

MOTION IN ONE DIMENSION

INTRODUCTION

Motion is the most fundamental observation about nature at large. It turns out that everything that happens in the world is some type of motion. To describe motion we require terms like time interval, distance, displacement, speed, velocity and acceleration.

To study the motion branch of physics called Mechanics is defined. To simplify study it is further divided into two sections, Kinematics and Dynamics. Kinematic deals with the study of motion of objects without considering the cause of motion, here measurement of time is essential . Cause of motion, nere measurement of time is essential.
Dynamics deals with the study of objects taking into D isplacement = $AB = (x_2 - x_1)\hat{i} + (y_2 - y_1)\hat{j} + (z_2 - z_1)\hat{k}$ consideration and cause of their motion.

Generally motion we observe in practical life are 2 or 3-dimensional to analyse them we have to break them into single dimension. Hence, we need to study one dimension motion.

We will consider all object as point object for considering one dimensional motion. We will also neglect air resistance if not specified. In analysing any motion consider time as time interval i.e. think initial and final situation according to time interval in which you have to solve the problem.

DISTANCE

The length of the actual path between initial and final positions of a particle in a given interval of time is called distance covered by the particle. Distance is the actual length of the path. It is the characteristic property of any path i.e. path is always associated when we consider distance between two positions.

Distance between A and B while moving through path (1) may or may not be equal to the distance between A and B while moving through path (2) .

2 —

Characteristics of Distance :

- (i) It is a scalar quantity
- (ii) It depends on the path
- (iii) It never reduces with time. $\frac{1}{A}$ A 1 B
- (iv) Distance covered by a particle is always positive and can never be negative or zero.
- (v) Dimension : $[M^{\circ}L^{1}T^{\circ}]$
- (vi) Unit:In CGS centimeter (cm), In S.I. system meter (m).

DISPLACEMENT

The shortest distance from the initial position to the final position of the particle is called displacement. The displacement of a particle is measured as the change in the position of the particle in a particular direction over a given time interval. It depends only on final and initial positions.

Displacement of a particle is a position vector of its final position w.r.t, initial position.

MENSION	Displacement of a particle is a position vector of its final position w.r.t, initial position.	
Position vector of A w.r.t. O = OA	\vec{v}	\vec{v}
\vec{v}	\vec{v}	\vec{v}
Position vector of A w.r.t. O = OA	\vec{v}	\vec{v}
Position Vector of B w.r.t. O = OB	\vec{v}	\vec{v}
\vec{v}	\vec{v}	\vec{v}
Position Vector of B w.r.t. O = OB	\vec{v}	
\vec{v}	\vec{v}	
Position Vector of B w.r.t. O = OB	\vec{v}	
\vec{v}	\vec{v}	
Position Vector of B w.r.t. O = OB	\vec{v}	
\vec{v}	\vec{v}	
Displacement = AB = (x ₂ - x ₁) \hat{i} + (y ₂ - y ₁) \hat{j} + (z ₂ - z ₁) \hat{k}		
AT = $\Delta x \hat{i}$ + $\Delta y \hat{j}$ + $\Delta z \hat{k}$		
Characteristics of Displacement:		
(i) It is a vector quantity.		
(ii) The displacement of a particle between any two points is equal to the shortest distance between them.		
is equal to the shortest distance between them.		

$$
\Rightarrow \vec{r}_B = x_2 \hat{i} + y_2 \hat{j} + z_2 \hat{k} \qquad z_2
$$

Characteristics of Displacement :

- (i) It is a vector quantity.
- (ii) The displacement of a particle between any two points is equal to the shortest distance between them.
- (iii) The displacement of an object in a given time interval may be +ve, –ve or zero.
- (iv) The actual distance travelled by a particle in the given interval of time is always equal to or greater than the magnitude of the displacement and in no case, it is less than the magnitude of the displacement, i.e. Distance \geq | Displacement |
- (v) Dimension : $[M^{\circ}L^{1}T^{\circ}]$
- (vi) Unit: In C.G. S. centimeter (cm), In S.I. system meter (m).

Comparative Study of Displacement & distance

Example 1 :

An old person moves on a semi circular track of radius 40m during a morning walk. If he starts at one end of the track and reaches at the other end. Find the displacement of the person.

Sol. Displacement = $2R = 2 \times 40 = 80$ meter.

Example 2 :

An athlete is running on a circular track of radius 50 meter. Calculate the displacement of the athlete after completing 5 rounds of the track.

Sol. Since final and initial positions are same hence displacement of athlete will be $\Delta r = r - r = 0$

Example 3 :

A monkey is moving on circular path of radius 80 m . Calculate the distance covered by the monkey.

Sol. Distance = Circumference of the circle

$$
D = 2 \pi R \Rightarrow D = 2 \pi \times 80 = 160 \times 3.14 = 502.40 \text{ m}
$$

Example 4 :

A particle goes along a quadrant from A to B is a circle radius 10m as shown in figure. Find the direction and magnitude of displacement and distance along path AB.

$$
|\overrightarrow{AB}| = \sqrt{10^2 + 10^2} = 10\sqrt{2}m
$$

From
$$
\triangle
$$
 OBC, $\tan \theta = \frac{OA}{OB} = \frac{10}{10} = 1 \implies \theta = 45^{\circ}$

Angle between displacement vector \overrightarrow{OC} and x-axis The distance travelled by $= 90^\circ + 45^\circ = 135^\circ$

Distance of path AB =
$$
\frac{1}{4}
$$
 (circum.) = $\frac{1}{4}(2\pi R) m = (5\pi) m$ **Sol.** Distance co

SPEED

It is the distance covered by the particle in one second. It is a scalar quantity. of th
 $0\hat{j} - 10\hat{i}$
 $\overline{v} =$
 $= 1 \Rightarrow \theta = 45^\circ$

or \overline{OC} and x-axis
 $= 135^\circ$
 $= \frac{1}{4}(2\pi R) m = (5\pi) m$
 Sol. Distant
 $= \frac{1}{4}(2\pi R) m = (5\pi) m$
 Sol. Distant
 $= \frac{1}{4}$

Sol. Tota
 $= \frac{ds}{dt}$

Sol. Tota

what
 of \hat{O} dtin - 1 ⇒ θ = 45°

or \overrightarrow{OC} and x-axis
 $t = 135^\circ$
 $t = \frac{1}{4}(2\pi R) m = (5\pi) m$ S

article in one second. It

speed of a particle at E

on.
 $\frac{s}{t} = \frac{ds}{dt}$ S

tire motion speed of the

d to have uniform sp = $\frac{OA}{OB} = \frac{10}{10} = 1 \Rightarrow \theta = 45^\circ$

lacement vector \overline{OC} and x-axis

= $90^\circ + 45^\circ = 135^\circ$

= $\frac{1}{4}$ (circum.) = $\frac{1}{4}(2\pi R)$ m = (5π) m Sol.

ered by the particle in one second. It

ed : It is the speed of a

Type of speed :

(i) Instantaneous speed : It is the speed of a particle at particular instant of time or position.

\n Instantaneous speed = \n
$$
\lim_{\Delta t \to 0} = \frac{\Delta s}{\Delta t} = \frac{ds}{dt}
$$
\n

\n\n Total distance to be cov.\n

(ii) Average speed =
$$
\frac{\text{Total distance}}{\text{Total time}}
$$

- $|\overrightarrow{AB}| = \sqrt{10^2 + 10^2} = 10\sqrt{2m}$

From Δ OBC, $\tan \theta = \frac{OA}{OB} = \frac{10}{10} = 1 \Rightarrow \theta = 45^\circ$

Angle between displacement vector \overrightarrow{OC} and x-axis \overrightarrow{T}
 $= 90^\circ + 45^\circ = 135^\circ$ x x

Distance of path AB = $\frac{1}{4}$ (circum.) = **(iii) Uniform speed :** If during the entire motion speed of the body remains same, the body is said to have uniform speed.
- **(iv) Non-Uniform speed :** If speed changes, the body is said to have non-uniform speed.

Some important cases related to average speed : Case : 1

If car covers distances x_1 , x_2 , and x_3 with speeds v_1 , v_2 , and v₃ respectively in same direction then average speed of car.

 = 45° 1 2 3 1 2 3 x x x V t t t ; here, 1 2 ³ 1 2 3 1 2 3 x x x t , t , t v v v 1 2 3 1 2 3 1 2 3 x x x V x x x v v v = x 1 2 3 1 2 2 3 3 1 1 2 3 1 2 3 3x 3 3v v v x x x 1 1 1 v v v v v v v v v v v v 1 2 3 1 1 2 2 3 3 x x x v t v t v t t t t t t t = t3 = t 1 2 3 1 2 3 (v v v) t (v v v) 3 t 3

If car covers equal distances with different speeds then, $x_1 = x_2 = x_3 = x$

$$
\overline{V} = \frac{3x}{\frac{x}{v_1} + \frac{x}{v_2} + \frac{x}{v_3}} = \frac{3}{\frac{1}{v_1} + \frac{1}{v_2} + \frac{1}{v_3}} = \frac{3v_1v_2v_3}{v_1v_2 + v_2v_3 + v_3v_1}
$$

Case 2 : If any body travels with speeds v_1 , v_2 , v_3 during time intervals t_1, t_2, t_3 respectively then the average speed of the body will be.

That from A to B is a circle
\nFind the direction and mag-
\n
$$
\overline{v} = \frac{x_1 + x_2 + x_3}{x_1 + x_2 + x_3}
$$
\nFind the direction and mag-
\n
$$
x_1 = x_2 = x_3 = x
$$
\n
$$
\overline{v} = \frac{3x}{x_1 + x_2 + x_3} = \frac{3}{x_1 + x_2 + x_3} = \frac{3}{x_1 + x_2 + x_3} = \frac{3y_1y_2y_3}{y_1 + x_2 + y_3}
$$
\n**Case 2 : If any body travels with speeds v_1 , v_2 , v_3 during
\n
$$
\overline{v} = \frac{x_1 + x_2 + x_3}{x_1 + x_2 + x_3} = \frac{y_1t_1 + y_2t_2 + y_3t_3}{x_1 + x_2 + x_3}
$$
\n**Case 2 : If any body travels with speeds v_1 , v_2 , v_3 during
\ntime intervals t_1 , t_2 , t_3 respectively then the average speed
\n
$$
\overline{v} = \frac{x_1 + x_2 + x_3}{t_1 + t_2 + t_3} = \frac{y_1t_1 + y_2t_2 + y_3t_3}{t_1 + t_2 + t_3}
$$
\n**10**
\n
$$
\overline{v} = \frac{x_1 + x_2 + x_3}{t_1 + t_2 + t_3} = \frac{y_1t_1 + y_2t_2 + y_3t_3}{x_1 + t_2 + t_3}
$$
\n**Example 5 : The distance traveled by a particle in time t is given by
\n $x = 2.5 x^2(160) \text{ Find the average speed of the particle during\nthe time 0 to 5 sec.\n $x = 2.5 x^2(3) = 2.5 \times 25 = 62.5 \text{ m}$
\nthe particle in one second. It
\n
$$
\overline{v} = \frac{x_1}{t_2 - t_1} = \frac{62.5}{5 - 0} = \frac{62.5}{5} = 12.5 \text{ m/s}
$$
\nthe speed of a particle at
\n
$$
\overline{v} = \frac{x_1}{t_2 - t_1}
$$$******

Example 5 :

The distance travelled by a particle in time t is given by $x = 2.5 t²$ (m). Find the average speed of the particle during the time 0 to 5 sec.

 $\frac{1}{2}(2\pi R)$ m = (5π) m **Sol.** Distance covered x = 2.5 t²; During time 0 to 5 sec.

$$
x = 2.5 \times (5)^2 = 2.5 \times 25 = 62.5 \text{ m}
$$

Average speed, $V = \frac{V}{I} = \frac{0.255}{I} = \frac{0.255}{I} = 12.5$ m/s

Example 6 :

A train 150 m long is moving with a speed of 90 km/h. In what time shall it cross a bridge 850 m long ?

 Δs *ds* **Sol.** Total distance to be covered = 850 + 150 = 1000 m

Speed = $90 \text{ km/h} = 90 \times (5/18) \text{ m/s} = 25 \text{ m/s}$

Now, time =
$$
\frac{1000}{25}
$$
 s = 40 s

Example 7 :

A bicyclist is travelling along a straight road for the first half time with speed v_1 and for second half time with speed v_2 . What is the average speed of the bicyclist? **IENSION**

only a straight road for the v₁ and for second half time

e average speed of the bicycle

e taken then distance covered
 $\left(\frac{t}{2}\right) = \frac{v_1 t}{2}$

the next half time = $v_2 \left(\frac{t}{2}\right)$ = v₁ v₂ v₁ v₂ t **IENSION**

ing along a straight road for the first S
 V_1 and for second half time with $=$

e average speed of the bicyclist?

e taken then distance covered in the
 $\frac{t}{2}$ = $\frac{v_1 t}{2}$

Examp

the next half time = **PROM IN ONE DIMENSION**
 ple7:

A bicyclist is travelling along a straight road for the first

half time with speed v_1 and for second half time with

Let t be the total time taken then distance covered in the

first Then dist

the road for the first

ond half time with

of the bicyclist?

ond half time with

of the bicyclist?

Total dis

ance covered in the

by partic

= Area o

Example 11:

Find the the partic
 $= 0$ to

figure.

