

MATHEMATICAL INDUCTION

THEOREM-I

If $P(n)$ is a statement depending upon n, then to prove it by induction, we proceed as follows :

(i) Verify the valdity of P (n) for $n = 1$

(ii) Assume that P (n) is true for some positive integer m and then using it establish the validity of P (n) for $n=m+1$. Then P (n) is true for each $n \in N$.

THEOREM-II

If P (n) is a statement depending upon n, but beginning $\mathbf S$ with some positive integer k, then to prove P (n), we proceed as follows :

(i) Verify the valdity of P (n) for $n = k$

(ii) Assume that the statement is true for $n = m \ge k$. Then using it establish the validity of P (n) for $n = m + 1$. Then P (n) is true for each $n \ge k$.

SUMS USEFUL RESULT BASED ON PRINCIPLE OF MATHEMEMATICAL INDUCTION

For any natural number n

(1)
$$
1+2+3+4+......+n=\sum_{n=1}^{\infty} \frac{n(n+1)}{2}
$$

(2)
$$
1^2 + 2^2 + 3^2 + 4^2 + \dots + n^2 = \sum n^2 = \frac{n(n+1)(2n+1)}{6}
$$

(3)
$$
1^3 + 2^3 + 3^3 + 4^3 + \dots + n^3 = \sum n^3 = (\sum n)^2 = \left\{ \frac{n(n+1)}{2} \right\}^2
$$

(4)
$$
1^4 + 2^4 + 3^4 + 4^4 + \dots + n^4 = \frac{n (n+1) (2n+1) (3n^2 + 3n - 1)}{30}
$$

Assume P(m+1)

(5)
$$
1^5 + 2^5 + 3^5 + 4^5 + \dots + n^5 = \frac{n^2(n+1)^2(2n^2 + 2n - 1)}{12}
$$

(6)
$$
2+4+6+......+2n = \sum 2n = n (n + 1)
$$

\n(7) $1+3+5+.....+ (2n - 1) = \sum (2n - 1) = n^2$
\n(8) $x^n - y^n = (x - y) (x^{n-1} + x^{n-2}y + x^{n-3}y^2 + + xy^{n-2} + y^{n-1})$
\n(9) $x^n + y^n = (x + y) (x^{n-1} - x^{n-2}y + x^{n-3}y^2 + - xy^{n-2} + y^{n-1})$
\nwhen n is odd positive integer.

NOTE :

- (i) Product of r consecutive integers is divisible by r!
- (ii) For $x \neq y$, $x^n y^n$ is divisible by
	- (a) $x + y$ if n is even (b) $x y$ if n is even or odd
- (iii) For solving objective question related to natural numbers we find out the correct alternative by negative examination of this principle. If the given statement is $P(n)$, then by

putting $n = 1, 2, 3, \dots$ in P(n) we decide the correct answer. We also use the above formulae established by this principle to find the sum of n terms of a given series. For this we first express T_n as a polynomial in n and then for finding S_n , we put Σ before each term of this polynomial and then use above resulsts of Σ n, Σ n², Σ n³ etc.

ADDITIONAL EXAMPLES

Example 1 :

Prove that $n < 2^n$ for all positive integers n.

ATHEMATICAL INDUCTION
\n
$$
\begin{array}{ll}\n\text{perading upon n, then to prove it by} & \text{putting n = 1, 2, 3, in P (n) we decide the correct answer. } \n\text{is follows: } \n\text{in follows: } \n\text{by (n) for n = 1} & \text{for if } n \text{ is not lower. } \n\text{is follows: } \n\text{by (n) for n = 1} & \text{for } n \text{ is not lower. } \n\text{by (n) for n = 2} & \text{for } n \text{ is not lower. } \n\text{by (n) for n = 3} & \text{for } n \text{ is not even. } \n\text{by (n) for n = 4} & \text{for } n \text{ is not even. } \n\text{by (n) for n = 5} & \text{for } n \text{ is not even. } \n\text{by (n) for n = 6} & \text{for } n \text{ is not even. } \n\text{by (n) for n = 7} & \text{for } n \text{ is not even. } \n\text{by (n) for n = 8} & \text{for } n \text{ is not even. } \n\text{by (n) for n = 1} & \n\text{by (n) for n = 2} & \n\text{by (n) for n = 4} & \n\text{by (n) for n = 5} & \n\text{by (n) for n = 6} & \n\text{by (n) for n = 7} & \n\text{by (n) for n = 8} & \n\text{by (n) for n = 6} & \n\text{by (n) for n = 6} & \n\text{by (n) for n = 7} & \n\text{by (n) for n = 8} & \n\text{by (n) for n = 1} & \n\text{by (n)
$$

 products of every pair of squares of the first n natural Prove by mathematical induction that the sum of the

numbers is
$$
\frac{1}{360}
$$
 n (n² - 1) (5n + 6).

Sol. Let
$$
p(n) = 1^2 \cdot 2^2 + 1^2 \cdot 3^2 + \dots + 1^2 \cdot n^2 + 2^2 \cdot 3^2 + 2^2 + 4^2
$$

6
+........+2². n²+........+ (n-1)². n² =
$$
\frac{1}{360}
$$
 n (n²-1)(5n+6)

$$
\left[\frac{2}{2} \right]^2 = 1^2 \cdot 2^2 = \frac{2 \times 3 \times 15 \times 16}{360}
$$
 is true

Assume P(m+1) =
$$
\frac{1}{360}
$$
 m (m² – 1) (4m² – 1) (5m+6)

$$
+\frac{(m+1)^2 m(m+1)(2m+1)}{6}
$$

$$
x \sin \alpha \tan \alpha \tan \alpha
$$
\n
$$
= \sum n^2 = \frac{n(n+1)(2n+1)}{12}
$$
\n
$$
= \frac{n(n+1)(2n+1)}{12}
$$
\n
$$
= \frac{n(n+1)(2n+1)}{12}
$$
\n
$$
= \frac{n(n+1)(2n+2)}{12}
$$
\n
$$
= \frac{n(n+1)(2n+1)}{12}
$$
\n
$$
= \frac{n^2(n+1)^2(2n^2+2n-1)}{12}
$$
\n
$$
= \frac{n(n+1)(2n+1)}{12}
$$
\n
$$
= \frac{n(n+1)(2n+1)}{12}
$$
\n
$$
= \frac{n(n+1)(2n+1)}{12}
$$
\n
$$
= \frac{n^2(n+1)^2(2n^2+2n-1)}{12}
$$
\n
$$
= \frac{n(n+1)(2n+1)}{12}
$$
\n
$$
= \frac{n(n+1)(2n+1)}{360}
$$
\n
$$
= \frac{n(n+1)(2m+1)}{360}
$$
\n<math display="</math>

$$
= \frac{m(m+1)(2m+1)}{360} (10m^3 + 57m^2 + 107m + 66)
$$

$$
m(m+1)(2m+1)
$$

$$
=\frac{m(m+1)(2m+1)}{360} (m+2)(2m+3)(5m+11)
$$

 $= (m+1)(m^2+2m)(4(m+1)^2-1(5m+11))$ $=\{(m+1)(m+1)^2-1\}$ $\{4(m+1)^2-1\}$ $\{m+1\}+6$ This being of the same form the RHS of P (m), $P(m + 1)$ is true. Hence, $P(n)$ is true by mathematical induction.

Example 3 :

Prove by mathematical induction or that the sum or otherwise that 3^{2n+2} , 5^{2n} - 3^{3n+2} , 2^{2n} is divisible by 1053 for $n \leq 1$.

Sol. Let
$$
f(n) = 3^{2n+2} (5^{2n} - 3n, 2^{2n}) = 9^{n+1} (25^n - 12^n)
$$

\n $= 81.9^{n-1} (25^n - 12^n)$
\nNow, $a^n - b^n$ is divisible by $a - b$
\n $\therefore 25^n - 12^n$ is divisible by $25 - 12 = 13$
\n $\therefore f(n) = 81.9^{n-1} \cdot 13 \times k = 1053.9^{n-1} \cdot k$
\nHence $f(n)$ is divisible by 1053.

Example 4 :

Find P_{k+1} for the following.

(a)
$$
P_k
$$
: $S_k = \frac{k^2 (k+1)^2}{4}$
\n(b) P_k : $S_k = 1 + 5 + 9 + ... + [4 (k-1) - 3] + (4k-3)$
\n(c) P_k : $S_k \ge 2k+1$

Sol. (a)
$$
P_{k+1}: S_{k+1} = \frac{(k+1)^2 (k+1+1)^2}{4}
$$
 [Replace k by k+1]

4 (b) P^k : S^k = 1 + 5 + 9 + . . . + {[4 (k + 1)–1] – 3}+ [4 (k+3) – 3] = 1 + 5 + 9 + . . . + (4k – 3) + (4k + 1) (c) Pk+1 : 3k+1 2 (k + 1) + 1 3k+1 2k + 3. n 1 2 2 7 (7 1) 49 (64) ⁷⁸⁴ 4 4

Example 5 :

Find
$$
\sum_{n=1}^{7} n^3 = 1^3 + 2^3 + 3^3 + 4^3 + 5^3 + 6^3 + 7^3
$$

Sol. Using the formula for the sum of the cubes of the first n positive integers, you obtain the following.

