

MATHEMATICS

CHAPTER NUMBER :~ 2

CHAPTER NAME:~ POLYNOMIALS

SUB TOPIC :~ ALGEBRAIC IDENTITIES

CHANGING YOUR TOMORROW

Website: www.odmegroup.org

Email: info@odmps.org

Toll Free: **1800 120 2316**

Sishu Vihar, Infocity Road, Patia, Bhubaneswar- 751024

PREVIOUS KNOWLEDGE TEST

Without actual division, prove that $2x^4 - 5x^3 + 2x^2 - x + 2$ is actually divisible by $x^2 - 3x + 2$.

LEARNING OUTCOME:~

Students will learn a) algebraic identities.

(ii) $2x^2 + 7x + 3$ (iii) $6x^2 + 5x - 6$ (iv) $3x^2 - x - 4$ Solution: (i) We have, $12x^2 - 7x + 1 = 12x^2 - 4x - 3x + 1$ = 4x (3x - 1) -1 (3x - 1)

Question 4.

(i) $12x^2 - 7x + 1$

= (3x - 1) (4x - 1)

Thus, $12x^2 - 7x + 3 = (2x - 1)(x + 3)$

Factorise

(ii) We have, $2x^2 + 7x + 3 = 2x^2 + x + 6x + 3$ = x(2x + 1) + 3(2x + 1)= (2x + 1)(x + 3)Thus, $2 \times 2 + 7x + 3 = (2x + 1)(x + 3)$

(iii) We have,
$$6x^2 + 5x - 6 = 6x^2 + 9x - 4x - 6$$

= $3x(2x + 3) - 2(2x + 3)$
= $(2x + 3)(3x - 2)$
Thus, $6x^2 + 5x - 6 = (2x + 3)(3x - 2)$

(iv) We have,
$$3x^2 - x - 4 = 3x^2 - 4x + 3x - 4$$

= $x(3x - 4) + 1(3x - 4) = (3x - 4)(x + 1)$
Thus, $3x^2 - x - 4 = (3x - 4)(x + 1)$

Question 5.

Factorise

(i)
$$x^3 - 2x^2 - x + 2$$

(ii)
$$x^3 - 3x^2 - 9x - 5$$

(iii)
$$x^3 + 13x^2 + 32x + 20$$

(iv)
$$2y^3 + y^2 - 2y - 1$$

Solution:

(i) We have,
$$x^3 - 2x^2 - x + 2$$

Rearranging the terms, we have $x^3 - x - 2x^2 + 2$

$$= x(x^2 - 1) - 2(x^2 - 1) = (x^2 - 1)(x - 2)$$

$$= [(x)^2 - (1)^2](x-2)$$

$$= (x-1)(x+1)(x-2)$$

$$-(x-1)(x+1)(x-2)$$

$$[: (a^2 - b^2) = (a + b)(a - b)]$$

Thus,
$$x^3 - 2x^2 - x + 2 = (x - 1)(x + 1)(x - 2)$$


```
(ii) We have, x^3 - 3x^2 - 9x - 5

= x^3 + x^2 - 4x^2 - 4x - 5x - 5,

= x^2 (x + 1) - 4x(x + 1) - 5(x + 1)

= (x + 1)(x^2 - 4x - 5)

= (x + 1)(x^2 - 5x + x - 5)

= (x + 1)[x(x - 5) + 1(x - 5)]

= (x + 1)(x - 5)(x + 1)

Thus, x^3 - 3x^2 - 9x - 5 = (x + 1)(x - 5)(x + 1)
```



```
(iii) We have, x^3 + 13x^2 + 32x + 20

= x^3 + x^2 + 12x^2 + 12x + 20x + 20

= x^2(x + 1) + 12x(x + 1) + 20(x + 1)

= (x + 1)(x^2 + 12x + 20)

= (x + 1)(x^2 + 2x + 10x + 20)

= (x + 1)[x(x + 2) + 10(x + 2)]

= (x + 1)(x + 2)(x + 10)

Thus, x^3 + 13x^2 + 32x + 20

= (x + 1)(x + 2)(x + 10)
```



```
(iv) We have, 2y^3 + y^2 - 2y - 1

= 2y^3 - 2y^2 + 3y^2 - 3y + y - 1

= 2y^2(y - 1) + 3y(y - 1) + 1(y - 1)

= (y - 1)(2y^2 + 3y + 1)

= (y - 1)(2y^2 + 2y + y + 1)

= (y - 1)[2y(y + 1) + 1(y + 1)]

= (y - 1)(y + 1)(2y + 1)

Thus, 2y^3 + y^2 - 2y - 1

= (y - 1)(y + 1)(2y + 1)
```


https://www.youtube.com/watch?v=_IUCfKBHAlO

"As great a genius as Archimedes could not invent analytical geometry, for the algebraic knowledge necessary for such as achievement was not available in his time..."

~ Nathan H. Court...

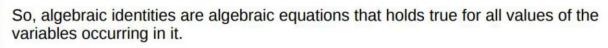
Algebraic Identities

What is a mathematical identity?

An identity is an equality relation A = B where A and B can be variables.

Here, A and B can be differently defined functions but the equality between the two still holds.

For example: $\cos^2 x + \sin^2 x = 1$ is a trigonometric identity where x is a variable and for any value of x the above result holds true.



Relevance:

Algebraic identities are very important in mathematics. They are helpful in computing the values without actually performing lengthy calculations and for factorizing the polynomials.

Algebraic Identities

1.
$$(a + b)^2 = a^2 + 2ab + b^2 = (-a - b)^2$$

2.
$$(a-b)^2 = a^2 - 2ab + b^2$$

3.
$$(a-b)(a+b) = a^2 - b^2$$

4.
$$(a+b+c)^2 = a^2+b^2+c^2+2ab+2bc+2ca$$

5.
$$(a+b-c)^2 = a^2 + b^2 + c^2 + 2ab - 2bc - 2ca$$

6.
$$(a-b+c)^2 = a^2+b^2+c^2-2ab-2bc+2ca$$

7.
$$(-a+b+c)^2 = a^2+b^2+c^2-2ab+2bc-2ca$$

8. $(a-b-c)^2 = a^2+b^2+c^2-2ab+2bc-2ca$

9.
$$(a+b)^3 = a^3 + b^3 + 3ab (a+b)$$

10.
$$(a-b)^3 = a^3 - b^3 - 3ab (a-b)$$

11.
$$a^3 + b^3 = (a + b)^3 - 3ab(a + b)$$

$$= (a + b) (a^2 - ab + b^2)$$

12.
$$a^3 - b^3 = (a - b)^3 + 3ab(a - b)$$

= $(a - b)(a^2 + ab + b^2)$

13.
$$a^3 + b^3 + c^3 - 3abc = (a + b + c) (a^2 + b^2 + c^2 - ab - bc - ca)$$

if
$$a + b + c = 0$$
 then $a^3 + b^3 + c^3 = 3abc$

Evaluation:~

- 1. Write in expanded form $(3a+4b)^3$.
- 2. Evaluate:~(999)³.

HOMEWORK:-EXERCISE - 2.5 QUESTION NUMBER-1 TO 7

AHA:~

1.x+y=12, xy=27 find
$$x^3 + y^3$$
.

2.
$$x^4 + \frac{1}{x^4} = 47$$
, find $x^3 + \frac{1}{x^3}$.

THANKING YOU ODM EDUCATIONAL GROUP