So **NSION**

along a straight road for the fi

1 and for second half time w

verage speed of the bicyclist?

aken then distance covered in t
 $= \frac{v_1 t}{2}$

next half time = $v_2 \left(\frac{t}{2}\right) = \frac{v_2 t}{2}$
 $= \frac{v_1 + v_2}{2}$

a st

Sol. Let t be the total time taken then distance covered in the

first half time =
$$
v_1 \left(\frac{t}{2}\right) = \frac{v_1 t}{2}
$$

Distance covered in the next half time = $v_2\left(\frac{t}{2}\right) = \frac{v_2 t}{2}$

Average speed
$$
v_{av.} = \frac{\frac{v_1 t}{2} + \frac{v_2 t}{2}}{t} = \frac{v_1 + v_2}{2}
$$

Example 8 :

ISION

along a straight road for the first

and for second half time with
 $= AB \times AD = A$
 $= AB \times AD = A$
 $= AB \times AD = A$
 $= AB \times AD = A$

Total distance the mean distance covered in the
 $= \text{Area of speed}$
 $= \$ **EXECUTE:**
 EXEC A person travels along a straight road due east for the first half distance with speed v_1 and the second half (ii) distance with speed v_2 . What is the average speed of the person? 1 2 Example 11

the next half time = v_2 $\left(\frac{t}{2}\right) = \frac{v_2 t}{2}$
 $\frac{v_1 t}{t} + \frac{v_2 t}{2}$
 $\frac{v_1 t}{t} + \frac{v_2 t}{2}$
 $\frac{v_1 t}{t} + \frac{v_2 t}{2}$

Sol. Distance

ingure

Sol. Distance
 $\frac{v_1 t}{t} + \frac{v_2 t}{2}$
 $\frac{v_1 + v_2}{2}$

S a the next half time = $v_2 \left(\frac{t}{2}\right) = \frac{v_2 t}{2}$ the next half time = $v_2 \left(\frac{t}{2}\right) = \frac{v_2 t}{2}$ the $\frac{v_1 t}{t} + \frac{v_2 t}{2}$ is the $\frac{v_1 t}{2} = \frac{v_1 + v_2}{2}$ and the second half (ii) If v_2 . What is the average spee **ple 8:**

A person travels along a straight road due east for the

first half distance with speed v_1 and the second half (ii) If the speed

distance with speed v_2 . What is the average speed of the

person?

Let S be d due east for the

d the second half (ii) If the speed

erage speed of the

By $v = \frac{S}{c}$
 $\frac{S}{v_1} = \frac{S}{2v_1}$

Example 12:

If the speed

covered d
 $e = \frac{S/2}{v_2} = \frac{S}{2v_2}$

Sol. $s = \int v dt = \frac{2v_1v_2}{1 + v_2}$

The r s peed v₁ and the second half (ii)

that is the average speed of the

travelled.

If distance = $\frac{S/2}{v_1} = \frac{S}{2v_1}$

Let $\frac{S}{2v_2}$

Example $\frac{S}{2v_2}$
 $\frac{S}{2v_2}$
 $\frac{S}{2v_2}$
 $\frac{S}{2v_1 + v_2}$
 $\frac{S}{2v_2}$ $\frac{v_2 t}{2} = \frac{v_1 + v_2}{2}$
 $\frac{v_1 + v_2}{2} = \frac{v_1 + v_2}{2}$

Sol. Distance S = Are

raight road due east for the

eed v_1 and the second half

distance $\frac{S/2}{v_1} = \frac{S}{2v_1}$
 $\frac{S}{2v_1} = \frac{S}{2v_2}$

Example 12:

Examp $\frac{1}{2} + \frac{v_2 t}{2} = \frac{v_1 + v_2}{2}$

Sol. Distance S = Area

a straight road due east for the

speed v_1 and the second half (ii) If the speed variable that is the average speed of the

land the second half (ii) If the s $\frac{2}{t} = \frac{v_1 + v_2}{2}$
 $= \frac{1}{2} \times OA \times$

a straight road due east for the

What is the average speed of the

What is the average speed of the

Example 12:

If the speed v_1

and the secrecy example 12:

If the speed c

Sol. Let S be the total distance travelled.

Time taken for the first half distance $=$ $\frac{S/2}{v_1} = \frac{S}{2v_1}$

Time taken for the second half distance =
$$
\frac{S/2}{v_2} = \frac{S}{2v_2}
$$

Total time taken =
$$
\frac{S}{2v_1} + \frac{S}{2v_2}
$$

Time taken for the second half distance =
$$
\frac{S}{v_1}
$$

\nTotal time taken = $\frac{S}{2v_1} + \frac{S}{2v_2}$
\nAverage speed, $v_{av} = \frac{S}{\frac{S}{2v_1} + \frac{S}{2v_2}} = \frac{2v_1v_2}{v_1 + v_2}$
\nExample 9:
\nA man walks at a speed of 6 km/hr for 1 km and the next 1 km. What is his average speed for 2 km.
\nSol. $\overline{V} = \frac{2v_1v_2}{v_1 + v_2} = \frac{2 \times 6 \times 8}{6 + 8} = 7$ km/h.
\nExample 10:
\nThe distance travelled by a particle $S = 10t^2$ (value of instantaneous speed at t = 2 sec.

Example 9 :

A man walks at a speed of 6 km/hr for 1 km and 8 km/hr for the next 1 km. What is his average speed for the walk of 2km. Everson?

Let S be the total distance travelled.

Time taken for the first half distance $= \frac{S/2}{v_1} = \frac{S}{2v_1}$

Fine taken for the second half distance $= \frac{S/2}{v_2} = \frac{S}{2v_2}$

Fine taken for the second half distanc tance with speed v_2 . What is the average speed of the

som?

IS be the total distance travelled.

IS be the Fine taken for the second half distance $= \frac{37}{v_2} = \frac{3}{2v_2}$

Sol. $s = \int v dt = \int 10t^2 dt = 1$

Fotal time taken $= \frac{S}{2v_1} + \frac{S}{2v_2}$

Average speed, $v_{av} = \frac{S}{\frac{S}{2v_1} + \frac{S}{2v_2}} = \frac{2v_1v_2}{v_1 + v_2}$

The rate of ch

Sol.
$$
\overline{V} = \frac{2v_1v_2}{v_1+v_2} = \frac{2 \times 6 \times 8}{6+8} = 7 \text{ km/h}.
$$

Example 10 :

The distance travelled by a particle $S = 10t^2$ (m). Find the value of instantaneous speed at $t = 2$ sec.

Sol.
$$
v = \frac{dx}{dt} = \frac{d}{dt} (10t^2) = 10(2t) = 20 t
$$

Put t = 2 sec.
 $v = 20 \times 2 = 40$ m/s.

Calculation of distance by speed :

The distance may be calculated by the speed in the following terms.

(i) Distance by speed-time graph : When the particle moves from time t_1 to t_2 with uniform speed V as shown in the graph:

 $+\frac{v_2}{2}$ $v_1 + v_2$ **Sol.** Distance S = Area of OAB $\left[\sqrt{\frac{v_1}{v_1+v_2}}\right]$ $=\frac{v_1 + v_2}{2}$ 1

$$
= \frac{1}{2} \times OA \times BA = \frac{1}{2} \times 3 \times 6 = 9 \text{ meter.}
$$

(ii) If the speed varies with the time then :

By
$$
v = \frac{ds}{dt} \implies ds = v dt \implies |ds = |v dt \text{ or } s = |v dt
$$

Example 12 :

Example 11 :

If the speed of a particle is $v = 10 t^2$ m/s. Then find out covered distance from $t = 2$ sec. to $t = 5$ sec.

The wind with speed v₁ at the m for the second half distance =
$$
\frac{V_1}{V_2}
$$
.
\nHence covered in the next half time = v₂ $\left(\frac{t}{2}\right) = \frac{v_1 t}{2}$
\n= $\frac{v_1 t}{2}$

VELOCITY

 $+\frac{S}{2}$ $v_1 + v_2$ is called the velocity of the particle. The rate of change of displacement of a particle with time

i.e. Velocity =
$$
\frac{\text{Displacement}}{\text{Time interval}}
$$

- (i) It is a vector quantity
- (ii) The velocity of an object can be positive, zero and negative
- (iii) $Unit : C.G.S.: cm/s, S.I.: m/s.$

(iv) Dimension :
$$
M^0L^1T^{-1}
$$

Types of velocity : (a) Uniform Velocity (b) Non-uniform Velocity (c) Average Velocity (d) Instantaneous velocity (e) Relative velocity

1. Uniform Velocity : A body is said to move with uniform velocity, if it covers equal displacements in equal intervals of time, howsoever, small these intervals may be.

When a body is moving with uniform velocity, then the magnitude and direction of the velocity of the body remains same at all points of its path.

3. Average velocity : The **average velocity of an object** average velocity of an object is equal to the ratio of the displacement, to the time interval for which the motion takes place i.e., Average velocity= $\frac{\text{displacement}}{\text{time taken}}$

If the initial and final position of a particle are \vec{r}_1 and \vec{r}_2 at \vec{S}_2 time t_1 and t_2 respectively,

and elapsed time $\Delta t = t_2 - t_1$

$$
\therefore \text{ Average velocity } \overrightarrow{V}_{av} = \frac{\overrightarrow{r}_2 - \overrightarrow{r}_1}{\overrightarrow{t}_2 - \overrightarrow{t}_1} = \frac{\Delta \overrightarrow{r}}{\Delta t}
$$
\nTotal distance trav-
\nTotal distance trav

4. Instantaneous velocity : The velocity of the object at a given instant of time or at a given position during motion is called instantaneous velocity.

From fig., the average velocity between points A and B is

$$
\overrightarrow{V}_{av} = \frac{\overrightarrow{x}_2 - \overrightarrow{x}_1}{t_2 - t_1} = \frac{\Delta \overrightarrow{x}}{\Delta t}
$$

If time interval is small i.e. $t_2 - t_1 = \Delta t$

and
$$
\vec{x}_2 - \vec{x}_1 = \Delta \vec{x}
$$
, then $V_{av} = \frac{\Delta x}{\Delta t} = \tan \theta$ from graph (A)

Average velocity is equal to slope of straight line joining two points on displacement time graph. If $\Delta t \rightarrow 0$, then average velocity becomes instantaneous velocity

instantaneous velocity,
$$
\vec{V} = \frac{Lt}{\Delta t \rightarrow 0} \frac{\Delta \vec{x}}{\Delta t} = \frac{d \vec{x}}{dt}
$$
 $\therefore V_{av} = \frac{\text{Displacement}}{\text{time}}$

STUDY MATERIAL : PHYSICS

 \overrightarrow{V} = tan α l(slope of tangent at point P, graph B)

Example 13 :

A car travels a distance A to B at a speed of 40 km/h and returns to A at a speed of 30 km/h.

- (i) What is the average speed for the whole journey?
- (ii) What is the average velocity?

Sol. (i) Let AB = s, time taken to go from A to B,
$$
t_1 = \frac{s}{40}
$$
 h

and time taken to go from B to A,
$$
t_2 = \frac{s}{30}
$$
 h

: total time taken = $t_1 + t_2 = \frac{s}{40} + \frac{s}{30} = \frac{(3+4)s}{120} = \frac{7s}{120}$ h

Total distance travelled = $s + s = 2s$

Average speed

$$
\frac{3}{25} \times 1000
$$
\n
$$
\frac{1}{25} \times 1000
$$

(ii) Total displacement = zero, since the car returns to the original position.

Average velocity =
$$
\frac{\text{total displacement}}{\text{time taken}} = \frac{0}{2t} = 0
$$

Example 14 :

to B at a speed of 40 KII/H and

30 km/h.

speed for the whole journey?

velocity?

to go from A to B, $t_1 = \frac{s}{40}$ h

from B to A, $t_2 = \frac{s}{30}$ h
 $t_2 = \frac{s}{40} + \frac{s}{30} = \frac{(3+4)s}{120} = \frac{7s}{120}$ h

led = s + s = 2s
 $\frac{$ B at a speed of 40 km/h and

km/h.

ed for the whole journey?

go from A to B, $t_1 = \frac{s}{40}$ h

n B to A, $t_2 = \frac{s}{30}$ h
 $\frac{s}{40} + \frac{s}{30} = \frac{(3+4)s}{120} = \frac{7s}{120}$ h
 $= s + s = 2s$
 $\frac{2s}{7s} = \frac{120 \times 2}{7} = 34.3$ km/h.

12 A table clock has its minute hand 4 cm long. Find average velocity of the tip of the minute hand (a) in between 6 a.m. to 6.30 a.m. and (b) 6 a.m. to 6.30 p.m.

Example 14:

Average velocity = $\frac{\text{total displacement}}{\text{time taken}}$
 $\frac{1}{\text{time}}$
 \frac original position.

Average velocity = $\frac{1}{2}$

Antibe clock has its minute hand 4 cm long. Find average

The (A)

to 6.30 a.m. a **Sol.** (a) At 6.00 a.m. the tip of the minute hand is at 12 mark and at 6.30 a.m. or 6.30 p.m. it is 180º away. Thus the displacement between the initial and final positions of the tip is equal to the diameter of the clock.

Displacement = $2 R = 2 \times 4 cm = 8 cm$

The average velocity is V_{av}
 Δx -top 0 from graph (A) Time taken from 6 a.m. to 6.30 a.m. is 30 minutes = 1800 s.

$$
= \frac{\text{Displacement}}{\text{time}} = \frac{8}{1800} = 4.4 \times 10^{-3} \text{ cm/s}
$$

(b) Again time taken from 6 am to 6.30 p.m. $= 12$ hrs $+ 30$ minutes $= 45000$ s

$$
\therefore \quad V_{av} = \frac{\text{Displacement}}{\text{time}} = \frac{8}{45000} = 1.8 \times 10^{-4} \text{ cm/s}
$$

MOTION IN ONE DIMENSION

Example 15 :

A man walks on a straight road from his home to a market 2.5km away with a speed of 5 km/h. Finding the market closed, he instantly turns and walks back with a speed of 7.5 km/h. What is the (a) magnitude of average velocity and (b) average speed of the man, over the interval of time (i) 0 to 30 min. (ii) 0 to 50 min (iii) 0 to 40 min. **TION IN ONE DIMENSION**
 EXAMPLE 15:
 EXAMPLE 17:

The speed of 5 km/h. Finding the market

speed, he instantly turns and walks based of 5 km/h. Finding the market

speed between the speed of the man, over the interval of

the (i.) of the spe **TION IN ONE DIMENSION**
 ple 15 :

A man walks on a straight road from his home to a mar

2.5 km away with a speed of 5 km/h. Finding the mar

closed, he instantly turns and walks back with a speed

7.5 km/h. What is th **Example 17:**
 Example 17 Example 17:

Som his home to a market

The Finding the market

Give a position-

In Finding the market

shock with a speed of

ude of average velocity

an, over the interval of
 $\begin{bmatrix}\n\text{min} & 0 \text{ to } 40 \text{ min.}\n\end{bmatrix}$

s

Sol. Time taken by man to go from his home to market,

$$
t_1 = \frac{\text{distance}}{\text{speed}} = \frac{2.5}{5} = \frac{1}{2} \text{ h}
$$

Time taken by man to go from market to his home,

$$
t_2 = \frac{2.5}{7.5} = \frac{1}{3} h
$$

- \therefore Total time taken = t₁ + t₂ = $\frac{1}{2}$ +
- (a) Average velocity $\overrightarrow{V}_{ave} = \frac{displacement}{time}$ Sol. $V = \frac{dx}{dt} = \frac{d}{dt}[At^3 +$
- (b) Average speed $V_{\text{ave}} = \frac{\text{distance}}{\text{time}}$ or V

$$
x = \frac{2.5}{1/2} = 5 \text{ km/h}
$$
\n
$$
x = \frac{2.5}{1/2} = 5 \text{ km/h}
$$
\n
$$
x = \frac{2.5}{1/2} = 5 \text{ km/h}
$$
\n
$$
x = \frac{2.5}{1/2} = 0; \quad V_{\text{ave}} = \frac{5}{5/6} = 6 \text{ km/h}
$$
\n
$$
y = 2.5 \text{ km.}
$$
\n
$$
y = \frac{1}{1/2} = 5 \text{ km/h}
$$
\n
$$
y = \frac{5}{5/6} = 6 \text{ km/h}
$$
\n
$$
y = \frac{1}{1/2} = 5 \text{ km/h}
$$
\n
$$
y = \frac{1}{5/6} = 6 \text{ km/h}
$$
\n
$$
y = 2.5 \text{ km/h}
$$

(ii) 0 to 50 min Total distance travelled $= 2.5 + 2.5 = 5$ km.