(b)
$$
P_k: S_k = 1 + 5 + 9 + ... + \{[4(k+1)-1]-3\} + [4(k+3)-3]
$$

\t $= 1 + 5 + 9 + ... + (4k-3) + (4k+1)$
(c) $P_{k+1}: 3^{k+1} \ge 2(k+1)+1$
\t $3^{k+1} \ge 2k+3$.
\t\t\t\t**Sol.** E
\t\t\t\t $\sum_{n=1}^{7} n^3 = 1^3 + 2^3 + 3^3 + 4^3 + 5^3 + 6^3 + 7^3$
\t\t\t\t $\sum_{n=1}^{7} n^3 = 1^3 + 2^3 + 3^3 + 4^3 + 5^3 + 6^3 + 7^3$
\t\t\t\t $\sum_{n=1}^{7} n^3 = 1^3 + 2^3 + 3^3 + 4^3 + 5^3 + 6^3 + 7^3 =$
\t\t\t\t $\sum_{n=1}^{7} n^3 = 1^3 + 2^3 + 3^3 + 4^3 + 5^3 + 6^3 + 7^3 =$
\t\t\t\t $\frac{7^2(7+1)^2}{4} = \frac{49(64)}{4} = 784$
\t\t\t\t $\sum_{n=1}^{7} n^3 = 784$
\t\t\t\t $\sum_{n=1}^{7} n^3 = 784$
\t\t\t\t $\sum_{n=1}^{7} (7+1)^2 = 49(64) = 784$
\t\t\t\t $\sum_{n=1}^{7} (7+1)^2 = 784$
\t\t\t\t $\sum_{n=1}^{7$

Check this sum by adding the numbers 1, 8, 27, 64, 125, 216 and 343.

Example 6 :

Use mathematical induction to prove the following formula. $S_n = I + 3 + 5 + 7 + ... + (2n - 1) = n^2$. .

Sol. Mathematical induction consists of two distinct parts. First, you must show that the formula is true when $n = 1$.

(1) When $n = 1$, the formula is valid, because $S_1 = 1 = 1^2$. The second part of mathematical induction has two steps. The first step is to assume that the formula is valid for some integer k. The second step is to use this assumption to prove that the formula is valid for the next integer, $k + 1$. (2) Assuming that the formula

$$
S_k = 1 + 3 + 5 + 7 + ... + (2k - 1) = k^2
$$

is true, you must show that the formula $S_{k+1} = (k + 1)^2$ is true. $S_{k+1} = 1 + 3 + 5 + 7 + ... + (2k-1) + [2 (k+1) - 1]$ $= [1 + 3 + 5 + 7 + ... + (2k-1)] + (2k+2-1)$ $= S_k + (2k +$ $+(2k+1)$ [Group terms to form S_k] $=k^2+2k+$ $+ 2k + 1$ [Replace S_k by k²] $=(k+1)^2$

Combining the results of parts (1) and (2), you can conclude by mathematical induction that the formula is valid for all positive integer values of n.

STUDY MATER
 EXECUTE THE EXECUTE OF THE CONDUMATER
 EXECUTE TO ALL THE CONDUMATER
 EXECUTE 2 2 2 2 is divisible by 1053 for
 32^{2n+2} , 52^{2n} , 3^{2n+2} , 2^{2n} is divisible by 1053 for
 $= 2 \times 2 \times 12^{2n}$
 Example 3:

We by mathematical induction or that the sum or other

wise that 3^{2n+2} , $5^{2n} - 3^{3n+2}$, 2^{2n} is divisible by 1063 for

wise that 3^{2n+2} , $5^{2n} - 3^{3n+2}$, 2^{2n} is divisible by 1063 for

Sol. L **STUDY MATERIAL: MAT**

cal induction or that the sum or other

true. Space the time signal time is the formula S_{k+1}
 -3^{3n+2} , 2^{2n} is divisible by 1053 for
 $S_{k+1} = [1+3+5+7+...+(2k-1)+[2(1+3+2+1)]$
 $S_{k+1} = [1+3+5+7$ ⁼ 2 2 (k 1) (k 2) cal induction or that the sum or other-
 $x^3 - 3^{2n+2}$, $x^2 - 3^{2n+2}$ is divisible by 1053 for
 $x^2 - 12^n$
 $x^3 - 3^{2n-2} = 9^{n+1} (25^n - 12^n)$
 $x^4 + 1 + 1^2 (k + 1) - 1 - 3 + [4(k+3) - 3]$
 $x + 1 + 1 + (4(k-1) - 1) - 3 + [4(k+3) - 3]$
 $x^$ It occasionally happens that a statement involving natural numbers is not true for the first $k - 1$ positive integers but is true for all values of $n \geq k$. In these instances, you use a slight variation of the Principle of Mathematical Induction in which you verify P_k rather than P_1 . This variation is called the extended principle of mathematical induction. To see the validity of this variation, note from Figure that all but the first $k - 1$ dominoes can be knocked down by knocking over the kth domino. This suggests that you can prove a statement P_n to be true for $n \geq k$ by showing that P_k is true and that P_k implies P_{k+1} . = $k^2 + 2k + 1$ [Replace S_k by k^2]

= $(k + 1)^2$

combining the results of parts (1) and (2), you can conclude

y mathematical induction that the formula is valid for all

ositive integer values of n.

occasionally happ = (k+1)²

= (k+1)²

Combining the results of parts (1) and (2), you can conclude

by mathematical induction that the formula is valid for all

positive integer values of n.

It occasionally happens that a statement in = S_k + (2k + 1) [Group terms to form S_k]

= k + 2k + 1 [Replace S_k by k²]

= (k + 1)²

bining the results of parts (1) and (2), you can conclude

anthematical induction that the formula is valid for all

tive i positive integer values of n.

to cossionally happens that a statement involving natural

to cossionally happens that a statement involving natural

is true for all values of $n \ge k$. In these instances, you use a

slight mathematical induction that the formula is valid for all
title integre values of n.
ccasionally happens that a statement involving natural
there is not true for the first k - 1 positive integers but
tue for all values of s of n.

s that a statement involving natural

r the first k - 1 positive integers but

in $\geq k$. In these instances, you use a

Principle of Mathematical Induction

inciple of mathematical induction is

variation, note t a statement involving natural
first k – 1 positive integers but
k. In these instances, you use a
ple of Mathematical Induction
her than P_1 . This variation is
of mathematical induction. To
tion, note from Figure that in that the formula is valid for all

in.

in.

and a statement involving natural
 \geq K. In these instances, you use a
 \geq K. In these instances, you use a

aciple of Mathematical Induction

after than P₁. This va is true for all values of $n \ge k$. In these instances, you use a
sight variation of the Principle of Mathematical Induction
sight variation of the Principle of Mathematical Induction
in which you verify P_k rather than P variation of the Principle of Mathematical Induction

inch you verify P_k rather than P_1 . This variation is

the extended principle of mathematical induction. To

te validity of this variation, note from Figure that a nbers is not true for the first k - 1 positive integers but
ue for all values of $n \ge k$. In these instances, you use a
ht variation of the Principle of Mathematical Induction
which you verify P_k rather than P_1 . This nt variation of the Principle of Mathematical induction

which you verify P_K rather than P₁. This variation is

ed the extended principle of mathematical induction. To

the validity of this variation, note from Figure

Example 7 :

Find a formula for the following finite sum :

$$
\frac{1}{1.2} + \frac{1}{2.3} + \frac{1}{3.4} + \frac{1}{4.5} + \dots + \frac{1}{n(n+1)}
$$

Sol. Begin by writing out the first few sums.

in which you verify
$$
P_k
$$
 rather than P_1 . This variation is
\ncalled the extended principle of mathematical induction. To
\nsee the validity of this variation, note from Figure that all
\nbut the first $k - 1$ domains, can be knocked down by
\nknowledge over the kth domino. This suggests that you can
\nprove a statement P_n to be true for $n \ge k$ by showing that
\n P_k is true and that P_k implies P_{k+1} .
\n $\text{while } 7$:
\nFind a formula for the following finite sum :
\n $\frac{1}{1.2} + \frac{1}{2.3} + \frac{1}{3.4} + \frac{1}{4.5} + \dots + \frac{1}{n (n + 1)}$
\nBegin by writing out the first few sums.
\n $S_1 = \frac{1}{1.2} = \frac{1}{2} = \frac{1}{1+1}$; $S_2 = \frac{1}{1.2} + \frac{1}{2.3} = \frac{4}{6} = \frac{2}{3} = \frac{2}{2+1}$
\n $S_3 = \frac{1}{1.2} + \frac{1}{2.3} + \frac{1}{3.4} + \frac{1}{4.5} = \frac{9}{60} = \frac{3}{5} = \frac{3}{4+1}$
\n $S_4 = \frac{1}{1.2} + \frac{1}{2.3} + \frac{1}{3.4} + \frac{1}{4.5} = \frac{48}{60} = \frac{4}{5} = \frac{3}{4+1}$
\nFrom this sequence, it appears that the formula for the kth
\nsum is
\n $S_k = \frac{1}{1.2} + \frac{1}{2.3} + \frac{1}{3.4} + \frac{1}{4.5} + \dots + \frac{1}{k(k+1)} = \frac{k}{k+1}$
\nTo prove the validity of this hypothesis, use mathematical
\ninduction, as follows. Note that you have already verified
\nthe formula for $n = 1$, so you can begin by assuming that
\nthe formula is valid for $n = k$ and trying to show that it is
\nvalid for $n = k + 1$.
\n $S_{k+1} = \left[\frac{1}{1.2} + \frac{1}{2.3} + \frac{1}{3.4} + \frac{1}{4.5} + \dots + \frac{1}{k(k+1)} \right] + \frac{1}{(k+1)($

From this sequence, it appears that the formula for the kth sum is

$$
S_k = \frac{1}{1.2} + \frac{1}{2.3} + \frac{1}{3.4} + \frac{1}{4.5} + \dots + \frac{1}{k(k+1)} = \frac{k}{k+1}
$$

To prove the validity of this hypothesis, use mathematical induction, as follows. Note that you have already verified the formula for $n = 1$, so you can begin by assuming that the formula is valid for $n = k$ and trying to show that it is valid for $n = k + 1$.

