NUMBER SYSTEM

NUMBER SYSTEM

Number systems are the technique to represent numbers in the computer system architecture, every value that you are saving or getting into/from computer memory has a defined number system.

Computer architecture supports following number systems.

- Binary number system
- Octal number system
- Decimal number system

Hexadecimal (hex) number system

BINARY NUMBER SYSTEM

A Binary number system has only two digits that are **0 and 1**. Every number (value) represents with 0 and 1 in this number system. The base of binary number system is 2, because it has only two digits.

OCTAL NUMBER SYSTEM

Octal number system has only eight (8) digits from **0 to 7**. Every number (value) represents with 0,1,2,3,4,5,6 and 7 in this number system. The base of octal number system is 8, because it has only 8 digits.

ODM Educational Group

DECIMAL NUMBER SYSTEM

Decimal number system has only ten (10) digits from **0 to 9**. Every number (value) represents with 0,1,2,3,4,5,6, 7,8 and 9 in this number system. The base of decimal number system is 10, because it has only 10 digits.

HEXADECIMAL NUMBER SYSTEM

A Hexadecimal number system has sixteen (16) alphanumeric values from **0 to 9** and **A to F**. Every number (value) represents with 0,1,2,3,4,5,6, 7,8,9,A,B,C,D,E and F in this number system. The base of hexadecimal number system is 16, because it has 16 alphanumeric values. Here A is 10, B is 11, C is 12, D is 14, E is 15 and F is 16.

					_
Number syster	n	Base(Radix)	Used digits	Example	
Binary		2	0,1	(11110000)2	
Octal	FDI	8 AT	0,1,2,3,4,5,6,7	(360)8	IP
Decimal		10	0,1,2,3,4,5,6,7,8,9	(240)10	
Hexadecimal		16 CI	0,1,2,3,4,5,6,7,8,9, A,B,C,D,E,F	(F0) ₁₆	w 🖊

1. DECIMAL TO BINARY

ODM Educational Group

To convert Number system from **Decimal Number System** to **Any Other Base** is quite easy; you have to follow just two steps:

A) Divide the Number (Decimal Number) by the base of target base system (in which you want to convert the number: Binary (2), octal (8) and Hexadecimal (16)).
B) Write the remainder from step 1 as a Least Signification Bit (LSB) to Step last as a Most Significant Bit (MSB).

ODM Educational Group

DECIMAL TO OCTAL

ODM Educational Group

Deci	Decimal to Octal Conversion			Result		
Deci	mal Numb	ber is : (1	.2345)1	0		
8	12345	1	1 LSB			
8	1543		7	Octal N	lumber is	
8	192	(D	(30071	.)8	
8	24	(0		,-	
	3	3	3 MSI	3		-
Deci Exar	mal to He	xadecim	al Conv	version	Result	AVX
De <mark>c</mark> i	mal Numb	oer is : (1	.2345)1	0		
16	12345		9	LSB	Hevadeci	
16	771	_	3		(3039) ₁₆	
16	48	6	0			
8	3		3	MSB	iging	your romorrow

ODM Educational Group

Exan Deci	n ple 2 mal Numb	er is : (725) 1	0	ā	Hexadecimal Number is
16	725	5	5	LSB	Convert
16	45	13	D		10, 11, 12, 13, 14, 15
	2	2	2	MSB	A, B, C, D, E, F
ļ	2	2	2	INISB	A, B, C, D, E, F

BINARY TO OTHER

A) Multiply the digit with 2(with place value exponent). Eventually add all the multiplication becomes the Decimal number.

CATIONAL GRO

Changing your Tomorrow 📕

ODM Educational Group

Binary: 11100101 =	11	100	101	anging your Tomorrow
	011	100	101	Pad the most significant digits with zeros if
				necessary to complete a group of three.

Then, look up each group in a table:

Binary:	000	001	010	011	100	101	110	111
Octal:	0	1	2	3	4	5	6	7

ODM Educational Group

1. BINARY TO HEXADECIMAL

An equally easy way to convert from binary to hexadecimal is to group binary digits into sets of four, starting with the least significant (rightmost) digits.

Binary: 11100101 = 1110 0101

Th<mark>en, look up eac</mark>h group in a table:

Bi <mark>nar</mark> y:		000	0	000	01	00	010	00	11	0100	0101	0110	0111	
Hexadecimal:		0		1		2		3		4	5	6	7	
Binary:	1	000	10	01	101	.0	101	1 1	100	1101	1110	1111		
Hexadecimal:	8		9	Λ	A	-	В	C		D	E	F		
		111		10		4		\downarrow		V A		6	2X(JUP
Binary =		TTT	00	10.	1									
Hexadecimal =	=		E	ļ	5 = 1	E5	hex	$\frac{1}{r}$	α	ina	VOI	ir 7	om	orrow

1. OCTAL TO BINARY

Converting from octal to binary is as easy as converting from binary to octal. Simply

look up each octal digit to obtain the equivalent group of three binary digits.

Octal:	0	1	2	3	4	5	6	7
Binary:	000	001	010	011	100	101	110	111

Octal =	3	4	5	5	
Binary =	011	100	101	= 0 <mark>1110</mark> 010 <mark>1 bin</mark> ar	γ

1. OCTAL TO DECIMAL

The conversion can also be performed in the conventional mathematical way, by showing each digit place as an increasing power of 8.

345 octal = (3 * 8²) + (4 * 8¹) + (5 * 8⁰) = (3 * 64) + (4 * 8) + (5 * 1) = 229

ODM Educational Group

1. HEXADECIMAL TO BINARY

Converting from hexadecimal to binary is as easy as converting from binary to hexadecimal. Simply look up each hexadecimal digit to obtain the equivalent group of four binary digits.

Hexadecimal:	0	1	2	3	4	5	6	7	
Bi <mark>nary:</mark>	0000	<mark>000</mark> 1	0010	00 <mark>11</mark>	<mark>01</mark> 00	0101	0110	0111	
	_								
H <mark>exa</mark> decimal:	8	9	A	В	C	D	E	F	

He <mark>xadecim</mark> al =	A	2	D	E	
Binary =	1010	0010	1101	1110	= 1010001011011110 binary

It is a key for binary subtraction, multiplication, division. There are four rules of binary addition.

ODM Educational Group

Case	Α	+	В	Sum	Carry
1	0	+	0	0	0
2	0	+	1	1	0
3	1	+	0	1	0
4	1	+	1	0	1

In fourth case, a binary addition is creating a sum of (1 + 1 = 10) i.e. 0 is written in the given column and a carry of 1 over to the next column.

ENNY

Example – Addition

11	carry
0011010	= 2610
+0001100	= 1210 7 ROUP
0100110	= 3810 Tomorrow
	11 0011010 +0001100 0100110

ODM Educational Group

Rules of Binary Multiplication

ODM Educational Group

Binary Division

Binary division is the repeated process of subtraction, just as in decimal division.

101010 / 000110 = 000111

ODM Educational Group