Total displacement = zero

$$
\overrightarrow{V}_{ave.} = 0 \quad ; \quad V_{ave.} = \frac{5}{5/6} = 6 \text{ km/h}
$$

(iii) 0 to 40 min

Distance moved in 30 min (from home to market) $= 2.5$ km.

Distance moved in 10 min (from market to home)

with speed 7.5 km/h =
$$
7.5 \times \frac{10}{60} = 1.25
$$
 km

So displacement = $2.5 - 1.25 = 1.25$ km

(towards market)

Distance travelled = $2.5 + 1.25 = 3.75$ km

$$
V_{\text{ave.}} = \frac{2.5}{1/2} = 5 \text{ km/h}
$$
\n
$$
V = 48(1) \cdot V = 3A(16) + 8 \cdot V = 3A(16) + 8 \cdot V = 48A + 8B
$$
\n**0 to 50 min**\nTotal distance travelled = 2.5 + 2.5 = 5 km.
\nTotal displacement = zero\n(i) With the help velocity at po curve represent = 2.5
\n**0 to 40 min**\nDistance moved in 30 min (from home to market)\n
$$
= 2.5 \text{ km.}
$$
\nDistance moved in 10 min (from market to home)\nwith speed 7.5 km/h = 7.5 × $\frac{10}{60}$ = 1.25 km\nSo displacement = 2.5 - 1.25 = 1.25 km\n(cowards market)\nDistance travelled = 2.5 + 1.25 = 3.75 km\n(cowards market)\nDistance travelled = 2.5 + 1.25 = 3.75 km\n
$$
V_{\text{ave}} = \frac{1.25}{40/60}
$$
 ; $V_{\text{ave}} = \frac{3.75}{40/60} = 1.875 \text{ km/h}$.\n
$$
= 5.625 \text{ km/h. (towards market)} \qquad \text{Sol. (i) The tangent at position-time graph of two objects moving in the direction with unequal velocities.\n
$$
\Delta x = 0 - 15 = -\frac{0.15}{1.5} = 0.15
$$
$$

 $= 5.625$ km/h.(towards market)

Example 16 :

Give a position-time graph of two objects moving in the same direction with unequal velocities.

Sol. O is the time of meeting of two bodies A and B.

Example 17 :

Give a position-time graph of two objects moving in the opposite direction with unequal velocities.

O is time of meeting of two bodies A and B.

Example 18 :

The position of a particle moving on x-axis is given by $3 + Bt^2 + Ct + D$. The numerical value of A, B, C, D are $1, 4, -2$ and 5 respectively and S.I. units are used. Find velocity of the particle at $t = 4$ sec.

Example 17:

\nGive a position-time graph of two objects moving in the opposite direction with unequal velocities.

\n**Sol.**

\n**Sol.**

\n**Example 18:**

\nThe position of a particle moving on x-axis is given by

\n
$$
3 + Bt^2 + Ct + D
$$
. The numerical value of A, B, C, D are 1, 4, -2 and 5 respectively and S.I. units are used. Find velocity of the particle at $t = 4$ sec.

\n**Sol.**

\n $V = \frac{dx}{dt} = \frac{d}{dt}[At^3 + Bt^2 + Ct + D]$

\nor $V = 3At^2 + 2Bt + C$ at time $t = 4$ sec.

\nConsidering A = 1, B = 4, C = -2

\n $V = 3A(4)^2 + 2B(4) + C$

\n $V = 48(1) + 8(4) + (-2)$

\n $V = 3A(16) + 8B + C = 78$ m/s

\n $V = 48A + 8B + C$

\n $V = 48A + 8B + C$

Example 19 :

- (i) With the help of given fig. find the instantaneous velocity at point F for the object whose motion the curve represents.
- (ii) Refer to fig. for the motion of an object along the x-axis. What is the instantaneous velocity of the object (a) at point D ? (b) at point C ? (c) at point E ?

Sol. (i) The tangent at F is the dashed line GH. Taking triangle GHJ, we have

 $\Delta t = 24 - 4 = 20$ s $\Delta x = 0 - 15 = -15m$

Hence slope at F is
$$
v_F = \frac{\Delta x}{\Delta t} = \frac{-15m}{20 s} = -0.75
$$
 m/s

The negative sign tells us that the object is moving in the –x direction.

(ii) (a) Point D is a maximum of the x v/s t curve.

Therefore
$$
v = \frac{dx}{dt} = 0.
$$
 (1)

(b) Without the exact equation for x as function of t (ii) one cannot get a precise answer. The best we can do is to draw the tangent line at point c and the slope in the same way as in above problem. (iii) This yields the answer

$$
v_C = \frac{dx}{dt}\bigg|_C \approx 1.3 \text{ m/s}
$$

(c) We proceed as in part (b), but here the tangent line has a negative slope and the answer should be

$$
v_E = \frac{dx}{dt}\bigg|_E \approx -0.13 \text{ m/s}
$$

Example 20 :

The graph of particle's motion along the x-axis is given in fig. Estimate the (a) average velocity for the interval from A to C; instantaneous velocity at (b) D and at (c) A.

Sol. (a)
$$
\vec{v} = \frac{4.8 - 0}{8.0 - 0} = 0.60
$$
 cm/s.

From the slope at each point

(b)
$$
v = -0.48
$$
 cm/s. and (c) $v = 1.3$ cm/s.

ACCELERATION

The rate of change of velocity of an object with time is called acceleration of the object.

Let v and v' be the velocity of the object at time t and t' respectively, then acceleration of the body is given by

Acceleration (a) =
$$
\frac{\overrightarrow{Change}
$$
 in velocity
Time interval = $\frac{\overrightarrow{v} - \overrightarrow{v}}{t' - t}$

- (i) Acceleration is a vector quantity.
- (ii) It is positive if the velocity is increasing and is negative if the velocity is decreasing.
- (iii) The negative acceleration is also called retardation or deceleration.
- (iv) Unit : In S.I. system m/s^2 In C.G.S. system cm/s^2
- (v) Dimension : $[M^0L^1T^{-2}]$

Types of Acceleration :

- **(i) Uniform acceleration :** An object is said to be moving with a uniform acceleration if its velocity changes by equal amounts in equal intervals of time.
- **Variable acceleration :** An object is said to be moving with a variable acceleration if its velocity changes by unequal amounts in equal intervals of time.
- **Average Acceleration :** When an object is moving with a variable acceleration, then the average acceleration of the object for the given motion is defined as the ratio of the total change in velocity of the object during motion to the total time taken i.e., **STUDY MATERIAL: PHYSICS**
 STUDY MATERIAL: PHYSICS
 Uniform acceleration : An object is said to be moving

with a uniform acceleration if its velocity changes by equal

amounts in equal intervals of time.
 Variable a STUDYMATERIAL: PHYSICS

eleration :

m acceleration : An object is said to be moving

inform acceleration if its velocity changes by equal

is in equal intervals of time.

variable acceleration : An object is said to be . Then, Change in velocity = 2 1 v v v al intervals of time.
 eration : An object is said to be moving

a caceleration if its velocity changes by

ts in equal intervals of time.
 eration : When an object is moving with a

ration, then the average accelerat teration : An object is said to be moving

a acceleration if its velocity changes by

that in equal intervals of time.
 eration : When an object is moving with a

ration, then the average acceleration of the

velocity o

Average Acceleration: when an object is moving with a
variable acceleration, then the average acceleration of the
object for the given motion is defined as the ratio of the
total change in velocity of the object during motion to the
total time taken i.e.,
Average Acceleration\n
$$
= \frac{\frac{1}{2} \times \frac{1}{2} \
$$

Suppose the velocity of a particle is v_1 at time t_1 and

⇒
$$
\rightarrow
$$
 \rightarrow \rightarrow

Elapsed time in changing the velocity = $t_2 - t_1 = \Delta t$

Thus,
$$
\overrightarrow{a}_{av} = \frac{\overrightarrow{v}_2 - \overrightarrow{v}_1}{t_2 - t_1} = \frac{\overrightarrow{\Delta v}}{\Delta t} \Rightarrow \overrightarrow{a}_{av} = \frac{BC}{AC} = \tan \theta
$$

 $=$ the slope of chord of v – t graph is average acceleration. $\frac{1}{\pi}$ are stope of enote of $v - t$ graph is average acceleration. time t_1 and acceleration a_2 up to time t_2 then average Suppose the velocity of a particle is $\frac{R}{v_1}$ Time $\frac{t_2}{v_2}$

Suppose the velocity of a particle is v_1 at time t_1 and
 $\frac{L}{v_2}$ at time t_2 . Then, Change in velocity = $v_2 - v_1 = \Delta v$

Elapsed time in cha 1 2 e acceleration.

leration a_1 till
 b_2 then average

stant of time or

instantaneous
 \Rightarrow \Rightarrow \Rightarrow
 \Rightarrow \Rightarrow
 \Rightarrow \Rightarrow
 \Rightarrow \Rightarrow
 \Rightarrow
 \Rightarrow \Rightarrow
 \Rightarrow

 $a_{av} = \frac{a_1c_1 + a_2c_2}{t_1 + t_2}$

(iv) Instantaneous Acceleration :

The acceleration of the object at a given instant of time or at a given point of motion, is called its instantaneous acceleration.

 $-t$ Suppose the velocity of a particle at time $t_1 = t$ is \overline{t} $= v$

 \overrightarrow{a} av = $\frac{\Delta v}{4}$ $\frac{\rightarrow}{\Delta v}$
 Δt $=\frac{\Delta v}{\Delta t}$

If Δt approaches to zero then the rate of change of velocity will be instantaneous acceleration. Instantaneous

acceleration
$$
\vec{a}_{inst} = \lim_{\Delta t \to 0} \frac{\Delta v}{\Delta t} = \frac{\vec{d} v}{dt}
$$

Instantaneous acceleration at a point is equal to slope of tangent at that point on displacement time graph in the graph shown above this point is.

ATION IN ONE DIMENSION
\nInstantaneous acceleration at a point is equal to slope of
\ntransport at that point on displacement time graph in the
\ngraph shown above this point is. To elapse
\nAs
$$
\vec{v} = \frac{d\vec{x}}{dt}
$$
, therefore, $\vec{a} = \frac{d}{dt} \left(\frac{d\vec{x}}{dt} \right) = \frac{d^2 \vec{x}}{dt^2}$
\nThus, instantaneous acceleration of an object is equal to
\nthe second time derivative of the position of the object at
\nthe given instant.

Thus, instantaneous acceleration of an object is equal to the second time derivative of the position of the object at the given instant.

Note :

(i) It is not essential that when velocity is zero acceleration must be zero. e.g. In vertical motion at the top point $v = 0$ but $a \neq 0$.

(ii) Velocity may vary but $\frac{dv}{dt}$ may be constant.

- **(iii)** The acceleration may vary but v may be constant e.g. In uniform circular motion.
- **(iv)** If velocity decreases w.r.t. time then acceleration is called retardation. Retardation $a = \tan (\pi - \theta) = -\tan \theta$

Example 21 :

An athlete takes 2 second to reach the maximum speed of 18 km/h from rest. What is the magnitude of his average acc.?

Sol. Here, Initial velocity $u = 0$,

$$
rac{dx}{dt} = \frac{dv}{dt} = \frac{d}{dt}
$$

\n
$$
rac{dx}{dt} = \frac{dv}{dt}
$$

\n
$$
rac{dx}{dt} = \frac{dv}{dt} = \frac{dv}{dt}
$$

\n
$$
rac{dx}{dt} = \frac{dv}{dt} = \frac{dv}{dt}
$$

\n
$$
rac{dx}{dt} = \frac{dv}{dt} = \frac{dv}{dt}
$$

\n
$$
cosu, x = \sqrt{v+1}
$$

\n

Example 22 :

A car starts from rest and acquires velocity equal to 10 m/ s after 5 sec. Find the acceleration of the car.