Begin by writing out the first few sums.
\n
$$
S_1 = \frac{1}{1.2} = \frac{1}{2} = \frac{1}{1+1}
$$
; $S_2 = \frac{1}{1.2} + \frac{1}{2.3} = \frac{4}{6} = \frac{2}{3} = \frac{2}{2+1}$
\n $S_3 = \frac{1}{1.2} + \frac{1}{2.3} + \frac{1}{3.4} = \frac{9}{12} = \frac{3}{4} = \frac{3}{3+1}$
\n $S_4 = \frac{1}{1.2} + \frac{1}{2.3} + \frac{1}{3.4} + \frac{1}{4.5} = \frac{48}{60} = \frac{4}{5} = \frac{3}{4+1}$
\nFrom this sequence, it appears that the formula for the kth sum is
\n $S_k = \frac{1}{1.2} + \frac{1}{2.3} + \frac{1}{3.4} + \frac{1}{4.5} + \dots + \frac{1}{k(k+1)} = \frac{k}{k+1}$
\nTo prove the validity of this hypothesis, use mathematical induction, as follows. Note that you have already verified the formula for n = 1, so you can begin by assuming that the formula is valid for n = k and trying to show that it is valid for n = k + 1.
\n $S_{k+1} = \left[\frac{1}{1.2} + \frac{1}{2.3} + \frac{1}{3.4} + \frac{1}{4.5} + \dots + \frac{1}{k(k+1)}\right] + \frac{1}{(k+1)(k+2)}$
\n $= \frac{k}{k+1} + \frac{1}{(k+1)(k+2)} = \frac{k(k+2)+1}{(k+1)(k+2)}$
\n $= \frac{k^2 + 2k + 1}{(k+1)(k+2)} = \frac{(k+1)^2}{(k+1)(k+2)} = \frac{k+1}{k+2}$.
\nSo, the hypothesis is valid.

So, the hypothesis is valid.

QUESTION BANK

EXERCISE

- **Q.1** $2^n > n^2$ when $n \in N$ such that (A) $n > 2$ (B) $n > 3$ (C) n < 5 (D) n \ge 5
- **Q.2** If $n \in N$ and n is odd, then $n(n^2 1)$ is divisible by $(A) 24$ (B) 16 (C) 32 (D) 8
- **Q.3** If $49^n + 16n + \lambda$ is divisible by 64 for all $n \in N$, then the least negative internal value of λ is – $(A) -2$ (B) –1 **EXERCISE**
 (2)
 (1) (2) 10^{-5}
 (3) (2) 10^{-5}
 (4) (2) 10^{-5}
 (5) (2) (6) (7)
 (8) (3) (9)
 (10)
 CULESTION BANK

EXERCISE

S when n ∈ N such that

S (B) n ≥ 3

S and n is odd, then n (n² - 1) is divisible by -

(B) 16

(D) 8

(D) a - 4ⁿ - 1

(D) -4

(D) -4

(B) -1

(D) -4

(B) -1

(D) -4

(D) -4

(D) -4

(D) -(C) n⁻² (n⁻²)

(A) n⁻² (h) n⁻² (h) n⁻² (h) n⁻² (h) n⁻² (h) n⁻² (h) 2

(C) n⁻² (n) n (B) n>3

and n is odd, then n (n² = 1) is divisible by –

(B) 16

(D) 16

(D) 8

(D) 8

(D) 8

(D) -4

(D) Equal to the formula

Lead negative internal value of λ is divisible by 64 for all n \in N, then the

Lead negative internal value of λ is (S)

(C)-3 (B)-1

C(-)-3 (B)-1

C(-)-3 (C)--4 (C) S(E)--1 (C) S(E)--1 (C)
	- (C) 3 (D) 4
- **Q.4** For $n \in N$, $x^{n+1} + (x+1)^{2n-1}$ is divisible by (A) x (B) $x + 1$ $(C) x^2 + x + 1$ $+x+1$ (D) x^2-x+1
- **Q.5** The sum of the terms in the nth bracket of the series $(1) + (2 + 3 + 4) + (5 + 6 + 7 + 8 + 9) + \dots$ is – $(A) (n-1)³ + n³$ $(B) (n+1)³ + 8n²$

(C)
$$
\frac{(n+1)(n+2)}{6n}
$$
 (D) $(n+1)^3 + n^3$

Q.6 If $n \in N$ and $n > 1$, then –

(A)
$$
n! > \left(\frac{n+1}{2}\right)^n
$$
 (B) $n! \ge \left(\frac{n+1}{2}\right)^n$

$$
1! < \left(\frac{n+1}{2}\right)^n \tag{D) None of these}
$$

Q.7 If ω is an imaginary cube root of unity then value of expression 1. $(2-\omega)$. $(2-\omega^2)$ + 2. $(3-\omega)$. $(3-\omega^2)$ + $+(n-1)(n-\omega)$. $(n-\omega^2)$ is -

(A)
$$
\frac{1}{4}n^2(n+1)^2
$$
 (B) $\frac{1}{4}n^2(n+1)^2 - n$ (A) $\left(\frac{n(n+1)}{2}\right)^2$

(C)
$$
\frac{1}{6}n^2(n+1)^2 - 1
$$
 (D) None of these

Q.8 $\frac{3}{1^2} + \frac{5}{1^2 + 2^2} + \frac{7}{1^2 + 2^2 + 3^2} + \dots$ upto n terms, is equal to–

(A)
$$
\frac{6n}{n+1}
$$
 (B) $\frac{9n}{n+1}$ (C) $\frac{12n}{n+1}$ (D) $\frac{5n}{n+1}$ (A)

Q.9 If
$$
A = \begin{pmatrix} 1 & k \\ 0 & 1 \end{pmatrix}
$$
, then for some $n \in N$, A^n is equal to –

(A)
$$
\begin{pmatrix} n & k \\ 0 & n \end{pmatrix}
$$
 (B) $\begin{pmatrix} 1 & k^n \\ 0 & 1 \end{pmatrix}$ (C) $\begin{pmatrix} 1 & nk \\ 0 & 1 \end{pmatrix}$ (D) $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

Q.10
$$
\frac{3}{4} + \frac{15}{16} + \frac{63}{64} + \dots \dots \dots \dots \text{to n terms} =
$$

$$
\frac{\sqrt{3}}{4} \sqrt{4NK}
$$
\n
$$
\frac{3}{4} + \frac{15}{16} + \frac{63}{64} + \dots \dots \text{ to } n \text{ terms } =
$$
\n(A) $n - \frac{4^n}{3} - \frac{1}{3}$ (B) $n + \frac{4^{-n}}{3} - \frac{1}{3}$
\n(C) $n + \frac{4^n}{3} - \frac{1}{3}$ (D) $n - \frac{4^n}{3} + \frac{1}{3}$
\nLet S(K) = 1 + 3 + 5 + \dots + (2K - 1) = 3 + K². Then which

$$
\text{(D) } n + \frac{4^n}{3} - \frac{1}{3} \qquad \qquad \text{(D) } n - \frac{4^n}{3} + \frac{1}{3}
$$

- 3 3 (B) ⁿ 4 1 MORTHOWARE DIEARNING

MORTHOWARE DIEARNING

(A) $n - \frac{4^n}{3} - \frac{1}{3}$

(B) $n + \frac{4^{-n}}{3} - \frac{1}{3}$

(C) $n + \frac{4^n}{3} - \frac{1}{3}$

(D) $n - \frac{4^n}{3} + \frac{1}{3}$

Let S(K) = 1 + 3 + 5 + + (2K – 1) = 3 + K². Then which

of t 3 3 (D) ⁿ 4 1 **Q.11** Let $S(K) = 1 + 3 + 5 + \dots + (2K - 1) = 3 + K^2$. Then which of the following is true? (A) S (1) is correct (B) $S(K) \Rightarrow S(K+1)$ A) $n - \frac{4^n}{3} - \frac{1}{3}$ (B) $n + \frac{4^{-n}}{3} - \frac{1}{3}$

(B) $n + \frac{4^{-n}}{3} - \frac{1}{3}$

(D) $n - \frac{4^n}{3} + \frac{1}{3}$

(D) $n - \frac{4^n}{3} + \frac{1}{3}$

et S(K) = 1 + 3 + 5 + + (2K – 1) = 3 + K². Then which

f the following is true $\frac{3}{4} + \dots$ to n terms =
 $-\frac{1}{3}$ (B) $n + \frac{4^{-n}}{3} - \frac{1}{3}$

(D) $n - \frac{4^n}{3} + \frac{1}{3}$
 $+ 3 + 5 + \dots$ $+ (2K - 1) = 3 + K^2$. Then which

wing is true?

