (2nd digit, 4th digit, etc) from the sum of the digits in the odd

positions (1stdigit, 3rd digit, etc). If this difference is divisible by 11, then the number is divisible by 11.

A test may be constructed for numbers such as 12, 15, and 18 according to the following rule. If anumber can be
factored so that the factors are relatively prime (that is, they have no common factors besides one), then the test for
divisibility for that number the requirement that the number be divisible by the factors. 12 is a factor if 3 and 4 are
both factors, but not necessarily if 2 and 6 are factors. 18 is a factor if 2 and 9 both are, but not necessarily if 3 and
6 both are. 14 is a factor if both 2 and 7 are, but there isn't an easy test for 7.

Divisibility by 7,11, and 13
Gustavo Toja from Brasil came up with an interesting method of divisibility by 7, the method also works to verify
the divisibility by 11 and 13. Accordingly, let F be one of these numbers, 7, 11, or 13.
Any given number A written in the decimal system admits a representation into two digit numbers:
For example, 1234567 =100.1 +10%.23 + 102.45 + 67.
As we see, the leftmost member of the representation may be a one-digit number.
The procedure is as follows: Find the remainders d; of division of a; by F. Alternately, replace d; by (F —d;) and
write the result in the reverse order. The resulting number will be divisible by F depending whether A is itself
divisible or not.
Ifthe divisibility of A is all we need to determine, it does not matter where you start replacing d; with its additive
inverse
(F—d;). One can begin with the first digit as well as the second. However, it is quite advantageous to make sure
that the first digit of the number written in reverse has not been modified. Thus given a sequence of remainders,
replace them with their additive inverses starting from the second remainder on the right and move leftwards. This
will guarantee that the rightmost remainder has not been changed.
If'you prefer to think in terms of "moving rightwards", then the rule is this: Let n be the number of the 2-digit parts
of A. Forn even, replace di starting with dn-1, the leftmost remainder; for n odd, start with dn-2, the second
remainder.
Example: check that A=38391787 is divisible by 7.
First split A into two digit numbers: 38 39 17 87
Next find the remainders of division of these numbers by 7: 3433
Replace every other remainder with its additive inverse modulo 7: 4443
Consider the number having the above digits but written in the reverse order: 3444. Apply the same procedure to
3444 3444=62=12= 21. Since21 is divisible by 7, so is 3444 and also 38391787
Example: F=11and A=4711927.

4711927 = 4585=> 7535=>5357T= 5357= 92= 22= 22.
Conclude: since 22 is divisible by 11, so is 5357, and so is 4711927.
Example: F =13, A=61255051.
61255051 =>9121112=412212.
In this case, the remainders written in the reverse order give the sequence: 12 2 12 4. To form a number, the left
digit of the two digit "parts" must be carried over:

122124=12324=12324=11011 213111131 = 1131 = 1131 =11 5=>25=52.
since 52 is divisible by 13, so is 12324 and, consequently, 61255051.
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ADDITIONAL EXAMPLES

Example1:

If'p is prime and p | ab, then show thatp|aorp|b.
Sol. - pl|ab

Therefore, there exist an integer ¢ such that

ab=pc ... (N " pisprime
. eitherp|a or (p,a)=1
If p|a, wearedone. If (p,a)=1
.. There exist integers m and n such that pm +an= 1
Multiplying both sides by b, pmb+(ab)n=b
on putting ab =pc from (1) o pmb+pen=b or p(mb+cn)=b .. p|b

Example2 :

Show that 54/3 isan irrational number.
Sol.  Ifpossible, let 5¢/3 be arational number.

So, 5+/3 = p/qwhere p and q are co prime integers and q= 0 So, V3= %

So, RHS is arational number and hence /3 isalso rational which is a contradiction.
So our supposition is wrong. Hence, 5 is an irrational number.

Example3:
When 2236 is divided by 17 the remainder would be —
A1 (B) 16 ©) 14 (D) None of these

T e
2°+1 (27+))
By remainder theorem when f(x) is divided by x + a the remainder = f (- a)
Here f(a) = (22)* andx=2%and a= 1

. Remainder=f(-1)=(-1)0*=1

Sol.  (A). When 223¢ is divided by 17 then =

Example4:
Find the LCM of 2x* —32, 2x*—4x3 + 8x% — 16x
Sol. p(x)=2x*-32=2(x*-16)
=2[(x3)?-42)=2(x2+4) (x> -4 =2 (x2+4) (x+2) (x-2)
q(x)=2x*—4x3+8x2 — 16x
=2x (X3 -2x2+4x—8) =2x [x2 (x —2) + 4 (x=2)] =2x (x —2) (x2 + 4)
- LCMof p(x)and q (x)=2x (x—2) (x +2) (x2 +4)=2x (x2—4) (x2 +4) =2x (x* = 16) =2x> - 32x