Sol. Here, $u = 0$ and $v = 10$ m/s, $t = 5$ sec

Using,
$$
a = \frac{v - u}{t}
$$
,
we have $a = \frac{(10 - 0)m/s}{5 s} = 2 m/s^2$

Example 23 :

- $2 \rightarrow$ depend on time elapsed ? boint is equal to slope of **Example 23 :**

ement time graph in the The displacement of a p

of elapsed time . How

d d $\left(\frac{d \vec{x}}{dt}\right) = \frac{d^2 \vec{x}}{dt^2}$ **Sol.** Let x be the displacement of a p

of an object is equal to

d **Solution**
 Example 23:

point is equal to slope of **Example 23:**

ement time graph in the The displacement of a particle is proportional to

s.

s.
 $\frac{d}{dt}\left(\frac{d\vec{x}}{dt}\right) = \frac{d^2\vec{x}}{dt^2}$ **Sol.** Let x be the displacem The displacement of a particle is proportional to the cube

obtained to slope of

the displacement of a particle is proportional to the cube

of elapsed time. How does the acceleration of the bod
 $\left(\frac{d\vec{x}}{dt}\right) = \frac{d^2 \$ **Solution** a point is equal to slope of **Example 23 :**

a point is equal to slope of **Example 23 :**

accement time graph in the The displacement of a particle is proportional to the cube

t is. of elapsed time . How does **EDIMADVANCED LEARNIN**

EDIMADVANCED LEARNIN

EDIMADVANCED LEARNIN

EDIMADVANCED LEARNIN

The displacement of a particle is proportional to the cub

of elapsed time . How does the acceleration of the bod

depend on time e The displacement of a particle is proportional to the cube of elapsed time . How does the acceleration of the body **SOM ADVANCED LEARNING**

EDM ADVANCED LEARNING

SUB as the acceleration of the body

at time t of an object in motion.
 $x = kt^3$, where k is a constant.
 $= 3 kt^2 (m/s)$
 $a = \frac{dv}{dt} = 3k \times 2t = 6 kt. (m/s^2)$

tion \propto time.

var **EDMADVANCED LEARNING**
 EXECUTE:
 EXEC
- 2 Then according to question, $x = kt^3$, where k is a constant. $\frac{\partial}{\partial a} = \frac{d}{d} |\frac{dx}{dx}| = \frac{d^2 x}{dx^2}$ **Sol.** Let x be the displacement at time t of an object in motion.

velocity of object,
$$
v = \frac{dx}{dt} = 3 kt^2 (m/s)
$$

and acceleration of object,
$$
a = \frac{dv}{dt} = 3k \times 2t = 6
$$
 kt. (m/s²)

i.e. a ∞ t. It means acceleration ∞ time.

Example 24 :

The position x of a particle varies with time 't' as $x = at^2 - bt^3$. When will the acceleration of the particle become zero?

Example 23:
\nThe displacement of a particle is proportional to the cube of elapsed time. How does the acceleration of the body depend on time elapsed ?
\n**Sol.** Let x be the displacement at time to f an object in motion.
\nThen according to question, x = kt³, where k is a constant.
\nvelocity of object,
$$
v = \frac{dx}{dt} = 3 kt^2 (m/s)
$$

\nand acceleration of object, $a = \frac{dv}{dt} = 3k \times 2t = 6 kt. (m/s^2)$
\ni.e. a $\propto t$. It means acceleration \propto time.
\n**Example 24:**
\nThe position x of a particle varies with time 't' as
\nx = at² – bt³. When will the acceleration of the particle
\nbecome zero?
\n**Sol.** $v = \frac{dx}{dt} = \frac{d}{dt} (at^2 - bt^3) = 2at - 3bt^2$
\nacc. $= \frac{dv}{dt} = \frac{d}{dt} (2at - 3bt^2) = 2a - 6bt$
\nAccording to question acc. = 0
\n \therefore 2a - 6bt = 0 hence $t = \frac{a}{3b}$
\n**Example 25:**
\nThe velocity of any particle is related with its displacement
\nAs; $x = \sqrt{v+1}$, Calculate acceleration at x = 5 cm.
\n**Sol.** $x = \sqrt{v+1}$ $x^2 = v + 1$; $v = (x^2 - 1)$
\nTherefore
\n $a = \frac{dv}{dt} = \frac{d}{dt}(x^2 - 1) = 2x \frac{dx}{dt} - 0 = 2x v = 2x (x^2 - 1)$
\nat x = 5 m, a = 2 × 5 (25 - 1) = 240 m/s²
\n**TRY IT YOURSELF-1**
\n**Q.1** The speed of a car as a function of time as shown in fig.
\nFind the acceleration and distance travelled by the car in

$$
\therefore \quad 2a - 6bt = 0 \quad \text{hence} \quad t = \frac{a}{3b}
$$

Example 25 :

The velocity of any particle is related with its displacement

 $y=(x^2-1)$

s;
$$
x = \sqrt{v+1}
$$
, Calculate acceleration at $x = 5$ cm

ol.
$$
x = \sqrt{v+1}
$$
 $x^2 = v+1$
Therefore

I herefore

$$
a = \frac{dv}{dt} = \frac{d}{dt}(x^2 - 1) = 2x \frac{dx}{dt} - 0 = 2x v = 2x (x^2 - 1)
$$

at x = 5 m, a = 2 × 5 (25 – 1) = 240 m/s²

TRY IT YOURSELF-1

Q.1 The speed of a car as a function of time as shown in fig. Find the acceleration and distance travelled by the car in

- **Q.2** If the displacement of a particle is $(2t^2 + t + 5)$ meter then, what will be acc. at $t = 5$ sec.
- **Q.3** A car moving with a velocity of 20 ms⁻¹ is brought to rest in 5 seconds by applying brakes. Calculate the retardation of the car.

 $-\vec{u}$
t

- **Q.4** A particle moves according to the equation $x = 3 + 4t + 6t^2 + 4t^3$. Find its velocity and acceleration at all M times. When does its velocity equal 10 m/s? What is its acceleration at that instant?
- **Q.5** An object that negatively accelerates slows down. **True or False:**
- **Q.6** A person walks along a circular path of radius 5.00 m. If the person walks around one half of the circle, find (a) the magnitude of the displacement vector and (b) how far the person walked. (c) What is the magnitude of the displacement if the person walks all the way around the circle?

- **Q.7** A sprinter runs around a 440 meter circular track in 49 seconds.
	- (a) What is her average speed?
	- (b) What is her average velocity?
- **Q.8** A man has to go 50 m due north, 40 m due east and 20 m due south to reach a field.
	- (a) What distance he has to walk to reach the field?
- (b) What is his displacement from his house to the field? **Q.9** Is it possible to have zero velocity but non-zero acceleration at any position in any motion.
- **Q.10** A particle is moving in east direction with speed 5 m/s after 10 sec it starts moving in north direction with same speed. Find average acceleration.

ANSWERS

- **(1)** (i) 80m (ii) 2.5 m/s^2 (2) 4 m/s² (3) 4 ms⁻² (4) $v = 4 + 12t + 12t^2$; $a = 12 + 24t$; $t = 0.37s$; $a = 21$ m/s². .
- **(5)** False **(6)**(a) 10.0 m, (b) 15.7 m, (c) 0 **(7)** (a) 8.98 m/s, (b) 0, **(8)**(a) 110 m, (b) 50m
- **(9)** Yes, **(10)** $\frac{1}{\sqrt{6}}$ m/s², 135° **(e)** $\vec{s}_n =$ displ

MOTIONANALYSIS

To start solving any motion problem, first analyse whether motion is uniform (velocity constant) or non-uniform

(velocity not constant). If motion is uniform use
$$
\vec{v} = \frac{\vec{d}}{t}
$$
, $\vec{v} = \frac{2}{\sqrt{1 - \left(\frac{2}{\sqrt{1 - \left(1 + \frac{1}{\sqrt{1 -$

 \vec{v} and \vec{d} should be in same direction. If motion is nonuniform check the reason for velocity change. If velocity is changing directionally with constant magnitude then use vector approach. If it is changing magnitudely with fixed direction then use kinematic equation provided equation, while $\vec{v} \cdot \vec{v} = \vec{u} \cdot \vec{u} + 2\vec{a} \cdot \vec{s}$ is a scalar equation. acceleration is constant. If acceleration is variable use calculus approach. If velocity is changing magnitudely as well as directionally then use vector approach with calculus.

KINEMATIC EQUATIONS FOR UNIFORMLY ACCELERATED MOTION

Let \vec{u} = Initial velocity (at t = 0), \vec{v} = Velocity of the particle after time t, \vec{a} = Acceleration (uniform) **STUDY MATERIAL : PHYSICS**
 vSFORUNIFORMLYACCELERATED

locity (at t = 0), \vec{v} = Velocity of the

, \vec{a} = Acceleration (uniform)

of the particle during time 't'
 $\frac{\vec{v} - \vec{u}}{t}$

............................. **STUDY MATERIAL : PHYSICS**
 NSFORUNIFORMLYACCELERATED

locity (at t = 0), \vec{v} = Velocity of the
 \vec{a} = Acceleration (uniform)

of the particle during time 't'
 $\frac{\vec{v} - \vec{u}}{t}$

............................... **STUDY MATERIAL: PHYSICS**
 TCEQUATIONSFORUNIFORMIXACCELERATED
 \vec{u} = Initial velocity (at t = 0), \vec{v} = Velocity of the

cle after time t, \vec{a} = Acceleration (uniform)

Displacement of the particle during ti **STUDY MATERIAL: PHYSICS**
 ICEQUATIONSFORUNIFORMIXACCELERATED
 \vec{u} = Initial velocity (at t = 0), \vec{v} = Velocity of the

cle after time t, \vec{a} = Acceleration (uniform)

Displacement of the particle during ti **STUDY MATERIAL: PHYSICS**
 QUATIONSFORUNIFORMIXACCELERATED

Initial velocity (at $t = 0$), $\vec{v} =$ Velocity of the

fter time t, $\vec{a} =$ Acceleration (uniform)

lacement of the particle during time 't'

ion, $\vec{a} = \frac{\$ **STUDY MATERIAL: PHYSICS**
 QUATIONSFORUNIFORMLYACCELERATED

Initial velocity (at t = 0), \vec{v} = Velocity of the

fter time t, \vec{a} = Acceleration (uniform)

lacement of the particle during time 't'

ion, $\vec{a} = \frac$ **STUDY MATERIAL: PHYSICS**
 IIONSFORUNIFORMIXACCELERATED

al velocity (at t = 0), \vec{v} = Velocity of the

me t, \vec{a} = Acceleration (uniform)

nent of the particle during time 't'
 $\vec{a} = \frac{\vec{v} - \vec{u}}{t}$

....... **MATICEQUATIONSFORUNIFORMIYACCELERATED**
 ION

Let $\vec{u} =$ Initial velocity (at $t = 0$), $\vec{v} =$ Velocity of the

particle after time t, $\vec{a} =$ Acceleration (uniform)
 $\vec{s} =$ Displacement of the particle during time **IATICEQUATIONSFORUNIFORMLYACCELERATED**
 v
 i $\vec{u} = \text{Initial velocity (at } t = 0), \vec{v} = \text{Velocity of the
\ntricle after time t, $\vec{a} = \text{Acceleration (uniform)}$
\n= Displacement of the particle during time 't'
\ncoeleration, $\vec{a} = \frac{\vec{v} - \vec{u}}{t}$
\n $\vec{v} = \vec{u} + \vec{a}t$ (i)
\nisplacement $\vec{s} = \text{Average velocity x time.}$
\n $\vec{s} = \left$$

 \vec{s} = Displacement of the particle during time 't'

(a) Acceleration,
$$
\vec{a} = \frac{\vec{v} - \vec{u}}{}
$$

$$
\vec{u} + \vec{a}t \qquad \qquad \dots
$$

(b) Displacement \vec{s} = Average velocity x time.

^s ⁼ ² × t(ii)

[This is very useful equation, when acceleration is not given]

(c) From (i) & (ii) 1 ² 2 (iii)

$$
\left[\vec{v} = \vec{u} + \vec{a}t \cdot \frac{d\vec{s}}{dt} = \vec{u} + \vec{a}t\right]
$$

ITIONSFORMLYACCEIERATED
\nall velocity (at t = 0),
$$
\vec{v}
$$
 = Velocity of the
\nime t, \vec{a} = Acceleration (uniform)
\nment of the particle during time 't'
\n $\vec{a} = \frac{\vec{v} - \vec{u}}{t}$
\n
\n
\n
\n
\n
\n \vec{s} = Average velocity x time.
\n
\n \vec{s}
\n
\n \vec{s} = $\vec{u}t + \frac{1}{2}\vec{a}t^2$ \n
\n
\n
\n $\frac{d\vec{s}}{dt} = \vec{u} + \vec{a}t$
\n
\n $\Rightarrow \int d\vec{s} = \int (\vec{u} + \vec{a}t) dt \Rightarrow \vec{s} = \vec{u}t + \frac{1}{2}\vec{a}t^2$
\n
\n
\n $\frac{ds}{dt} = v \frac{dv}{dt} \quad [v dv] = [\vec{a} \vec{a} \vec{s} + v^2 - \vec{a} \vec{s} + c]$

(d)
$$
v^2 = u^2 + 2\vec{a}.\vec{s}
$$
 ... (iv)

STUDY MATERIAL: PHYSICS
\n**MOTION**
\nLet
$$
\vec{u} = \text{Initial velocity (at } t = 0), \vec{v} = \text{Velocity of the\nparticle after time t, $\vec{a} = \text{Acceleration (uniform)}$
\n $\vec{s} = \text{Displacement of the particle during time 't'}$
\n(a) Acceleration, $\vec{a} = \frac{\vec{v} - \vec{a}}{t}$
\n $\vec{v} = \vec{u} + \vec{a}t$ [30]
$$

 $\frac{1}{2}$ m/s², 135° **(e)** $\vec{s}_n =$ displacement of particle in nth second

$$
\begin{array}{ll}\n\frac{1}{s-2} & \text{At } s = 0, \, v = 0, \, 2 = c \\
\frac{1 \, \text{m/s}^2}{m} & \therefore \, \frac{v^2}{2} = \vec{a}.\vec{s} + \frac{u^2}{2} \Rightarrow v^2 = u^2 + 2\vec{a}.\vec{s} \, \\
\text{(e)} & \vec{s}_n = \text{ displacement of particle in nth second} \\
\vec{s}_n = \vec{s}_n - \vec{s}_{n-1} = \left\{ \vec{u}(n) + \frac{1}{2}an^2 \right\} - \left\{ \vec{u}(n-1) + \frac{1}{2}\vec{a}(n-1)^2 \right\} \\
\text{whether} \\
\text{uniform} & \vec{s}_n = \vec{u} + \frac{1}{2}\vec{a}(2n-1) & \frac{u}{t=0} & \frac{u}{t=n-1} \\
\vec{v} = \frac{\vec{d}}{t}, \quad \text{Equations (i), (iii) and (iv) are called 'equations of motion'} \\
\text{and are very useful in solving the problems of motion along a straight line with constant acceleration.} \\
\text{Note: (a) } \vec{v} = \vec{u} + \vec{a}t \text{ and } \vec{s} = \vec{u}t + \frac{1}{2}\vec{a}t^2 \text{ are vector} \\
\text{by with} \\
\text{avoided} \\
\text{equation, while } \vec{v}.\vec{v} = \vec{u}.\vec{u} + 2\vec{a}.\vec{s} \text{ is a scalar equation.} \\
\text{We obtain the differential equation of motion to be positive, so equation of motion becomes.} \\
\text{We have the direction of motion to be positive, so equation of motion becomes.} \\
\text{We have the direction of motion to be positive, so equation of motion becomes.} \\
\text{We have the equation of motion.} \\
\text{We have the direction of motion to be positive, so equation of motion.
$$

and are very useful in solving the problems of motion along a straight line with constant acceleration.