(B) $S(K) \Rightarrow S(K + 1)$
 $> S(K + 1)$

le of mathematical induction can be used t $+\frac{15}{16} + \frac{63}{64} + \dots$ to n terms =

(B) n + $\frac{4^{n}}{3} - \frac{1}{3}$

(B) n + $\frac{4^{n}}{3} - \frac{1}{3}$

(D) n $-\frac{4^{n}}{3} + \frac{1}{3}$

(D) n $-\frac{4^{n}}{3} + \frac{1}{3}$

xt S(K) = 1 + 3 + 5 + + (2K – 1) = 3 + K². Then which
 $\frac{15}{16} + \frac{63}{64} + \dots \dots \text{ to } n \text{ terms} = \frac{1}{16} - \frac{4^n}{3} - \frac{1}{3}$ (B) $n + \frac{4^{n}}{3} - \frac{1}{3}$
 $n + \frac{4^n}{3} - \frac{1}{3}$ (D) $n - \frac{4^n}{3} + \frac{1}{3}$
 $\frac{4^n}{3} - \frac{1}{3}$ (D) $n - \frac{4^n}{3} + \frac{1}{3}$
 $\frac{5}{(K)} = 1 + 3 + 5 + \dots + (2K - 1) = 3 + K^2$
	-
	- (C) $S(K) \Rightarrow S(K+1)$

(D) Principle of mathematical induction can be used to prove the formula

Q.12 Statement-1: For every natural number $n \ge 2$

$$
\frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \dots + \frac{1}{\sqrt{n}} > \sqrt{n}
$$

Statement -2: For every natural number $n \ge 2$

$$
\sqrt{n(n+1)} < n+1
$$

5

S and n is odd, then (n^2-1) is divisible by -

(B) 16

(B) 4

(B) 16

(B) 11

2.11

1.1 Let S(K) = 1+3 + 5 + $\overline{2}$ (A) Statement-1 is true, Statement-2 is true; Statement-2 Q.10 $\frac{4}{4} + \frac{4}{16} + \frac{4}{64} + \dots$to n terms =

is divisible by –

(A) $n - \frac{4^n}{3} - \frac{1}{3}$ (B) $n + \frac{4^{-n}}{3} - \frac{1}{3}$

all $n \in \mathbb{N}$, then the

(C) $n + \frac{4^n}{3} - \frac{1}{3}$ (D) $n - \frac{4^n}{3} + \frac{1}{3}$

Q.11 Let S(K)=1+ For all n ∈ N, then the
 $\frac{4}{3} - \frac{1}{3}$ (B) n + $\frac{4^{-n}}{3} - \frac{1}{3}$

or all n ∈ N, then the
 $\frac{1}{2}$

or all n ∈ N, then the
 $\frac{1}{2}$

O.11 Let S(K) = 1+3 + 5 ++(2K-1) = 3 + K². Then which

sible by

o (B) 8

(B) 8

(B) 8

(B) 8

(B) -4

(B) -2

(B) -2

(B) -2

(B) -2

(B) -1

(B) -1

(B) -1
 (D) 8
 $x + 1$

EN, $x^{n+1} + (x + 1)^{2n-1}$ is divisible by $\begin{array}{ll}\n\text{(B)}-1 & \text{(C)} n + \frac{4^n}{3} - \frac{1}{3} & \text{(D)}-4 \\
\text{(B)}-1 & \text{(B)}-1 & \text{(B)}-1 & \text{(C)}-4 & \text{(D)}-4 & \text{(D)}-4 \\
\text{(D)}-4 & \text{(D)}-4 & \text{(D)}-1 & \text{(D)}-4 & \text{(D)}-1 & \text{(D)}-4 \\
\text{(D)}-4 & \text{(D)}-2 & \text{($ + $\frac{15}{16}$ + $\frac{63}{64}$ +to n terms =

(b) n + $\frac{4^{-n}}{3}$ - $\frac{1}{3}$

(c) n + $\frac{4^{-n}}{3}$ - $\frac{1}{3}$

(d) n + $\frac{4^{-n}}{3}$ - $\frac{1}{3}$

(d) n + $\frac{4^{-n}}{3}$ - $\frac{1}{3}$

(d) n + $\frac{4^{-n}}{3}$ + $\frac{1}{3}$ is a correct explanation for Statement-1 (B) Statement-1 is true, Statement -2 is true; Statement-2 is not a correct explanation for Statement-1 (C) Statement-1 is true, Statement -2 is false (D) Statement-1 is false, Statement-2 is true nder n ≥ 2

mber n ≥ 2

2 is true; Statement-2

2 is true; Statement-2

nt-1

2 is true; Statement-2

ement-1

2 is false

2 is true
 $\frac{n(n+1)}{2}$
 $\frac{n(n-1)}{3}$ S (K) \Rightarrow S(K+1)

duction can be used to

umber n \ge 2

umber n \ge 2

-2 is true; Statement-2

eent-1

-2 is true; Statement-2

atement-1

-2 is false

tt-2 is true

($\frac{n(n+1)}{2}$)³

($\frac{n(n-1)}{3}$)² mber n \ge 2

2 is true; Statement-2

2 is true; Statement-2

nt-1

2 is false

2 is false

2 is true
 $\left(\frac{n(n+1)}{2}\right)^3$
 $\left(\frac{n(n-1)}{3}\right)^2$ umber n ≥ 2

umber n ≥ 2

-2 is true; Statement-2

eent-1

-2 is true; Statement-2

tement-1

-2 is false

t-2 is true
 $\left(\frac{n(n+1)}{2}\right)^3$
 $\left(\frac{n(n-1)}{3}\right)^2$ umber n ≥ 2

-2 is true; Statement-2

eent-1

-2 is true; Statement-2

tement-1

-2 is false

t-2 is true
 $\left(\frac{n(n+1)}{2}\right)^3$
 $\left(\frac{n(n-1)}{3}\right)^2$ ment -2 is true; Statement-2

atement-1

ment -2 is true; Statement-2

r Statement-1

ment -2 is false

ment-2 is true

(B) $\left(\frac{n(n+1)}{2}\right)^3$

(D) $\left(\frac{n(n-1)}{3}\right)^2$

(B) 13

(D) 14

2=

(B) $\frac{n(2n-1)(2n+1)}{3}$

(D) $\frac{n(2$ rue; Statement-2

rue; Statement-2

tt-1

dalse

rue
 $\left(-1\right)^3$
 $\left(-1\right)^2$
 $\left(-1\right)(2n+1)$

3
 $\left(-1\right)(n+1)$

3 rue; Statement-2

t-1

alse

rue
 $\left(-1\right)^3$
 $\left(-1\right)^2$
 $\left(-1\right)(2n+1)$

3
 $\left(-1\right)(n+1)$

3

¹ 2 2 n (n 1) ⁴ ¹ 2 2 n (n 1) n ¹ 2 2 n (n 1) 1 (D) None of these **Q.8** 2 2 2 2 2 2 3 5 7 1 1 2 1 2 3 n 1 n 1 n 1 n 1 1 k 0 1 , then for some n N, Aⁿ n k 0 n (B) ⁿ 1 k 0 1 (C) 1 nk 0 1 (D) 1 0 0 1 **Q.13** 3 3 3 3 1 2 3 n ⁼ (A) ² n(n 1) 2 (B) 2 (C) ³ n(n 1) 2 (D) 3 (A) n (n 1) (2n 1) (C) n (n 1) (n 1) (D) n (2n 1) (n 1)