ExampleS:
The HCF of two polynomials is X2 — I and their LCM is x* — 10x2 +9. If one of the polynomials is
x3—3x2—x+3, find the other.
Sol.  Giventhat HCF of p (x) and q (x) =x2— 1 =(x+ 1) (x— 1)
Also, LCM of p (x) and q (x) =x*—10x2+ 9 =x*-9x2—x2+9
=X (=9 - (-9 =(x*-9 (- )= (x+3) (x=3) (x + 1) (x= 1)
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andp (x)=x3-3x2—x+3=x2(x-3)-(x-3)=(x-3) (2-D=x-3)(x+ 1) (x—-1)
p(x).q(x) = (HCF).(LCM)
400 = (HCF) (LCM) _ (x+ D(x = D(x+3)(x=3)(x + D(x - 1)
p(x) (x=3)(x+D(x-1)
=x+3)x+D)E-1)=x+3)x2-1)=x3+3x2—x-3

Example6:
Find the HCF and LCM of 6, 72 and 120, using the prime factorisation method.
Sol. Wehave: 6=2x3,72=23x32120=23x3 x5
Here, 2! and 3! are the smallest powers of the common factors 2 and 3 respectively.
So, HCF (6,72, 120) =21 x31=2x3 =6
23,32 and 5! are the greatest powers of the prime factors 2, 3 and 5 respectively involved in the three numbers.
So, LCM (6, 72, 120) =23 x 32 x 51 =360.

Example 7 :
Two bills of Rs 6075 and Rs 8505 respectively are to be paid separately by cheques of same amount. Find the
largest possible amount of each cheque.
Sol.  Largest possible amount of cheque will be the HCF (6075, 8505).
Applying Euclid's division lemma to 8505 and 6075, we have, 8505 =6075 x 1 +2430
Since, remainder 2430 = 0 again applying division lemma to 6075 and 2430
6075=2430 x 2+ 1215. Again remainder 12150
So, again applying the division lemma to2430 and 1215, 2430=1215%x2+0
Here the remainder is zero. So, HCF =1215
Therefore, the largest possible amount of each cheque will be 1215.

Example 8 :
Using Euclid's division lemma show that square of any positive integer is either of the form 3m or 3m + 1 for some
integer m.

Sol.  Leta, b=3 be any positive integers
Therefore, using Euclid's lemma, we have, a=3q+rwhere 0 <r<3
Sor can take any of the values 0, 1, .2
Therefore, a can take either of the values 3q, 3q+ 1 or 3q+2
Now, 39)2=992=3.3¢%;: (3q+1)2=9¢g2+6q+1=3q(3q+2)+1
(3q+2)2=9q2+12q+4=9¢>+12q+3+1=3(3q2+4q+ 1)+ 1
Now, if any of the above numbers is divided by 3 then remainderis 0 or 1.
So, it is of the form 3m or 3m + 1 for some integer m.

Example9:
. : o I L35 17 o 327
Write the decimal expansion using prime factorisation : (i) T6 (i) 3 (iii) 500
35 35x5' 35x625 21875 17 3
Sol. (i) —= _ _17x5 _17><l25_2l25=2.125

=2.1875 (i) 3

D16~ 25" 10 10000 P x5 (10 1000

327 _ 327 327 327x2 654
500 5x5x5x2x2 5°x22 5x23  (10)°

(iii =0.654
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Example 10 :

Sol.

Show that any positive odd integer is of the 8q + 1, 8q + 3, 8q + 5, 8q + 7, where q is some integer.
Let aand b =8 be two positive integers where a is odd.

Applying division lemmaa=8q+rwhere 0 <r<§

So, r can take any of the values 0, 1,2, 3,4, 5,6, 7
Therefore,a=8q,8q+1,8q+2,8q+3,8q+4,8q+5,8q+6,8q+7,8q+8

Since, ais odd.

Therefore, a cannot take values 8q, 8q +2, 8q +4, 8q + 8 since they can expressed as multiples of 2.
So, a will take values 8q +1,8q+3,8q+5,8q+7.

Also,8q+5=8q+8-3 =8(q+1)-3 =8q'—3,whereq'=q+8q+7=8q+8-3 =8q'—1
So, every positive odd integer is of the form 8q+ 1, 8q = 3.

Example 11 :

Sol.

A garden consists of 135 rose plants planted in certain number of columns. There are another set of 225
marigold plantlets which is to be planted in the same number of columns. What is the maximum number of
columns in which they can be planted?

To find the maximum number of columns we need to find the HCF(135, 225)

Using Euclid's algorithm, we have, 225=135x1+90

Since, remainder 90 = 0

So, again applying division lemma, we have, 135=90 x 1 +45

Remainder 45 # 0 again using Euclid 's division lemma, we have, 90 =45 x 2 +0. Since, remainder is 0

So, HCF =45 . Therefore, 45 is the maximum number of columns in which the plants can be planted.

Example 12 :

Sol.

Find the GCD of : 14x3 + 14, 42 (x2+4x+3) (x2—x+1)
PX)=14x3+14=14(3+ D)=2xTx+ 1) (x2-x+1)
q) =42 (x2+4x+3)(x2-x+1)
=42 (x243x+x+3)(x2-x+1) =42 [x (x +3) +(x +3)] (x2=x+1)
=2x3x7(x+3)(x+1)(x2-x+1)
o GCDofp(x)andq(x) =14 (x+ 1) (x2—x+ =14 (x3+1)
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