Note : (a)
$$
\vec{v} = \vec{u} + \vec{a}t
$$
 and $\vec{s} = \vec{u}t + \frac{1}{2}\vec{a}t^2$ are vector

(b) If the velocity and acceleration are collinear, we conventionally take the direction of motion to be positive, so equation of motion becomes.

$$
v = u + at, s = ut + \left(\frac{1}{2}\right)at^2, v^2 = u^2 + 2as
$$

If the velocity and acceleration are antiparallel then body retards and equation of motion becomes

$$
v = u - at
$$
, $s = ut - \frac{1}{2}at^2$, $v^2 = u^2 - 2as$

(c) In equation $s = ut + \frac{du}{dt}$ at t^2 , u is 1 $\frac{1}{2}$ at², u is initial speed for time

interval t while in $s_{nth} = u + \frac{a}{2}$ (2n – 1), u is speed at The ve $t = 0.$

Calculation of speed and distance by acceleration-time graph:

Let a particle be moving with uniform acceleration according to following $a - t$ graph –

If the velocity and acceleration of motion becomes
\n
$$
v = u - at
$$
, $s = ut - \frac{1}{2} at^2$, $v^2 = u^2 - 2as$
\n(c) In equation $s = ut + \frac{1}{2} at^2$, $v^2 = u^2 - 2as$
\n(d) In equation $s = ut + \frac{1}{2} at^2$, $u^2 = u^2 - 2as$
\n(e) In equation $s = ut + \frac{1}{2} at^2$, $u^2 = u^2 - 2as$
\n $t = 0$.
\n**Cauchation of speed and distance by acceleration-time**
\n $t = 0$.
\n**Cauchation of speed and distance by acceleration-time graph:**
\n $t = 0$.
\n**Cauchation of speed and distance by acceleration-time graph:**
\n $t = 0$.
\n $du = a dt$ or $\int_0^u dv = \int_0^u du$
\n $du = 0$ and $u = \int_0^u du = \int_0^u du$
\n $du = 0$
\n $du = 0$

Therefore difference in magnitude of velocity $(v - u) = AB \times AD$

 $v - u =$ Area of rectangle ABCD = area under a – t graph

Example 26 :

$$
v - u = a(t_2 - t_1)
$$

\nTherefore difference in magnitude of velocity
\n
$$
(v - u) = AB \times AD
$$

\n
$$
v - u = Area of rectangle ABCD = area under a - t gf
$$

\n**mple 26:**
\nA particle has an initial velocity of $3\hat{i} + 4\hat{j}$ and acceleration of $0.4\hat{i} + 0.3\hat{j}$. Find speed after 10s.
\nUsing $\vec{v} = \vec{u} + \vec{a}t$
\n⇒ $\vec{v} = (3\hat{i} + 4\hat{j}) + (0.4\hat{i} + 0.3\hat{j}) \times 10 \Rightarrow \vec{v} = 7\hat{i} + 7\hat{j}$
\n⇒ $v = \sqrt{7^2 + 7^2} = 7\sqrt{2}$ m/s
\n**mple 27:**
\nA lift performs the first part of its ascent with unit acceleration 's' and the remainder with uniform related

Example 27 :

A lift performs the first part of its ascent with uniform acceleration 'a' and the remainder with uniform retardation 2a. Prove that if h the depth of the shaft and t is the time

of ascent, then
$$
h = \frac{1}{3}
$$
 at². Use only the graphical method.

Total time,
$$
t = t_1 + t_2
$$
;
\nor $t = \frac{V}{a} + \frac{V}{2a} = \frac{3V}{2a}$ or $V = \frac{2}{3}$ at
\nh = area of the $\triangle OAB = \frac{1}{2} t V = \frac{1}{2} t \times \frac{2}{3} at = \frac{1}{3} at^2$

Example 28 :

The velocity acquired by a body moving with uniform acceleration is 20 m/s in first 2 sec and 40 m/s in first 4 sec. Calculate initial velocity.

IDENTIFY and SET UP:
\n
$$
\begin{array}{ll}\n\text{CDEFed 1} & \text{Total time, } t = t_1 + t_2; \\
\text{CDEFed 2} & \text{CDEFed 3} \\
\text{CDEFed 3} & \text{CDEFed 4} \\
\text{DATE: } t_1 = 1, t_2 = 2, t_3 = 3, t_1 = -\frac{1}{2} \text{ at}^2, \quad v^2 = u^2 - 2 \text{ as} \\
\text{DATE: } t_2 = 1, t_3 = 1, t_4 = 2, t_5 = 1, t_5 = 2, t_6 = 2, t_7 = 2, t_7 = 2, t_8 = 2, t_9 = 2, t_1 = 2, t_1 = 2, t_1 = 2, t_2 = 2, t_3 = 2, t_1 = 2, t_2 = 2, t_3 = 2, t_1 = 2, t_2 = 2, t_3 = 2, t_1 = 2, t_2 = 2, t_3 = 2, t_1 = 2, t_2 = 2, t_3 = 2, t_4 = 2, t_5 = 2, t_5 = 2, t_6 = 2, t_7 = 2, t_7 = 2, t_7 = 2, t_7 = 2, t_8 = 2, t_9 = 2, t_1 = 2, t_1 = 2, t_1 = 2, t_1 = 2, t_2 = 2, t_1 = 2, t_2 = 2, t_3 = 2, t_4 = 2, t_1 = 2, t_1
$$

Example 29 :

A particle starts with a constant acceleration. At a time t second speed is found to be 100 m/s and one second later speed becomes 150 m/s. Find acceleration of the particle.

Sol. From first eqnⁿ of motion-
\n
$$
\Rightarrow
$$
 100 = 0 + at or 100 = at(1)
\nvelocity after one second
\n $v' = 0 + a(t+1) \Rightarrow$ 150 = a(t+1)(2)
\nOn subtracting eqnⁿ. (1) from eqnⁿ. (2)
\n $a = 50$ m/s²

Example 30 :

A body travels a distance of 2 m in 2 seconds and 2.2 m in next 4 seconds. What will be the velocity of the body at the end of $7th$ second from the start.

Sol. Here, Case (i) $S = 2m$, $t = 2s$ Case (ii) $S = 2 + 2.2 = 4.2$ m $t = 2 + 4 = 6s$

Let u and a be the initial velocity and uniform acceleration

of the body.
$$
S = ut + \frac{1}{2}at^2
$$

Case (i),
$$
2 = (u \times 2) + (\frac{1}{2}a \times 2^2)
$$

or
$$
1 = u + a
$$
 \t\t\t\t\t....(i)

Case (ii),
$$
4.2 = (u \times 6) + (\frac{1}{2} a \times 6^2)
$$

or $0.7 = u + 3a$ (ii) Subtracting (ii) from (i),

$$
0.3 = 0 - 2a = -2a \qquad \text{or} \qquad a = -\frac{0.3}{2} = -0.15 \text{ m/s}^2
$$

 $=\frac{V}{m}$ and $t_2 = \frac{V}{g}$ we have $u = 1.15 \text{ m/s}$; $a = -0.15 \text{ m/s}^2$, $v = ?$, $t = 7s$ 2a As, v = u + at = 1.15 + (– 0.15) × 7 = 0.1 m/sFrom (i), $u = 1 - a = 1 + 0.15$ or $u = 1.15$ m/s For the velocity of body at the end of $7th$ second,

Example 31 :

A body travels a distance of 20 m in the $7th$ second and 24 m in 9th second. How much distance shall it travel in the 15th second?

Sol. Here, $s_7 = 20 \text{ m}$; $s_9 = 24 \text{ m}$, $s_{15} = ?$ Let $u =$ initial velocity and $a =$ uniform acc. of the body.

Distance travelled in nth second $s_n = u + \frac{a}{2} (2n - 1)$ **Sol.** $u = 54 \text{ km/h} =$

Distance travelled in 7th second $s_7 = u + \frac{a}{2} (2 \times 7 - 1)$ the car $s_1 =$

or
$$
20 = u + \frac{13a}{2}
$$
 ...(i)

Distance travelled in 9th second $s_9 = u + \frac{a}{2} (2 \times 9 - 1)$ 12 $s_2 = -2$ $\frac{1}{2} (2 \times 9 - 1)$ 12 $s_2 = -223 -$

or
$$
24 = u + \frac{17}{2} a
$$
 ...(ii)

Subtracting (ii) from (i), $4 = 2a$ or $a = 2$ m/s² Putting this value of a in $eqⁿ$ (i)

$$
20 = u + \frac{13}{2} \times 2 \text{ or } 20 = u + 13 \text{ or } u = 20 - 13 = 7 \text{ m/s}
$$

distance travelled in 15th second

$$
s_{15} = u + \frac{a}{2} (2 \times 15 - 1) = 7 + \frac{2}{2} \times 29 = 36
$$
 m

Example 32 :

A person travelling at 43.2 km/h applies the brakes giving a deceleration of 6 m/s^2 to his scooter. How far will it travel before stopping ?

Sol. Here,
$$
u = 43.2 \text{ km/h} = 43.2 \times \frac{5}{18} \text{ m/s}
$$

\nDeceleration; $a = 6 \text{ m/s}^2$ $v = 0$ $s = ?$
\n $0 = (12)^2 - 2 \times 6 \text{ s}$ [using $v^2 = u^2 - 2as$]
\nor $144 = 2 \times 6 \text{s}$ or $s = \frac{144}{12} = 12 \text{ m}$

Example 33 :

A bullet going with speed 350 m/s enters in a concrete wall and penetrates a distance of 5 cm before coming to rest. Find deceleration.

Sol. Here, $u = 350$ m/s, $s = 5$ cm, $v = 0$ m/s, $a = ?$ By using $v^2 = u^2 + 2as$ we get $0 = u^2 + 2as$ or $u^2 = -2as$ or $a =$ $a = -\frac{u^2}{2}$ \longrightarrow $\frac{du}{dx}$ 3.2 km/h applies the brakes giving

For first car $v^2 = u^2 - 2as \Rightarrow 0 = u_1^2 - 2s$

2s to his scooter. How far will it
 $3.2 \times \frac{5}{18}$ m/s
 $43.2 \times \frac{5}{18}$ m/s
 $s^2 = v^2 - 2as \Rightarrow 2as - 2as - 2s$
 $s = 14.4$
 $s = \frac{144}{12} = 12 \text{ m}$
 350 m/s 56% or $a = -\frac{330 \times 330}{2 \times .05} = -12.25 \times 10^5 \text{ m/sec}^2$ on stopping ?

43.2 km/h = $43.2 \times \frac{5}{18}$ m/s

on s a = 6 m/s² v = 0
 $2)^2 - 2 \times 6$ s [using v² = u^2 - 2as]
 2×6 s or $s = \frac{144}{12} = 12$ m

oing with speed 350 m/s enters in a concrete

enetrates a distance 3.2 km/h = 43.2 $\times \frac{5}{18}$ m/s

1; a = 6 m/s² v = 0 s = ?

²-2 × 6 s [using v² = u² - 2as]

× 6s or s = $\frac{144}{12}$ = 12 m

ng with speed 350 m/s enters in a concrete

netrates a distance of 5 cm before coming Example 36.

Let allow the station of the

Negative answer represents retardation.

Example 34 :

A driver takes 0.20 s to apply the brakes after he see a need for it. This is called the reaction time of the driver. If he is driving a car at a speed of 54 km/h and the brakes cause a deceleration of 6.0 m/s², find the distance travelled by the car after he see the need to put the brakes on.

$$
\frac{a}{2} (2n-1) \qquad \textbf{Sol.} \quad u = 54 \text{ km/h} = 54 \times \frac{5}{18} \text{ m/s} = 15 \text{ m/s}
$$

 $2^{(2 \times 7 - 1)}$ are called the contract of the brakes before applying brakes by driver, distance covered by the car $s_1 = ut = 15 \times 0.2 = 3.0$ m

 $v = 0$, $u = 15$ m/s, $a = 6$ m/s², s₂ = ? Using $v^2 = u^2 - 2as$ or $0 = (15)^2 - 2 \times 6 \times s_2$

$$
12 s_2 = -225 \Rightarrow s_2 = \frac{225}{12} = 18.75 \text{ m}
$$

Distance travelled by the car after driver see the need for it $s = s_1 + s_2 = 3 + 18.75 = 21.75$ m

Example 35 :

2 another? Two cars travelling towards each other on a straight road at velocity 10m/s and 12 m/s respectively when they are 150 meter apart, both drivers apply their brakes and each car decelerates at 2 m/s^2 until it stops. (a) How far apart will the cars be after stopping. (b) Will the car collide to 5 m

on a straight road

ely when they are

ir brakes and each

(a) How far apart

the car collide to

m/s, $v_2 = 0$ m/s,
 $2as_1$ or $s_1 = \frac{u_1^2}{2a}$
 $s_2 = \frac{u_2^2}{2a}$
 $\frac{2}{2a} = \frac{u_1^2 + u_2^2}{2a}$

and a we get
 $s_$ 5 m

iver see the need for

.75 m

er on a straight road

ively when they are

eir brakes and each

s. (a) How far apart

ill the car collide to

0 m/s, v₂ = 0 m/s,

- 2as₁ or s₁ = $\frac{u_1^2}{u_1}$

s₂ = $\frac{u_2^2}{$ 5 m

iver see the need for

.75 m

er on a straight road

ively when they are

eir brakes and each

s. (a) How far apart

ill the car collide to

0 m/s, $v_2 = 0$ m/s,

- 2as₁ or $s_1 = \frac{u_1^2}{2a}$
 $s_2 = \frac{u_2^2}{2a}$
 15)² – 2 × 6 × s₂

75 m

driver see the need for

21.75 m

ther on a straight road

cetively when they are

their brakes and each

ops. (a) How far apart

Will the car collide to

= 0 m/s , v₂ = 0 m/s,
 $1^2 - 2as_1$ s = s₁ + s₂ = 3 + 18.75 = 21.75 m

s travelling towards each other on a straight roa

ity 10m/s and 12 m/s respectively when they are

re apart, both drivers apply their brakes and eac

lerates at 2 m/s² until it st avelling towards each other on a straight ro

10m/s and 12 m/s respectively when they a

apart, both drivers apply their brakes and ea

ates at 2 m/s² until it stops. (a) How far apar

10 m/s, $u_2 = 12$ m/s, $v_1 = 0$ m/ 3 + 18.75 = 21.75 m
wards each other on a straight road
12 m/s respectively when they are
drivers apply their brakes and each
 $/s^2$ until it stops. (a) How far apart
topping. (b) Will the car collide to
12 m/s, $v_1 = 0$ m ds each other on a straight road

m/s respectively when they are

ers apply their brakes and each

multil it stops. (a) How far apart

ing. (b) Will the car collide to

m/s, $v_1 = 0$ m/s, $v_2 = 0$ m/s,
 $\Rightarrow 0 = u_1^2 - 2a s_1$ by the car after driver see the need for
 $z = 3 + 18.75 = 21.75$ m

towards each other on a straight road

dd 12 m/s respectively when they are

th drivers apply their brakes and each

m/s² until it stops. (a) How far apa

 $\frac{\text{Sol.}}{2}$ \times 29 = 36 m
Sol. Here $u_1 = 10 \text{ m/s}, u_2 = 12 \text{ m/s}, v_1 = 0 \text{ m/s}, v_2 = 0 \text{ m/s},$ $a = -2 \text{ m/s}^2$, $D = 150 \text{ m}$ 2 u_1^2