Q.14
$$
10^{2n-1} + 1
$$
 is divisible by –
(A) 12 (B) 13
(C) 11 (D) 14

$$
Q.15 \quad 1^2 + 3^2 + 5^2 + \dots + (2n - 1)^2 =
$$

(A)
$$
\frac{n (n-1) (2n+1)}{3}
$$
 (B) $\frac{n (2n-1) (2n+1)}{3}$

(C)
$$
\frac{n (n-1) (n+1)}{3}
$$
 (D) $\frac{n (2n-1) (n+1)}{3}$

Q.16
$$
3^{2n+2} - 8^n - 9
$$
 is divisible by –
\n(A) 2 (B) 3
\n(C) 4 (D) 8

(C)
$$
\frac{2n}{(n-1)}
$$
 (D) $\frac{2n}{(n+1)}$

Method	STUDV MATERIAL: MATFENAL: MATFEMATICS				
$\frac{1}{3.5} + \frac{1}{5.7} + \frac{1}{7.9} + \dots + \frac{1}{(2n+1)(2n+3)} =$	$Q.22 \left(1 + \frac{3}{1}\right)\left(1 + \frac{2}{4}\right)\left(1 + \frac{2}{4}\right)\left(1 + \frac{(2n+1)}{n^2}\right) =$				
(A) $\frac{n}{(2n+3)}$	(B) $\frac{n}{(2n-3)}$	(A) $2(n+1)^2$	(B) $(n+1)^2$		
(C) $\frac{n}{3(2n+3)}$	(D) $\frac{2n}{(2n-3)}$	(A) $(1 + 1)$	(B) $(n+1)^2$		
(C) $\frac{n}{3}$	(D) $\frac{2n}{(2n-3)}$	(A) $(n+1)$	(B) $(n+1)^2$		
(A) $\frac{(2n+1)^{2n+1}+3}{4}$	(B) $\frac{(n-1)^{2n+1}+3}{4}$	(C) $\frac{(2n-1)^{2n+1}+3}{4}$	(D) $\frac{(2n-1)^{2n+1}+3}{2}$	(A) $\frac{(3^{2n}-1)}{2}$	(B) $\frac{(3^{n}-1)}{2}$
(C) $\frac{(2n-1)3^{n+1}+2}{4}$	(D) $\frac{(2n-1)3^{n+1}+3}{2}$	(A) $\frac{(3^{n}+1)}{2}$	(B) $\frac{(3^{n}-1)}{3}$		
(C) $\frac{(3^{n}+1)}{3}$	(D) $\frac{(3^{n}+$				

(7) **(B)**. Sum =
$$
\sum_{n=2}^{n} (n-1) (n - \omega) (n - \omega^2)
$$

\n
$$
= \sum_{n=1}^{n} (n-1) [(n^2 - n (\omega + \omega^2) + \omega^3]
$$
\n[\because when $n = 1$, sum = 0]
\n
$$
= \sum (n-1) (n^2 + n + 1)
$$
\n
$$
= \sum (n^3 - 1) = \sum n^3 - \sum 1 = \frac{1}{4} n^2 (n + 1)^2 - n
$$
\n(8) **(A).**
\n
$$
T_n = \frac{2n + 1}{1^2 + 2^2 + + n^2} = \frac{(2n + 1)6}{n(n + 1)(2n + 1)}
$$
\n
$$
= \frac{6}{n(n + 1)} = 6 \left[\frac{1}{n} - \frac{1}{n + 1} \right]
$$
\n
$$
\Rightarrow S_n = 6 \left[\left(1 - \frac{1}{2} \right) + \left(\frac{1}{2} - \frac{1}{3} \right) + + \left(\frac{1}{n} - \frac{1}{n + 1} \right) \right]
$$
\n
$$
= 6 \left[1 - \frac{1}{n + 1} \right] = \frac{6n}{n + 1}
$$
\n(9) **(C)**. We find that
\n
$$
A^2 = \begin{pmatrix} 1 & k \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & k \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2k \\ 0 & 1 \end{pmatrix}
$$
\n
$$
A^3 = \begin{pmatrix} 1 & 2k \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & k \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 3k \\ 0 & 1 \end{pmatrix}
$$
\nSimilarly, $A^4 = \begin{pmatrix} 1 & 4k \\ 0 & 1 \end{pmatrix}$, $A^5 = \begin{pmatrix} 1 & 5k \\ 0 & 1 \end{pmatrix}$ etc.
\nSo, $A^n = \begin{pmatrix} 1 & nk \\ 0 & 1 \end{pmatrix}$
\n(10) **(B)**. For $n = 1$, we have
\n<math display="</p>

le by 24 is
\nbe true.
\n
$$
\Rightarrow S_n = 6 \left[\left(1 - \frac{1}{2} \right) + \left(\frac{1}{2} - \frac{1}{3} \right) + ... + \left(\frac{1}{n} - \frac{1}{n+1} \right) \right]
$$
\n
$$
= -1
$$
\n
$$
= 6 \left[1 - \frac{1}{n+1} \right] = \frac{6n}{n+1}
$$
\n(fλ = -1
\n(fλ = -1
\n(fλ = -1
\n(fλ = 1
\n(9) (C). We find that
\n
$$
A^2 = \begin{pmatrix} 1 & k \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & k \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2k \\ 0 & 1 \end{pmatrix}
$$
\n
$$
A^3 = \begin{pmatrix} 1 & 2k \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & k \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 3k \\ 0 & 1 \end{pmatrix}
$$
\n
$$
+x + 1,
$$
\nSimilarly, $A^4 = \begin{pmatrix} 1 & 4k \\ 0 & 1 \end{pmatrix}, A^5 = \begin{pmatrix} 1 & 5k \\ 0 & 1 \end{pmatrix}$ etc.
\nSo, $A^n = \begin{pmatrix} 1 & nk \\ 0 & 1 \end{pmatrix}$
\n $3 + 4 = 9$
\n(10) (B). For n = 1, we have
\n $n - \frac{4^n}{3} - \frac{1}{3} = 1 - \frac{4}{3} - \frac{1}{3} = -\frac{2}{3}$
\n $n + \frac{4^{-n}}{3} - \frac{1}{3} = 1 + \frac{4^{-1}}{3} - \frac{1}{3} = \frac{3}{4}$
\n $\times \left(\frac{n+1}{2} \right)^n$
\n $n + \frac{4^n}{3} - \frac{1}{3} = 1 + \frac{4}{3} - \frac{1}{3} = \frac{5}{4}$
\nAlso, for n = 2, we have
\n $n + \frac{4^{-n}}{3} - \frac{1}{3} = 2 + \frac{1}{48} - \frac{1}{3} = \frac{27}{1$

(10) (B). For
$$
n = 1
$$
, we have

A³ =
$$
\begin{pmatrix} 1 & 2k \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & k \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 3k \\ 0 & 1 \end{pmatrix}
$$

\nSimilarly, A⁴ = $\begin{pmatrix} 1 & 4k \\ 0 & 1 \end{pmatrix}$, A⁵ = $\begin{pmatrix} 1 & 5k \\ 0 & 1 \end{pmatrix}$ etc.
\nSo, Aⁿ = $\begin{pmatrix} 1 & nk \\ 0 & 1 \end{pmatrix}$
\n= 9 (10) (B). For n = 1, we have
\n $n - \frac{4^n}{3} - \frac{1}{3} = 1 - \frac{4}{3} - \frac{1}{3} = -\frac{2}{3}$
\n $n + \frac{4^{-n}}{3} - \frac{1}{3} = 1 + \frac{4^{-1}}{3} - \frac{1}{3} = \frac{3}{4}$
\n $\frac{+1}{2}$
\n $n + \frac{4^n}{3} - \frac{1}{3} = 1 + \frac{4}{3} - \frac{1}{3} = 2$
\n $\frac{+1}{2}$
\n $n - \frac{4^{-n}}{3} + \frac{1}{3} = 1 - \frac{4^{-1}}{3} + \frac{1}{3} = \frac{5}{4}$
\nAlso, for n = 2, we have
\n $n + \frac{4^{-n}}{3} - \frac{1}{3} = 2 + \frac{1}{48} - \frac{1}{3} = \frac{27}{16}$ and $\frac{3}{4} + \frac{15}{16} = \frac{27}{16}$
\nHence, option (B) is correct.

Similarly,
$$
A^4 = \begin{pmatrix} 1 & 4k \ 0 & 1 \end{pmatrix}
$$
, $A^5 = \begin{pmatrix} 1 & 5k \ 0 & 1 \end{pmatrix}$ etc.
\nSo, $A^n = \begin{pmatrix} 1 & nk \ 0 & 1 \end{pmatrix}$
\n**(B).** For $n = 1$, we have
\n
$$
n - \frac{4^n}{3} - \frac{1}{3} = 1 - \frac{4}{3} - \frac{1}{3} = -\frac{2}{3}
$$
\n
$$
n + \frac{4^{-n}}{3} - \frac{1}{3} = 1 + \frac{4^{-1}}{3} - \frac{1}{3} = \frac{3}{4}
$$
\n
$$
n + \frac{4^n}{3} - \frac{1}{3} = 1 + \frac{4}{3} - \frac{1}{3} = 2
$$
\n
$$
n - \frac{4^{-n}}{3} + \frac{1}{3} = 1 - \frac{4^{-1}}{3} + \frac{1}{3} = \frac{5}{4}
$$
\nAlso, for $n = 2$, we have
\n
$$
n + \frac{4^{-n}}{3} - \frac{1}{3} = 2 + \frac{1}{48} - \frac{1}{3} = \frac{27}{16}
$$
\nHence, option (B) is correct.

(11) (C). $S(K) = 1 + 3 + 5 + 7 + \dots + (2K - 1) = 3 + K^2$ For $K = 1$ $L.H.S. = 1$ and $R.H.S. = 4$ Option (A) cancel out \therefore we know $1 + 3 + 5 + 7 + \dots + (2K - 1) = K^2$ but in question S (K) = $3 + K^2$ \therefore by principle of mathematical induction **(O.B. SOLUTIONS** STUDY MAT

CO. S(K) = 1 + 3 + 5 + 7 + + (2K - 1) = 3 + K²

Eor K = 1 and R.H.S. = 4

E.H.S. = 1 and R.H.S. = 4

Deption (A) cancel out
 \therefore we know 1 + 3 + 5 + 7 + + (2K - 1) = K²

Let $\{ \because S(K) \text{ is not true for } K = 1, 2, 3, \dots \}$ **(12) (B).** Let p (n) = $\frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + ... + \frac{1}{\sqrt{n}}$ $p(2) = \frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} > \sqrt{2}$ 1 1 ² **10.8 SOLUTIONS** STUDY MATE:
 $\begin{aligned}\n &\text{1,1} & \text{1,2} & \text{1,3} & \text{1,3} & \text{1,4} & \text{1,5} & \text{1,6} \\
 &\text{1,6} & \text{1,7} & \text{1,8} & \text{1,9} \\
 &\text{1,1} & \text{1,1} & \text{1,1} & \text{1,1} \\
 &\text{1,1} & \text{1,1} & \text{1,1} \\
 &\text$ **(0.8. SOLUTIONS** STUDY MATE
 $=1+3+5+7+......+(2K-1)=3+K^2$
 \Rightarrow by 6. Thus, P(1) is true for n = i

c., P(k) = 1 (1+1)(1+2) = 1 × 2

cancel out

c. P(k) = b(k) = the first interval of $S(K) = 3 + K^2$
 \Rightarrow be the $k(k+1)(k+2) = 6\lambda$ **EXERCISE ANTIFALL: MATHEMAL: MATHEMATICS**

CC, S(K)=1+3+5+7+......+(2K-1)=3+K²

For K=1

Let us assume that $\frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + ...$, $\frac{1}{\sqrt{8}} \times \sqrt{k}$ is true.

Let us assume that $\frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + ...$, $\frac{1}{\sqrt$ 1 2 k For K = 1

LHS. = 1 and RHS. = 4

LOP (A) example of the state and HS.

Cyricol (A) example 1

option (A) example of the state and HS.
 \therefore we know 1+3+5+7+.... + (2K - 1) = K2
 \therefore thet, $(k+1)(k+2)$ is divisible by 6 CH.S. = 4

Step 2: For m = k, Let P(k) be true,
 $3 + 5 + 7 + + (2K - 1) = K^2$
 $3 + 5 + 7 + + (2K - 1) = K^2$

Step 3: For m = k +1, we have to show that P(k + 1) is true,

of mathematical induction

of $\frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + + \frac{1$ +5+7+.......+(2K-1)=3+K²

H.S.-4

H.S.-2 For n=k, Left P(k) be true,
 $\text{Step 2: For } n = k, \text{ Let } P(n)$ (k + $\therefore p(k+1) = \frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \dots + \frac{1}{\sqrt{k}} + \frac{1}{\sqrt{k+1}} > \sqrt{k+1}$ has to be true. \therefore L.H.S. > $\sqrt{k} + \frac{1}{\sqrt{k+1}} = \frac{\sqrt{k+1} + \sqrt{k+1}}{\sqrt{k+1}}$ 1 = 3 + K²

athematical induction

ie. P(k + 1) is this blue by 6.

athematical induction
 $P(k+1) = (k + 1)(k + 1 + 2)$

= (k + 1) (k + 2) + 3 (k + 1) (k + 2)

= 6x + 3 (k + 1) is the + 2)

= 6x + 3 (k + 1) is the + 2)

= 6 and hematical induction
 $P(k+1) = (k+1)(k+1+2)$
 $P(k+1) = (k+1)(k+1+2)$
 $= k(k+1)(k+2)$
 $= k(k+1)(k+2)$
 $= 6k+3(k+1)(k+2)$
 $= 6k+3(k+1)(k+2)$
 $= 6k+6+6+6(k+1)$
 $= 6k+6+6+6(k+1)$

Thus, P (k i) is to these (b, + 0) is tive.

Thus, P (3+5+7+......+(2K-1)=K²

S(K)=3+K²

S(K)=3+K²

S(K)=3+K²

S(K)=3+K²

S(K)=3+K²

S(K)=3+K²

S(K)=3+K²

(sep 3: For n = k + 1, we have to show the

i.e. P(k+1) is divisible by 6.

P(k+1) is divisible by 6.
 = 3 + K²

= 3 + K²

= 3 + K²

= 3 + K²

= 8 + K²

= (k + 1) s divisible b 6.

= (k + 1) (k + 2) + 3 (k + 1) + 1) (k + 2) + 3 (k + 2)

= (k + 1) (k + 2) + 3 (k + 1) (k + 2)

= 6λ + 3 (k + 1) is divisible by 6.
 SINTER (SET)

(SET)

(SET)

(SET)

(SET)

(B). Let p (n) = $\frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + ... + \frac{1}{\sqrt{n}}$

(B). Let p (n) = $\frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + ... + \frac{1}{\sqrt{n}}$

(B). Let p (n) = $\frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + ... + \frac{1}{\sqrt{n}}$

(Pa) is not use C $\therefore \frac{\sqrt{k(k+1)}+1}{\sqrt{k+1}} > \frac{k+1}{\sqrt{k+1}} = \sqrt{k+1}$ (k + 1) = $\frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + ... + \frac{1}{\sqrt{n}}$

= 6. + 6t = 6(x+ 1)

Thus, P (k + 1) is true.

Thus, P (k + 1) is true.

∴ P (k is true.

∴ P (k is true.

Hence, by principle of mathematical induction, 1

sassume that $\$ Thus, P (k + 1) is divisible by 6.

Therefore, P (k + 1) is divisible by 6.

Therefore, P (k + 1) is true.

Hence, by principle of mathematical in

sume that $\frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \frac{1}{\sqrt{k}} > \sqrt{k}$ is true.

Hen s not true for K = 1, 2, 3,........)
 $= \frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + ... + \frac{1}{\sqrt{n}}$
 \Rightarrow $= 6\lambda + 3(k + 1)(k + 2) + 3k$
 $+ \frac{1}{\sqrt{2}} > \sqrt{2}$
 \therefore P (k) is virue \Rightarrow P (k + 1) is virue \Rightarrow P (k + 1) is virue \Rightarrow P (k + 1) is virue n) = $\frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + ... + \frac{1}{\sqrt{n}}$

= 6). + 6(- A+1)

Thus, P(k+1) is true.

me that $\frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + ... + \frac{1}{\sqrt{k}} > \sqrt{k}$ is true.

me that $\frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + ... + \frac{1}{\sqrt{k}} > \sqrt{k}$ is true.

me intervention is t p(2) = $\frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} > \sqrt{2}$

Let us assume that $\frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \dots + \frac{1}{\sqrt{k}} > \sqrt{k}$ is true.

Let us assume that $\frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \dots + \frac{1}{\sqrt{k}} > \sqrt{k}$ is true.

∴ p(k+1) = $\frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \frac{1}{\$ \therefore Statement (1) is true. Let us assume that $\frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} +\frac{1}{\sqrt{k}} > \sqrt{k}$ is true.

Let us assume that $\frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} +\frac{1}{\sqrt{k}} > \sqrt{k}$ is true.

(19) (A). Let P(n) be the statement given by
 $P(0) = 1.3 + 2.3^2 + 3.3^3 +n3^{2n} = \$ Let us assume that $\frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \dots + \frac{1}{\sqrt{k}} > \sqrt{k}$ is true.
 $\therefore p(k+1) = \frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \dots + \frac{1}{\sqrt{k}} + \frac{1}{\sqrt{k+1}} > \sqrt{k+1}$

Also to be true.
 \therefore L.H.S.> $\sqrt{k} + \frac{1}{\sqrt{k+1}} = \frac{\sqrt{k(k+1)} + 1}{\sqrt{k+1}}$

S .. p (k+1) = $\frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} +, \frac{1}{\sqrt{k+1}} + \frac{1}{\sqrt{k+1}} > \sqrt{k+1}$

has to be true.

has to be true.

 \therefore L.H.S.> $\sqrt{k} + \frac{1}{k+1} = \frac{\sqrt{k(k+1)} + 1}{\sqrt{k+1}}$
 \therefore Thus, P (1) is true

Since, $\sqrt{k(k+1)} > k$ (\sqrt ∴ $p(k+1) = \frac{1}{\sqrt{1 + \frac{1}{\sqrt{2}}} + \frac{1}{\sqrt{3}} + \dots + \frac{1}{\sqrt{k + 1}} > \sqrt{k + 1}$

Step 1: For n = 1, we have

Ans to be true.

∴ L.H.S.> $\sqrt{k} + \frac{1}{\sqrt{k + 1}} = \frac{\sqrt{k(k+1)} + 1}{\sqrt{k + 1}}$

Step 2: For n = k, assume that P (k) is true.