For first car $v^2 = u^2 - 2as \Rightarrow 0 = u_1^2 - 2as_1$ or $s_1 = \frac{u_1}{2a_1}$ 1 $=\frac{a_1}{2a}$ For second car $v^2 = u^2 - 2as$ $\Rightarrow 0 = u_2^2 - 2as_2$ $2as_2 = u_2^2$ or $s_2 = \frac{u_2}{2a}$
distance travelled by both cars 2 $\overline{2}$ u_2^2

$$
= s_1 + s_2 = \frac{u_1^2}{2a} + \frac{u_2^2}{2a} = \frac{u_1^2 + u_2^2}{2a}
$$

Now, substituting the values of u_1 , u_2 and a we get

$$
s = \frac{10^2 + 12^2}{2 \times 2} = \frac{100 + 144}{4} = \frac{244}{4} = 61 \text{ m}
$$

Thus, distance between cars after stopping

$$
\Delta s = D - s = 150 - 61 = 89 \,\mathrm{m}
$$

(b) Because $D > s$ hence there will be no collision

Example 36 :

A particle starts moving from the position of rest under a constant acc. If it covers a distance x in t sec, what distance will it travel in next t sec? substituting the values of u_1 , u_2 and a we get
 $s = \frac{10^2 + 12^2}{2 \times 2} = \frac{100 + 144}{4} = \frac{244}{4} = 61$ m

distance between cars after stopping
 $\Delta s = D - s = 150 - 61 = 89$ m

ecause $D > s$ hence there will be no collision

Sol. As acc. is constant so from
$$
s = ut + \frac{1}{2}
$$
 at² we have
 $x = \frac{1}{2}$ at² $[u = 0]$ (1)

Now if it travels a distance y in next t sec. in 2t sec total distance travelled

$$
x + y = \frac{1}{2} a(2t)^2
$$
(2) $(t + t = 2t)$
Dividing eqⁿ. (2) by eqⁿ (1)

$$
\frac{x+y}{x} = 4 \qquad \text{or} \qquad y = 3x
$$

10

Example 37 :

- At an instant as the traffic light turns green a car starts \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore At the same instant a truck, travelling with a constant speed of 10 m/s, overtakes and passes the car. (a) How far beyond the starting point will the car overtake the truck? (b) How fast will the car be travelling at that instant? (c) Draw s/t curves for each vehicle.
- **Sol.** Let the two vehicles meet after time t. Then from 2^{nd} eqⁿ of motion The distance travelled by car

$$
s_C = \frac{1}{2} \times 2t^2
$$
 [as u = 0] ...(1)
And distance travelled by truck

 $s_T = 10 \times t$ [as $a = 0$]

According to given problem

$$
s_C = s_T
$$
, i.e. $t^2 = 10 t$ or $t = 10$ sec.

- (a) The distance travelled by the car in overtaking the truck, $s_C = 10^2 = 100$ m
- (b) The speed of car at $t = 10$ sec. from eqⁿ $v = u + at$, or $v = 0 + 2 \times 10 = 20$ m/s
- (c) s/t curves for car and truck, i.e., $Eqⁿ$. (1) and $Eqⁿ$. (2), are plotted in figure

Example 38 :

A passenger is standing d distance away from a bus. The bus begins to move with constant acceleration a. To catch the bus, the passenger runs at a constant speed u towards 0.9 the bus. What must be the minimum speed of the passenger so that he may catch the bus. 3

Exerger is standing d distance away from a bus. The

Egins to move with constant acceleration a. To catch

the passenger runs at a constant speed u towards

negre so that must be the minimum speed of the

negres of hat the bus, the passenger runs at a constant speed if

the bus. What must be the minimum speed

passenger so that he may catch the bus.

Let the passenger catch the bus after time t.

The distance travelled by the bus,
 s_1

Sol. Let the passenger catch the bus after time t. The distance travelled by the bus,

$$
s_1 = 0 + \frac{1}{2}
$$
 at²(1)

2 \cdots \cdots and the distance travelled by the passenger

$$
s_2 = ut + 0 \qquad \qquad \dots (2)
$$

Now the passenger will catch the bus if

$$
d + s_1 = s_2 \qquad \dots (3)
$$

Substituting the values of s_1 and s_2 from eqⁿ. (1) and eqⁿ. (2) in (3)

$$
d + \frac{1}{2} \text{ at}^2 = \text{ut i.e. } \frac{1}{2} \text{ at}^2 - \text{ut} + d = 0 \text{ or } t = \frac{[u \pm \sqrt{u^2 - 2ad}]}{a}
$$
 (1) 10 sec

So the passenger will catch the bus if t is real, i.e.,

$$
u^2 \ge 2 \text{ ad} \qquad \text{or} \qquad u \ge \sqrt{2 \text{ ad}}
$$

So the minimum speed of passenger for catching the bus

TRY IT YOURSELF-2

- **Q.1** A particle starts with initial velocity 2.5 m/s along the x direction and accelerates uniformly at the rate 50 cm/s^2 . Find time taken to increase the velocity to 7.5 m/s.
- **Q.2** A truck starts from rest with an acceleration of 1.5 m/s^2 while a car 150 meter behind starts from rest with an acceleration of 2 m/s². How long will it take before both the truck and car are side by side.
- **Q.3** A car is moving at a speed 50 km/h. Two seconds there after it is moving at 60 km/h. Calculate the acceleration of the car.
- **Q.4** A bullet moving with 10 m/s hits the wooden plank the bullet is stopped when it penetrates the plank 20 cm. deep calculate retardation of the bullet.
- **Q.5** A particle starts from rest and travel a distance x with uniform acceleration, then moves uniformly a distance 2x and finally comes to rest after moving further 5x with uniform retardation. Find the ratio of maximum speed to average speed.
- **Q.6** A particle starts from rest with constant acceleration $= 2m/s²$. Find displacement in 5th sec.
- **Q.7** Two trains A and B, 100 km. apart, are travelling towards each other with starting speeds of 50 km/hr. for both. The train A is accelerating at 18 km/hr² and B is decelerating at 18 km/hr² . Find the distance from the initial position of A of the point when the engines cross each other.

$$
\overset{A \rightarrow}{\leftarrow} x \overset{P}{\longrightarrow} \overset{\leftarrow}{\leftarrow} B
$$

100km

- [u u 2ad] **100km Contained the passes there**
 2.8 A particle moving with uniform acceleration along a straight

line passes three successive points A, B and C where the

distances AB : BC is 3 : 5 & the time taken from A to B i **Q.8** A particle moving with uniform acceleration along a straight line passes three successive points A, B and C where the distances AB : BC is $3:5 \&$ the time taken from A to B is 40 sec. If the velocities at $A & C$ are 5 m/s $\& 15$ m/s respectively. Find (a) the velocity of the particle at B. (b) acceleration of the particle
	- **Q.9** A particle moving with uniform acceleration from A to B along a straight line has velocities v_1 and v_2 at A and B respectively. If C is the mid point between A and B then determine the velocity of the particle at C.
	- **Q.10** A train travelling along a straight line with constant acceleration is observed to travel consecutive distances of 1 km in times of 30s and 60s respectively. Find the initial velocity of the train.
	- **Q.11** A particle is moving in a straight line with initial velocity u and uniform acceleration f. If the sum of the distances travelled in tth and $(t + 1)$ th seconds is 100 cm, then find its velocity after t seconds, in cm/s.

ANSWERS

11

MOTION UNDER GRAVITY

The most important example of motion in a straight line with constant acceleration is motion under gravity. In case of motion under gravity.

- (1) The acceleration is constant, i.e.
	- $a = g = 9.8$ m/s² and directed vertically downwards.
- (2) The motion is in vacuum, i.e., viscous force or thrust
- of the medium has no effect on the motion.

1. Body falling freely under gravity :

Taking initial position as origin and downward direction of motion as positive, we have

 $u = 0$ [as body starts from rest]

 $a = +g$ [as acc. is in the direction of motion]

So if the body acquires velocity v after falling a distance h in time t, equations of motion, viz.

$$
v = u + at
$$
; $s = ut + \frac{1}{2}at^2$ and $v^2 = u^2 + 2as$

reduces to $v = gt$ (1), $h = \frac{1}{2}gt^2$ (2) and $\frac{1}{2}gt^2$ $\frac{1}{2}$ gt²(2) and and u² =

$$
v^2 = 2gh \quad(3)
$$

These equations can be used to solve most of the problems of freely falling bodies as if.

(i) If the body is dropped from a height H, as in time t is has fallen a distance h from its initial position, the height of the body from the ground will be

$$
h' = H - h \text{ with } h = \frac{1}{2}gt^2
$$
if u

(ii) As
$$
h = \frac{1}{2}gt^2
$$
, i.e., $h \propto t^2$,

distance fallen in time t, 2t, 3t etc., will be in the ratio of

 $1^2: 2^2: 3^2$, i.e., square of integers.

(iii) The distance fallen in the nth sec

$$
= h_{(n)} - h_{(n-1)} = \frac{1}{2} g(n)^2 - \frac{1}{2} g(n-1)^2 = \frac{1}{2} g(2n-1)
$$

So distances fallen in I^{st} , 2^{nd} , 3^{rd} sec etc. will be in the ratio of 1 : 3 : 5 i.e., odd integers only.

2. Body projected vertically up :

Taking initial position as origin and direction of motion (i.e., vertically up) as positive,

here we have $v = 0$ [at highest point velocity = 0] $a = -g$ [as acc. is downwards while motion upwards] If the body is projected with velocity u and reaches the highest point at a distance h above the ground in time t, the equations of motion viz.,

$$
v = u + at
$$
, $s = ut + \frac{1}{2}at^2$ and $v^2 = u^2 + 2as$

reduces to $0 = u - gt$, $h = ut - \frac{1}{2}gt^2$ and $0 = u^2 - 2gh$ $\frac{1}{2}$ gt² and 0 = u² – 2gh

Substituting the value of u from first equation in second and rearranging these,

reduces to
$$
0 = u - gt
$$
, $n = ut - \frac{1}{2}gt^2$ and $0 = u^2 - 2gt^2$
\nSubstituting the value of u from first equation in second
\nand rearranging these,
\n $u = gt$ (1)
\n $h = \frac{1}{2}gt^2$ (2)
\nand $u^2 = 2gt^2$ (3)
\nThese equations can
\nbe used to solve most
\nof the problems of
\nbodies projected
\nvertically up as.
\nIf t is given, use eqⁿ h
\n(1) and eqⁿ (2)
\n $u = gt$ and $h = \frac{1}{2}gt^2$
\nif h is given, use eqⁿ (2) and eqⁿ (3)
\n $t = \sqrt{\frac{2h}{g}}$; $v = \sqrt{2gt^2}$
\n $t = u/g$ $t = 2u/g$

if h is given, use $eq^n(2)$ and $eq^n(3)$

$$
t = \sqrt{\frac{2h}{g}} \hspace{1mm}; \hspace{1cm} v = \sqrt{2g \hspace{1mm} h}
$$

if u is given, use $eq^n(3)$ and $eq^n(1)$

IMPORTANT POINTS

- **1.** In case of motion under gravity for a given body, mass, acceleration, and mechanical energy remain constant while speed, velocity, momentum, kinetic energy and potential energy change.
- **2.** The motion is independent of the mass of the body, as in any equation of motion, mass is not involved. This is why a heavy and lighter body when released from the same height, reach the ground simultaneously and with and v = 2g h change.

Divide (1

tion is independent of the mass of the body, as in

atation of motion, mass is not involved. This is

leavy and lighter body when released from the

Put in (2)

gight, reach the ground simultaneously a ler gravity for a given body
aanical energy remain constant
tum, kinetic energy and po
adent of the mass of the bod
on, mass is not involved.
ter body when released fr
e ground simultaneously an
 $\frac{2h}{g}$ and $v = \sqrt{2g} h$ Any equation of motion, mass is not involved. This is
any equation of motion, mass is not involved. This is
why a heavy and lighter body when released from the
same velocity. i.e. $t = \sqrt{\frac{2h}{g}}$ and $v = \sqrt{2g} \ln$
However,

same velocity. i.e.
$$
t = \sqrt{\frac{2h}{g}}
$$
 and $v = \sqrt{2g} \text{ h}$
A ball is thro

However, momentum, kinetic energy or potential energy depend on the mass of the body (all ∞ mass)

3. As from $eq^n(2)$ time taken to reach a height h, $2h$

$$
t_U = \sqrt{\frac{2h}{g}}
$$

Similarly, time taken to fall down through a distance h,

$$
t_D = \sqrt{\frac{2h}{g}}
$$
 so $t_U = t_D = \sqrt{\frac{2h}{g}}$

So in case of motion under gravity time taken to go up a height h is equal to the time taken to fall down through the same height h.