Since, $\$ Since $(k + 1) < k + 2$ ∴ I.H.S. > $\sqrt{k} + \frac{1}{\sqrt{k+1}} = \frac{\sqrt{k(k+1)} + 1}{\sqrt{k+1}}$

Since, $\sqrt{k(k+1)} > k$ ($\forall k \ge 0$)

Since, $\sqrt{k(k+1)} > k + 1$

Since, $\sqrt{k(k+1)} + \sqrt{k+1} = \sqrt{k+1}$

LH.S. $\sqrt{k+1}$

LH.S. $\sqrt{k+1} + \sqrt{k+1} = \sqrt{k+1}$

LH.S. $\sqrt{k+1} + \sqrt{k+1} = \sqrt{k+1}$

LH.S.

Hence statement 2 is also true but not correct explanation of statement (1).

- **(13) (A).**
- **(14) (A).**
- **(15) (B).**
- **(16) (D).**
- **(17) (C).**
- **(18) (C).** Let P (n) be the statement " $n(n+1)(n+2)$ is divisible by 6", i.e. $P(n) = n(n + 1)(n + 2)$ is divisible by 6. Step 1 : For $n = 1$, we have

(O.B. SOLUTIONS STUDY MATERIAL: MATHE
 $+5+7+......+ (2K-1)=3+K^2$ $P(1)=1 (1+1) (1+2)=1 \times 2 \times 3=6$, which is

by 6. Thus, P (1) is true for n = 1.

H.S. =4
 $+5+7+......+ (2K-1)=K^2$ i.e., $P(k)=k(k+1) (k+2) = 6\lambda$, for some $\lambda \in \mathbb{N}$.
 (O.B. SOLUTIONS STUDY MATERIAL: MATHEN
 $+5+7+......+ (2K-1)=3+K^2$ $P(1)=1 (1+1) (1+2)=1 \times 2 \times 3=6$, which is
 $+5+7+......+ (2K-1) = K^2$
 1 out
 $+5+7+......+ (2K-1) = K^2$
 $(K)=3+K^2$ $\text{Step 3: For } k, l+1 (k+2) \text{ is divisible by } 6.$
 $\text{Let, } k (k+1) (k+2) = 6\lambda$ **(0.B. SOLUTIONS**) STUDY MATERIAL: MATI
 $5+7+......+ (2K-1)=3+K^2$
 $P(1)=1 (1+1) (1+2)=1 \times 2 \times 3=6$, which

by 6. Thus, P(1) is true for n = 1.

S. =4

Step 2 : For n = k, Let P(k) be true,

i.e., P(k)= k(k + 1) (k + 2) is divisib **(Q.B. SOLUTIONS**) STUDY MATERIAL: MATHEMATIE
 \therefore $\begin{aligned}\n &\text{SUDY MATERIAL: MATHEMATHEMATIF
\n by 6. Thus, P (1) is true for n = 1.\n \end{aligned}$
 $\begin{aligned}\n &\text{Step 2: For } n = k, \text{ Let } P (k) \text{ be true, } \\
 &\text{for } p = k, \text{ Let } P (k) \text{ be true, } \\
 &\text{for } p = k, \text{ Let } P (k) \text{ be true, } \\
 &\text{for } p = k, \text{ Let } P (k) \$ 2K-1)=K²

Let, k(k+1)(k+2)=6), for some $\lambda \in \mathbb{N}$.

Step 3 : Forn = k+1, we have to show that P(k+1) is

duction

i.e. P(k+1) is divisible by 6.

P(k+1)=(k+1)(k+1+1)(k+1+2)

=(k+1)(k+2)+3 (k+3)

=(k+1)(k+2)+3 (k+3)
 $P(1) = 1 (1 + 1) (1 + 2) = 1 \times 2 \times 3 = 6$, which is divisible by 6. Thus, P (1) is true for $n = 1$. Step 2 : For $n = k$, Let P (k) be true, i.e., $P(k) = k (k + 1) (k + 2)$ is divisible by 6. Let, $k(k+1)(k+2) = 6\lambda$, for some $\lambda \in N$ (1) Step 3 : For $n = k + 1$, we have to show that P $(k + 1)$ is true, i.e. $P(k+1)$ is divisible by 6. $P (k+1) = (k+1) (k+1+1) (k+1+2)$ $=(k + 1) (k + 2) (k + 3)$ $=k (k + 1) (k + 2) + 3 (k + 1) (k + 2)$ $= 6\lambda + 3 (k + 1) (k + 2)$ [From (1) $= 6\lambda + 6t = 6 (\lambda + t)$ Thus, $P(k + 1)$ is divisible by 6. Therefore, $P(k+1)$ is true. \therefore P (k) is true \Rightarrow P (k + 1) is true. Hence, by principle of mathematical induction, P (n) is true for all natural number n. ⁼ n 1 (2n 1) 3 3 **SITHEMATICS**
hich is divisible
5.
 $P(k+1)$ is true,
(2)
(2)
(3)
(3)
action, P (n) is
 $\frac{-1}{3} \frac{3^{n+1} + 3}{4}$ c(k+1) (k+2) is divisible by 6.

(k+2) = 6λ, for some λ ∈ N.(1)

is divisible by 6.

is divisible by 6.

is divisible by 6.

is divisible by 6.

k+1) (k+1) where to show that P (k+1) is true,

k+1) (k+2) (k+3) sible by 6.

ne $\lambda \in N$(1)

(1) (k+2)

[From(1)

[From(1)

[From(1)

wen by
 $n = \frac{(2n-1)3^{n+1} + 3}{4}$
 $3 = \frac{9+3}{4}$ or 3 = 3

(k) is true.
 $\frac{(2k-1)3^{k+1} + 3}{4}$...(1) + 1) (k + 2)

[From (1)

e.

e.

e.

e.

e.

e.

e.

e.

e.

given by
 $3^n = \frac{(2n-1)3^{n+1} + 3}{4}$
 $3 = \frac{9+3}{4}$ or $3 = 3$

(k) is true.
 $= \frac{(2k-1)3^{k+1} + 3}{4}$... (1)

o show that
 $k + 1$) 3^{k+1}
 $\frac{2(k+1) - 1] . 3^{(k+1$... (1) 1 induction, P (n) is
 $\frac{(2n-1)3^{n+1}+3}{4}$
 $\frac{9+3}{4}$ or 3 = 3

is true.
 $\frac{2k-13^{k+1}+3}{4}$... (1)

ow that
 $\frac{13^{k+1}}{4}$
 $+1) - 11 \cdot 3^{(k+1)+1} + 3$

4

..k.3^k + (k + 1)3^{k+1}

[Using (1)]

$$
(19) \quad (A). Let P(n) be the statement given by
$$

$$
P(n) = 1.3 + 2.3^{2} + 3.3^{3} + \dots + n.3^{n} = \frac{(2n-1)3^{n+1} + 3}{4}
$$

Step 1 : For
$$
n = 1
$$
, we have

P(1): 1:
$$
3^1 = \frac{(2-1)3^{1+1} + 3}{4}
$$
 or $3 = \frac{9+3}{4}$ or $3 = 3$

Thus, $P(1)$ is true Step 2 : For $n = k$, assume that P (k) is true.

Then,
$$
1.3 + 2.3^2 + 3.3^3 + \dots k.3^k = \frac{(2k-1)3^{k+1} + 3}{4} \dots (1)
$$

Step 3 : For $n = k + 1$, we have to show that $1.3 + 2.3^2 + 3.3^3 + \dots k.3^k + (k+1)3^{k+1}$

Therefore, P (k+1) is true.
\n
$$
\therefore
$$
 P (k) is true \Rightarrow P (k+1) is true.
\nHence, by principle of mathematical induction, P (n) is true for all natural number n.
\n(A). Let P (n) be the statement given by
\nP (n) = 1.3 + 2.3² + 3.3³ +n.3ⁿ = $\frac{(2n-1)3^{n+1}+3}{4}$
\nStep 1: For n = 1, we have
\nP (1) : 1 : 3¹ = $\frac{(2-1)3^{1+1}+3}{4}$ or 3 = $\frac{9+3}{4}$ or 3 = 3
\nThus, P (1) is true
\nStep 2: For n = k, assume that P (k) is true.
\nThen, 1.3 + 2.3² + 3.3³ +k.3^k = $\frac{(2k-1)3^{k+1}+3}{4}$...(1)
\nStep 3: For n = k + 1, we have to show that
\n1.3 + 2.3² + 3.3³ +k.3^k + (k + 1)3^{k+1}
\n= $\frac{[2(k+1)-1]3^{(k+1)+1}+3}{4}$
\nNow, L.H.S. = 1.3 + 2.3² + 3.3³ +k.3^k + (k + 1)3^{k+1}
\n= $\frac{(2k-1) .3^{k+1} + 3}{4}$ + (k + 1)3^{k+1}
\n= $\frac{(2k-1) .3^{k+1} + 3 + 4 (k+1)3^{k+1}}{4}$
\n= $\frac{(2k-1+4k+4).3^{k+1} + 3}{4} = \frac{(6k+3)3^{k+1} + 3}{4}$
\n= $\frac{3 (2k+1) .3^{k+1} + 3}{4} = \frac{(2k+1)3^{k+2} + 3}{4}$
\n= $\frac{12 (k+1) - 1! .3^{(k+1)-1} + 3}{4}$
\nTherefore, P (k + 1) is true. Thus, P

$$
= \frac{(2k-1) \cdot 3^{k}}{4} + (k+1)3^{k+1}
$$
 [Using (1)]

$$
=\frac{(2k-1) \cdot 3^{k+1} + 3 + 4 (k+1) 3^{k+1}}{4}
$$

$$
=\frac{(2k-1+4k+4) \cdot 3^{k+1} + 3}{4} = \frac{(6k+3) 3^{k+1} + 3}{4}
$$

$$
=\frac{3(2k+1) \cdot 3^{k+1} + 3}{4} = \frac{(2k+1)3^{k+2} + 3}{4}
$$

$$
=\frac{[2 (k+1) - 1] \cdot 3^{(k+1)-1} + 3}{4}
$$

$$
f_{\rm{max}}
$$

Therefore, P (k + 1) is true. Thus, P (k) is true \Rightarrow P (k + 1) is true.

4

Hence, by principle of mathematical induction P (n) is true for all $n \in N$.

(20) (A).

(21) (D).

MATHEMATICAL INDUCTION Q.B. SOLUTIONS

(22) (B). Let P (n) be the statement given by :

HEMATICAL INDUCTION
\n**(B).** Let P (n) be the statement given by :
\n
$$
P(n): \left(1 + \frac{3}{1}\right) \left(1 + \frac{5}{4}\right) \left(1 + \frac{7}{9}\right) \dots \left(1 + \frac{(2n+1)}{n^2}\right) = (n+1)^2
$$
\nStep 1 : For n = 1, we have
\n
$$
P(1) = \left(1 + \frac{2 \times 1 + 1}{1^2}\right) = (1+1)^2 \text{ or } \left(1 + \frac{3}{1}\right) = 2^2 \text{ or } 4 = 4
$$
\nStep 2 : For n = k, assume that P (k) is true.
\n**(b)** If $P(n) = \left(1 + \frac{2 \times 1 + 1}{1^2}\right) = (1+1)^2 \text{ or } \left(1 + \frac{3}{1}\right) = 2^2 \text{ or } 4 = 4$
\n
$$
P(1): 3^{1-1} = \frac{3^1 - 1}{2} \Rightarrow 1 = 1
$$
\nThus, P (1) is true.
\n**(b)** If $P(n) = \left(1 + \frac{2 \times 1 + 1}{1^2}\right) = (1+1)^2 \text{ or } \left(1 + \frac{3}{1}\right) = 2^2 \text{ or } 4 = 4$
\n
$$
P(1): 3^{1-1} = \frac{3^1 - 1}{2} \Rightarrow 1 = 1
$$
\nThus, P (1) is true.
\n**(c)** If $P(n) = \frac{3^n - 1}{2}$
\n
$$
P(n): 1 + 3 + 3^2 + \dots + 3^{k-1} = \frac{3^k - 1}{2}
$$
\nThus, P (2): For n = k, assume that P (k) is true.
\n**(d)** If $P(n) = \frac{3^n - 1}{2}$
\n
$$
P(n) = \frac{3^n - 1}{2} \Rightarrow 1 = 1
$$
\nThus, P (3): For n = k, assume that P (4): for n = k, assume that P (5): for n = k, assume that P (6): for n = k, assume that P (6): for n = k + 1, we have to show that $\text{Step 3}: For n = k + 1, we have to show that $\text{Step 3}: For n = k +$$

Step 1 : For $n = 1$, we have

$$
P(1) = \left(1 + \frac{2 \times 1 + 1}{1^2}\right) = (1 + 1)^2 \text{ or } \left(1 + \frac{3}{1}\right) = 2^2 \text{ or } 4 = 4
$$

$$
P(1): 3^{1-1} = \frac{3}{4}
$$

Thus, $P(1)$ is true.

Step 2 : For $n = k$, assume that P (k) is true. Then,

$$
\left(1+\frac{3}{1}\right)\left(1+\frac{5}{4}\right)\left(1+\frac{7}{9}\right)\dots\dots\left(1+\frac{2k+1}{k^2}\right) = (k+1)^2 \dots (1)
$$

Step 3 : For $n = k + 1$, we have to show that

ALTHEMATICAL INDUCTIONS
\n**(B).** Let P (n) be the statement given by : **(25)** (A). Let P(n) be the statement given by
\nP (n):
$$
\left(1+\frac{3}{1}\right)\left(1+\frac{5}{4}\right)\left(1+\frac{7}{9}\right)... \left(1+\frac{(2n+1)}{n^2}\right) = (n+1)^2
$$

\nStep 1: For n = 1, we have
\n
$$
P(1) = \left(1+\frac{2 \times 1+1}{1^2}\right) = (1+1)^2 \text{ or } \left(1+\frac{3}{1}\right) = 2^2 \text{ or } 4=4
$$
\n
$$
P(1): 3^{1-1} = \frac{3^1-1}{2} \Rightarrow 1 = 1
$$
\nThus, P (1) is true.
\nStep 2: For n = k, assume that P (k) is true. Then,
\n
$$
\left(1+\frac{3}{1}\right)\left(1+\frac{5}{4}\right)\left(1+\frac{7}{9}\right)...... \left(1+\frac{2k+1}{k^2}\right) = (k+1)^2(1)
$$
\n
$$
P(2): P(3) = 12 \text{ or } 12 \text{ or }
$$

Therefore, $P(k+1)$ is true.

Thus P (k) is true \Rightarrow P (k + 1) is true

Hence, by principle of mathematical induction P (n) is true for all $n \in N$

- **(23) (A).**
- **(24) (B).**

(25) (A). Let P(n) be the statement given by

Q.B. SOLUTIONS
\n**o** by : **(25) (A).** Let **P**(n) be the statement given by
\n
$$
+\frac{(2n+1)}{n^2} = (n+1)^2
$$
\n
$$
P(n): 1+3+3^2+....+3^{n-1} = \frac{(3^n-1)}{2}
$$
\nStep 1: For n = 1, we have
\n
$$
\left(1+\frac{3}{1}\right) = 2^2
$$
 or 4=4
\n
$$
P(1): 3^{1-1} = \frac{3^1-1}{2} \Rightarrow 1 = 1
$$
\nThus, **P**(1) is true.
\nStep 2: For n = k, assume that **P**(k) is true.
\n
$$
\frac{1}{2} = (k+1)^2
$$
\nNow that
\nStep 3: For n = k + 1, we have to show that
\n
$$
\frac{1}{1} \left(1+\frac{2(k+1)+1}{1+3+3^2+....+3^{k-1}}+\frac{3^{k-1}}{1+3^{k+1-1}}+\frac{3^{k+1}-1}{2}\right)
$$

Step 1 : For $n = 1$, we have

$$
P(1): 3^{1-1} = \frac{3^1 - 1}{2} \Rightarrow 1 = 1
$$

Thus, $P(1)$ is true.

Step 2 : For $n = k$, assume that P (k) is true.

$$
2 \dots (1) \qquad \text{Then } 1+3+3^2+\dots+3^{k-1} = \frac{3^k-1}{2}
$$

Step 3 : For $n = k + 1$, we have to show that

(a) Let P(n) be the statement given by
\n(a) i. Let P(n) be the statement given by
\n(a) i.
$$
1+3+3^2+....+3^{n-1} = \frac{(3^n-1)}{2}
$$

\n(b) i. $3^{1-1} = \frac{3^1-1}{2} \Rightarrow 1 = 1$
\nthus, P (1) is true.
\nthen $1+3+3^2+....+3^{k-1} = \frac{3^k-1}{2}$
\nthen $1+3+3^2+....+3^{k-1} = \frac{3^k-1}{2}$
\nthen $1+3+3^2+....+3^{k-1} + 3^{k+1-1} = \frac{3^{k+1}-1}{2}$
\nNow, L.H.S. = $1+3+3^2+....+3^{k-1}+3^{k+1-1}$

30. **Q.B. SOLUTIONS**
\n10. Let
$$
f(n)
$$
 be the statement given by:
\n
$$
\frac{7}{9} \int ... \left(1 + \frac{(2n+1)}{n^2}\right) = (n+1)^2
$$
\n
$$
= (n+1)^2 + 3 + 3^2 + + 3^{k-1} = \frac{3^k - 1}{2}
$$
\n
$$
= \frac{3^{k-1} - 1}{2}
$$
\n
$$
= \frac{3^{k+1} - 1}{2}
$$
\n
$$
= \frac{3^{k-1} - 1}{2}
$$
\n
$$
= \frac{3^{k-1} - 1}{2}
$$
\n
$$
= \frac{3^k - 1}{2} + 3^{k+1-1}
$$
\n
$$
= \frac{3^k - 1}{2} + 3^{k+1-1}
$$
\n
$$
= \frac{3^k - 1}{2} + 3^{k+1-1}
$$
\n
$$
= \frac{3^k - 1}{2} + 3^k = \frac{3^k - 1 + 2 \cdot 3^k}{2} = \frac{3^k (1 + 2) - 1}{2}
$$
\n
$$
= \frac{3 \cdot 4!}{2} + 4k + 4 = (k +
$$

There P (k + 1) is true. Thus, p (k) is true \Rightarrow P (k + 1) is true for all $n \in N$.

- **(26) (D).**
- **(27) (A).**