4. If a body is projected vertically up and it reaches a height

and if a body falls freely through a height h, then

$$
v = \sqrt{2gh} = u
$$

velocity. i.e. $t = \sqrt{\frac{2h}{g}}$ and $v = \sqrt{2g} h$
ever, momentum, kinetic energy or potential ene
nd on the mass of the body (all \propto mass)
om eqⁿ.(2) time taken to reach a height h,
 $t_U = \sqrt{\frac{2h}{g}}$
larly, time taken to f So in case of motion under gravity, the speed with which a body is projected up is equal to the speed with which it comes back to the point of projection. freely through a height h, then

1

1

1

1 on under gravity, the speed with which

1 up is equal to the speed with which

point of projection.

3

1

1 or the last second it travely in the last second it travel

1 or the

Example 39 :

A ball is dropped from height 'h' in the last second it trav-

els
$$
\frac{9h}{25}
$$
. Find h.

Sol. Method I : Let us say ball take 't' sec to fall height h as it **Sol.** Sol.

falls
$$
\frac{9h}{25}
$$
 in last sec., it travel $h - \frac{9h}{25} = \frac{16h}{25}$ in $(t-1)$ sec

$$
\therefore h = \frac{1}{2}gt^{2} \text{} (1) \qquad \frac{16h}{25} = \frac{1}{2}g(t-1)^{2} \qquad \text{........ (2)}
$$

Divide (2) by (1), $\frac{1}{25}$ 2 1 $25e$ 25^{-} t^{2} \rightarrow $n 2^{0(3)}$ - 2^{n} $t = \frac{(t-1)^2}{t^2}$ \Rightarrow $h = \frac{1}{2} g(5)^2 = \frac{25g}{2} m$ For 4th ball, it $\frac{1}{2}$ g(5)² = $\frac{258}{2}$ m For 4th ball, it was droppe

Method II : Let us say ball take n sec to fall height h last sec will be nth sec. (student usually think it wrongly as $n - 1$) (Remember in nth sec. formula u is speed at $t = 0$)

39 :
\nall is dropped from height 'h' in the last second it trav
\n
$$
\frac{9h}{25}
$$
. Find h.
\n**25** Find h.
\n**26** Find h.
\n**27** Find h.
\n**28** Find h.
\n**29** Find h.
\n**20** Find h.
\n**21** Find h.
\n**22** Find h.
\n**23** Find h.
\n**24** Find h.
\n**25** Find h.
\n**26** If 1×10^2 **27 28** If 1×10^2 **29 20 21 22 23 24 25 26 27 28 29 21 20 21 23 24 25 26 27 28 29**

$$
h = \frac{1}{2} \, \text{gn}^2 \qquad \qquad \dots \dots \dots \dots \dots (2)
$$

Divide (1) by (2),
$$
\frac{9}{25} = \frac{2n-1}{n^2} \Rightarrow n = 5 \text{ sec}
$$

Put in (2),
$$
h = \frac{1}{2}g(5)^2 = \frac{25g}{2}
$$
 m.

A ball is thrown upwards from the ground with an initial speed of u. The ball is at a height of 80m at two times, the time interval being 6s. Find u. Take $g = 10 \text{ m/s}^2$. ground with an initial

80m at two times, the
 $g = 10 \text{ m/s}^2$.
 $d s = 80 \text{m}$.
 $t - 5t^2$
 $\frac{2 - 1600}{10}$
 $\frac{u - \sqrt{u^2 - 1600}}{10} = 6$

Sol. Here, $u = u$ m/s, $a = g = -10$ m/s² and s = 80m. Substituting the values in

SION
\n**SION**
\ngravity for a given body, mass,
\nreal energy remain constant while
\nm, kinetic energy and potential
\nnot of the mass of the body, as in
\nmass is not involved. This is
\nbody when released from the
\n
$$
\frac{2h}{g}
$$
 and $v = \sqrt{2g} \text{ h}$
\n $\frac{2h}{g}$ and $v = \sqrt{2g} \text{ h}$
\n $\frac{2h}{g}$
\n**Example 40:**
\nA ball is thrown upwards from the ground with an initial
\npointed. The ball is at a height of 80m at two times, the
\ne body (all \propto mass)
\n $\frac{2h}{g}$ and $v = \sqrt{2g} \text{ h}$
\n**Example 40:**
\nA ball is thrown upwards from the ground with an initial
\nspecific energy or potential energy speed of u. The ball is at a height of 80m at two times, the
\nthe body (all \propto mass)
\n $\frac{2h}{g} = 10 \text{ m/s}^2$
\n $\frac{h}{g} = 10 \text{ m/s}^$

and
$$
\frac{u - \sqrt{u^2 - 1600}}{10}
$$

It is given that,
$$
\frac{u + \sqrt{u^2 - 1600}}{10} - \frac{u - \sqrt{u^2 - 1600}}{10} = 6
$$

or
$$
\frac{\sqrt{u^2 - 1600}}{5} = 6 \text{ or } \sqrt{u^2 - 1600} = 30
$$

or
$$
u^2 - 1600 = 900
$$

or
$$
u^2 - 1600 = 900
$$

\n \therefore $u^2 = 2500$ or $u = \pm 50$ m/s
\nIgnoring the negative sign, we have, $u = 50$ m/s

Example 41 :

A person sitting on the top of a tall building is dropping balls at regular intervals of one second. Find the positions of the 3^{rd} , 4^{th} and 5^{th} ball when the 6th ball is being dropped. [Take $g = 10 \text{ m/s}^2$]

 $\frac{9h}{25} = \frac{16h}{25}$ in (t-1) sec (previously fallen) balls can be calculated by using the 25 25 time of falling of each ball till this instant. When 6th ball is being dropped, the positions of the other

For 5th ball, it was dropped just one second before. Thus

 2^{5} (e) $\frac{1}{2}$ it has fallen a distance $=$ $\frac{1}{2}$ gt² = 5m. $\frac{1}{2}$ gt² = 5m.

 $=\frac{25g}{2}$ m For 4th ball, it was dropped two second before this

instant. It has fallen a distance $=\frac{1}{2}(10) 2^2 = 20$ m. $\frac{1}{2}$ (10) $2^2 = 20$ m.

For 3rd ball, it was dropped two second before this instant.

It has fallen a distance
$$
=\frac{1}{2}(10)3^2 = 45
$$
m.

MOTIONALONG SMOOTH INCLINED PLANE

Acceleration due to gravity being a vector quantity can be resolved, along and perpendicular to the inclined plane. The component of g along the plane is g sin α and perpendicular to the plane is g cos α .

The component g cos α , being perpendicular to the direction of motion (AC), does not contribute towards accelerating the object. Thus the effective acceleration on the body is g sin α along CA.

In applying kinematic equation, $v^2 = u^2 + 2as$ where v, u, a, s should be same direction hence, use $a = g \sin \alpha$ along inclined plane.

 $a - g \sin \alpha$ along inclined plane.
Let a particle, sliding down C to A, along the inclined plane (b) CA, acquire a final velocity v_1 , covering a distance s.

Now for the sliding particle, $u = 0$, $a = g \sin \alpha$, $v = v_1$. [Taking the direction C to A as positive] Using, $v^2 = u^2 + 2as$ Tim
 A <u>A *n*</u> *M N B*

In applying kinematic equation, $v^2 = u^2 + 2as$

where v , u, a, s should be same direction hence, use

a = g sin α along inclined plane.

Let a particle, sliding down C to A, along the i s should be same treeton inerection in the same of the should be same transformed by $\frac{h}{dt}$ and $\frac{h}{dt}$ ong AB,

sing inclined plane.

sing a distance s.

sing particle, $u = 0$, $a = g \sin \alpha$, $v = v_1$.

Hence, total acce

$$
v_1^2 = 2g \sin \alpha . s = 2g \left[\frac{h}{s} \right] s = 2gh
$$
 [If α be the angle

of inclination then, $\sin \alpha = \frac{h}{g}$ *s*

$$
\therefore v_1 = \sqrt{2gh}
$$

Example 42 :

Show that time to slide along AB and AC (diameter) of circle is same. **Sol.** For motion along AC,

Let a particle, sliding down C to A, along the inclined plane
\nCA, acquire a final velocity
$$
v_1
$$
, covering a distance s.
\nNow for the sliding particle, $u = 0$, $a = g \sin \alpha$, $v = v_1$.
\n[Taking the direction C to A as positive]
\nUsing, $v^2 = u^2 + 2as$
\n $v_1^2 = 2g \sin \alpha .s = 2g \left[\frac{h}{s} \right] s = 2gh$ [If α be the angle
\nof inclination then, $\sin \alpha = \frac{h}{s}$]
\n $\therefore v_1 = \sqrt{2gh}$
\n**mple 42**:
\nShow that time to slide along AB
\nand AC (diameter) of circle is same.
\nFor motion along AC,
\n $2R = \frac{1}{2}gt^2 \Rightarrow t = \sqrt{\frac{4R}{g}}$ (1)
\nFor motion along AB,

For motion along AB,

STUDY MATERIAL: PHYSICS
\n
$$
AB = \frac{1}{2}g\cos\theta t^2 \quad ; \quad 2R\cos\theta = \frac{1}{2}g\cos\theta t^2
$$
\n
$$
t = \sqrt{\frac{4R}{g}}
$$
\n........(2)
\nFrom (1) and (2) we can conclude the result.

MOTION UNDER GRAVITY IN PRESENCE OFAIR RESISTANCE

An object is thrown with speed u in upward direction during its motion its experiences constant air resistance R in the direction opposite to its motion. \vec{B} \vec{B} \vec{B}
 YINPRESENCE OFAIR

with speed u in upward direction

experiences constant air resistance

osite to its motion.

rection : Total force during upward

on, $a_1 = g + \frac{R}{m}$

n, $t_1 = \frac{u}{g + \frac{R}{m}}$
 conclude the result.

B

INPRESENCE OFAIR

ith speed u in upward direction

periences constant air resistance

ite to its motion.

ction : Total force during upward
 $n, a_1 = g + \frac{R}{m}$
 $t_1 = \frac{u}{g + \frac{R}{m}}$
 $\frac{u^2}{g + \frac{R$ **INPRESENCE OF AIR**

IMPRESENCE OF AIR

th speed u in upward direction

periences constant air resistance

ite to its motion.
 ction: Total force during upward
 $t_1 = \frac{u}{g + \frac{R}{m}}$
 $t_1 = \frac{u}{g + \frac{R}{m}}$
 $\frac{u^2}{(g + \frac{$

(a) Motion in upward direction : Total force during upward motion $mg + R$

Hence, total acceleration, $a_1 = g + \frac{R}{m}$ m_a and the state of the s $+\frac{R}{2}$

Time in upward motion,
$$
t_1 = \frac{u}{g + \frac{R}{m}}
$$

Maximum height,
$$
h = \frac{u^2}{2(g + \frac{R}{m})}
$$

(b) Motion in downward direction : Total force during downward motion $mg - R$

Hence, total acceleration,
$$
a_2 = g - \frac{R}{m}
$$

Time in downward motion (from IInd kinematic equation)

R in the direction opposite to its motion.
\n(a) Motion in upward direction: Total force during upward motion mg + R
\nfunction mg + R
\nHence, total acceleration,
$$
a_1 = g + \frac{R}{m}
$$

\n $\frac{R}{N}$
\n

$$
\Rightarrow t_2 = \frac{u}{\sqrt{g^2 - \left(\frac{R}{m}\right)^2}}
$$

hence,
$$
\frac{t_1}{t_2} = \sqrt{\frac{g - \frac{R}{m}}{g + \frac{R}{m}}} < 1
$$

A

SOME IMPORTANT GRAPHS RELATED TO MOTION

All the following graphs are drawn for one-dimensional motion with uniform velocity or with constant acceleration.

TRY IT YOURSELF-3

- **Q.1** From the foot of a tower 90m high, a stone is thrown up so as to reach the top of the tower. Two second later another stone is dropped from the top of the tower. Find when and where two stones meet.
- **Q.2** A stone is dropped from a height h. Simultaneously another stone is thrown up from the ground with such a velocity that it can reach a height of 4h. Find the time after which two stones cross each other.
- **Q.3** A falling stone takes 0.2 seconds to fall past a window which is 1m high. From how far above the top of the window was the stone dropped ?
- **Q.4** You are throwing a ball straight up in the air. At the highest point, the ball's
	- (A) velocity and acceleration are zero.
	- (B) velocity is nonzero but its acceleration is zero.
	- (C) acceleration is nonzero, but its velocity is zero.
	- (D) velocity and acceleration are both nonzero.
- **Q.5** A person standing at the edge of a cliff throws one ball straight up and another ball straight down, each at the same initial speed. Neglecting air resistance, which ball hits the ground below the cliff with the greater speed:
	- (A) ball initially thrown upward;
	- (B) ball initially thrown downward;
	- (C) neither; they both hit at the same speed.
- **Q.6** Two buildings stand side by side. The taller is 20 meters higher than the shorter. Rocks are dropped from rest from both roofs at the same time. When the rock from the taller building passes the top of the shorter building, the rock (A) 10 sec from the shorter building will be
	- (A) 20 meters below its start point
	- (B) less than 20 meters below its start point
	- (C) farther than 20 meters below its start point.
- **Q.7** A bag of sand dropped by a would be assassin from the roof of a building just misses Tough Tony, a gangster 2m tall. The missile traverses the height of Tough Tony in 0.20s, landing with a thud at his feet. How high was the building? Ignore friction.
- **Q.8** A person throws a ball vertically upward with an initial velocity of 15 m/s. Calculate (i) how high it goes and (ii) how long the ball is in air before it comes to his hand.
- **Q.9** With what speed must a ball be thrown vertically from ground level to rise to a maximum height of 50m ?
- **Q.10** A 1 kg mass is found to be moving 18 m/s up a 30° incline. How fast is the mass moving 3 seconds later? Take g to be 10 m/s^2 .

Q.11 Two children on the playground, Bobby and Sandy, travel down slides of identical height h but different shapes as shown. The slides are frictionless. Assuming they start down the slides at the same time with zero initial velocity, which of the following statements is true?

- (A) Bobby reaches the bottom first with the same average velocity as Sandy.
- (B) Bobby reaches the bottom first with a larger average acceleration than Sandy.
- (C) Bobby reaches the bottom first with the same average acceleration as Sandy.
- (D) They reach the bottom at the same time with the same average acceleration.
- **Q.12** Adjacent graph shows the variation of velocity of a rocket with time. Find the time of burning of fuel from the graph-

(D) Cannot be estimated from the graph

ANSWERS

RELATIVEVELOCITY

Relative velocity of an object A with respect to another object B, when both are in motion is the time rate at which object A changes its position with respect to object B. Position of object A and B are given as

x^A = xOA + v^A t and x^B = xOB + v^B t x^B – x^A = (xOB – xOA) + (v^B – v^A) t or x = x^O + (v^B – v^A) t ^t = v^B – v^A Similarly, relative velocity of B w.r.t. A, v v – v BA B A

If \overrightarrow{v}_A and \overrightarrow{v}_B be the respective velocities of object **A**

and B then relative velocity of A w.r.t. B is $\overrightarrow{v_{AB}} = \overrightarrow{v_A} - \overrightarrow{v_B}$

Similarly, relative velocity of B w.r.t. A, $v_{BA} = v_B - v_A$

SPECIAL CASES

(1) When the two objects move with equal velocities :

i.e. $v_A = v_B$ or $v_B - v_A = 0$

It means the two objects stay at constant distance apart (4) during the whole journey. In this case, the position-time graphs of two objects are parallel straight lines as shown in figure.

- **(2) When the two objects move with unequal velocities :**
	- (i) When $v_A > v_B$, then $v_B v_A$ is negative. This shows that the separation between two moving objects will go on decreasing with time. After some time, the two moving objects will meet and then the relative distance between the objects will increase with time as shown in figure.

(ii) When $v_B > v_A$, then $v_B - v_A$ is positive. This shows that the separation between two moving objects will go on increasing with time as shown in figure.

(3) When two trains A and B move with same velocity v but in opposite in direction :

The relative velocity of train A w.r.t. train B

$$
\overrightarrow{v_{AB}} = \overrightarrow{v_A} - \overrightarrow{v_B} = v(\hat{i}) - v(-\hat{i}) = 2v(\hat{i})
$$

Relative velocity of train B w.r.t. A

$$
\overrightarrow{v}_{BA} = \overrightarrow{v}_B - \overrightarrow{v}_A = v(-\hat{i}) - v(\hat{i}) = 2v(-\hat{i})
$$

Thus, when two trains cross each other in opposite directions, then each train appears to move very fast (i.e. double the actual speed) relative to the other.

(4) The bodies moving in directions inclined to each other : Relative velocity of A w.r.t B

v v – v AB A B O A B Q P v^A v^B

The relative velocity of A with respect to B is given by the diagonal OR of the parallelogram OPRQ' as shown in fig.

The magnitude of the relative velocity v_{AB} is given by

$$
v_{AB} = \sqrt{v_A^2 + v_B^2 + 2v_Av_B \cos(180 - \theta)}
$$

= $\sqrt{v_A^2 + v_B^2 - 2v_Av_B \cos\theta}$

Let α be the angle made by v_{AB} with v_A , then

The relative velocity of A will respect to B is given by the
\ndiagonal OR of the parallelogram OPRQ' as shown in fig.
\n
$$
\frac{Q}{v_B}
$$
\n
$$
= \frac{Q}{v_B} \sqrt{\frac{Q}{v_{AB}}}
$$
\nThe magnitude of the relative velocity v_{AB} is given by
\n
$$
v_{AB} = \sqrt{v_A^2 + v_B^2 + 2v_Av_B \cos(180 - \theta)}
$$
\n
$$
= \sqrt{v_A^2 + v_B^2 - 2v_Av_B \cos \theta}
$$
\nLet α be the angle made by v_{AB} with v_A , then
\n
$$
\tan \alpha = \frac{v_B \sin(180 - \theta)}{v_A + v_B \cos(180 - \theta)} = \frac{v_B \sin \theta}{v_A - v_B \cos \theta}
$$
\nor $\alpha = \tan^{-1} \left(\frac{v_B \sin \theta}{v_A - v_B \cos \theta} \right)$
\n $\angle \alpha$ gives the direction of the relative velocity with \vec{v}_A .
\n(i) When both the bodies are moving along parallel
\nstraight lines in the same direction:

 $\angle \alpha$ gives the direction of the relative velocity with \vec{v}_A . .

(i) When both the bodies are moving along parallel straight lines in the same direction :

Then the angle between them is $\theta = 0^{\circ}$

Q¹
\n
$$
V_{AB} = \sqrt{v_A^2 + v_B^2 + 2v_Av_B \cos (180 - \theta)}
$$
\n
$$
= \sqrt{v_A^2 + v_B^2 - 2v_Av_B \cos \theta}
$$
\n
$$
\alpha
$$
 be the angle made by v_{AB} with v_A, then
\n
$$
x = \frac{v_B \sin(180 - \theta)}{v_A + v_B \cos(180 - \theta)} = \frac{v_B \sin \theta}{v_A - v_B \cos \theta}
$$
\n
$$
u = \tan^{-1} \left(\frac{v_B \sin \theta}{v_A - v_B \cos \theta} \right)
$$
\ngives the direction of the relative velocity with \vec{v}_A .
\nWhen both the bodies are moving along parallel straight lines in the same direction:
\nThen the angle between them is $\theta = 0^\circ$
\n
$$
v_{AB} = \sqrt{v_A^2 + v_B^2 - 2v_Av_B \cos 0}
$$
\n
$$
= \sqrt{v_A^2 + v_B^2 - 2v_Av_B} \qquad [\because \cos 0^\circ = 1]
$$
\n
$$
= \sqrt{(v_A - v_B)^2} = (v_A - v_B)
$$
\nThus magnitude of relative velocity of A with respect to B is equal the difference between the magnitude of individual velocities.
\nWhen two bodies are moving along parallel straight lines in the opposite direction i.e. $\theta = 180^\circ$:

Thus magnitude of relative velocity of A with respect to B is equal the difference between the magnitude of individual velocities.

(ii) When two bodies are moving along parallel straight lines in the opposite direction i.e. $\theta = 180^\circ$:

STUDY MAI
\n
$$
\therefore v_{AB} = \sqrt{v_A^2 + v_B^2 - 2v_Av_B \cos 180^\circ}
$$
\n
$$
= \sqrt{v_A^2 + v_B^2 + 2v_Av_B} \qquad [\because \cos 180^\circ = -1]
$$
\n
$$
= \sqrt{(v_A + v_B)^2} = (v_A + v_B) \qquad \text{W} \dots \qquad \text{A} \quad \overline{v_m} \qquad \overline{v_m}
$$
\nThus magnitude of relative velocity of body A w.r.t. body B is equal to the sum of the magnitudes of individual velocities.
\n**Note :** When two bodies move in opposite directions, the magnitude of relative velocity of one with respect

Thus magnitude of relative velocity of body A w.r.t. body B is equal to the sum of the magnitudes of individual velocities.

Note : When two bodies move in opposite directions, the magnitude of relative velocity of one with respect to the other is equal to the sum of the magnitudes of two velocities.

Example 43 :

Two trains are moving east ward with velocities 10 ms^{-1} and 15 ms^{-1} on parallel tracks. Calculate the relative velocity of slow train w.r.t. the fast train.

Sol. $v_1 = 10 \text{ ms}^{-1}$, $v_2 = 15 \text{ ms}^{-1}$

Relative velocity of slow train w.r.t. the fast train

 $= v_1 - v_2 = 10 - 15 = -5$ ms⁻¹

–ve sign shows that slow train appears to move westward w.r.t. fast train with velocity of 5 ms^{-1} .

Example 44 :

A police van moving on a highway with a speed of 30 km/h fires a bullet at thief's car speeding away in the same direction with a speed of 192 km/hr. If the muzzle speed of the bullet is 150 ms^{-1} , with what speed does the bullet hit the thief's car. **Example 43:**

Sol. Speed of police van = 30 km/h = $\frac{30 \times 1000 \text{ m}}{3000 \text{ s}} = \frac{25}{3}$ m/s

Sol. Speed of police van = 30 km/h = $\frac{30 \times 1000 \text{ m}}{3000 \text{ s}} = \frac{25}{3}$ Riative yelocity of manile value of the first tra th velocities 10 ms⁻¹
 $\therefore v_{\rm rm} = \sqrt{v_{\rm r}^2}$

alculate the relative

The fast train

the fast train

the fast train

the fast train

sto move westward

Here angle θ is

as θ , west of ve

Note : In the ab

from

Sol. Speed of police van = 30 km/h =
$$
\frac{30 \times 1000 \text{ m}}{3600 \text{ s}}
$$
 = $\frac{25}{3}$ m/s

Speed of thief's car = 192 km/h = $\frac{1}{2}$ m/s

 \therefore Relative speed of theif's car w.r.t. police van

$$
=\frac{160}{3} - \frac{25}{3} = 45 \text{ m/s}
$$

Speed of bullet w.r.t. $van = 150$ m/s Speed with which bullet hits the car = $150 - 45 = 105$ m/s

RAIN BASED PROBLEMS

Relative velocity of rain w.r.t. the moving Man :

A man walking west with velocity \overrightarrow{v}_{m} , represented by $v_{rm} = v_{r} - v_{m}$

OA. Let the rain be falling vertically downwards with \rightarrow Ch subtracting . Let the rain be falling vertically downwards with $\frac{1}{2}$

as shown in fig.

will be represented by diagonal OD of rectangle OBDC.

$$
\therefore v_{rm} = \sqrt{v_r^2 + v_m^2 + 2v_r v_m \cos 90^\circ} = \sqrt{v_r^2 + v_m^2}
$$

If θ is the angle which \overrightarrow{v}_{rm} makes with the vertical

direction then tan ⁼ BD OB⁼ ^m ^r ^v v or = tan–1 ^m ^r ^v v

Here angle θ is from vertical towards west and is written as θ , west of vertical.

Note : In the above case if the man wants to protect himself from the rain, he should hold his umbrella in the direction of relative velocity of rain w.r.t. man i.e. the umbrella should

be hold making an angle
$$
\theta
$$
 $\left(= \tan^{-1} \frac{v_m}{v_r} \right)$ west of vertical.

Example 45 :

 $=\frac{25}{3}$ m/s
Raindrops fall vertically with a speed of 4 km/h. Find the A man is walking on a level road at a speed of 3 km/h. velocity of raindrops with respect to the men.

160
 $\frac{1}{3}$ m/s
 Sol. If we consider velocity of rain with respect to the man is

V km/h.

Relative velocity of man $\begin{bmatrix} v_{\text{w}} & \mathbf{1} & \mathbf{1} \\ v_{\text{w}} & \mathbf{1} & \mathbf{1} \end{bmatrix}$ Rain V km/h.

3 = 160 25 3 3 = 45 m/s velocity ^r ^v , represented by OB The relative velocity of rain w.r.t. man v v v rm r m , will be represented by diagonal OD Relative velocity of man w.r.t. ground v v v(1) mg g m v = 3km/h mg Road velocity of rain w.r.t. ground rg g r v v v(2) Velocity of rain w.r.t. man rm m r v v v On subtracting eqⁿ . 1 from eqⁿ . 2 ^Vrm V = 4 km/hr rm V = 3 km/hr mg -Vmg rm mg rg v v v 2 2 2 2 rm rg mg | v | v v 4 3 5 km / hr Direction : ³ tan 4 or ¹ ³ tan 4

RIVER PROBLEMS

1. Minimum distance approach :

 $d = \text{width of river}, v_r = \text{velocity of river},$

 v_m = velocity of swimmer

The swimmer should swim in a direction such that

resultant \overrightarrow{v} of \overrightarrow{v}_{m} and \overrightarrow{v}_{r} is along AB which is the w.r.t. the ground is \overrightarrow{v}_{SG} shortest path

$$
\sin \theta = \frac{v_r}{v_m} \ ; \quad v = \sqrt{v_m^2 - v_r^2} \ ; \ t = \frac{d}{\sqrt{v_m^2 - v_r^2}} \qquad \qquad V_{SG} = \sqrt{V_{SR}^2 + V_{RG}^2}
$$

2. Minimum time of approach :

To cross the river in shortest time man should swim perpendicular to direction of flow.

Man will reach C instead of B

It BC = x then
$$
\tan \theta = \frac{v_r}{v_m} = \frac{x}{d}
$$
 so $x = \frac{v_r}{v_m}d$ drop are h
raindrops v

Example 46 :

A ship is steaming towards east at a speed of 12 ms^{-1} . A woman runs across the deck at a speed of 5 ms^{-1} in the direction at right angles to the direction of motion of the ship i.e. towards north. What is the velocity of the woman relative to sea. $t_{min} = \frac{d}{v_{min}}$

To cross the river in shortest time man shou

perpendicular to direction of flow.

Man will reach C instead of B

It BC = x then $tan θ = \frac{v_r}{v_m} = \frac{x}{d}$ so $x = \frac{v_r}{v_m}$

pple 46:

A ship is steaming to Man will reach C instead of B

It BC = x then $\tan \theta = \frac{v_r}{v_m} = \frac{x}{d}$ so $x = \frac{v}{v_1}$

pile 46:

A ship is steaming towards east at a speed of 5

A woman runs across the deck at a speed of 5

direction at right angles t then $\tan \theta = \frac{v_r}{v_m} = \frac{x}{d}$ so $x = \frac{v_r}{v_m}.d$

teaming towards east at a speed of 12 ms⁻¹.

uns across the deck at a speed of 5 ms⁻¹ in the

tright angles to the direction of motion of the tright angles to the direct

Sol. The woman has two velocities simultaneously while running on the deck, one velocity is equal to the velocity of ship i.e. 12 m/s due east and other velocity is 5 m/s due north. N_{______}

The resultant velocity of woman_s

$$
\sqrt{(12)^2 + (5)^2} = 13 \text{ m/s}
$$

12m/s Let β be the angle made by the resultant velocity with the direction of motion of the ship (i.e. East).

 $13 \frac{m/s}{s}$

:.
$$
\tan \beta = \frac{5 \sin 90^{\circ}}{12 + 5 \cos 90} = \frac{5}{12} = 0.4167
$$
 (C)

 $\beta = 22^{\circ}37'$ north of east.

Thus, the direction of the velocity of the woman is 22º37' north of east.

Example 47 :

A swimmer can swim in still water at a rate 4 km/h. If he swims in a river flowing at 3 km/h and keeps his direction (w.r.t. water) perpendicular to the current. Find his velocity w.r.t. the ground.

Sol. The velocity of the swimmer w.r.t. water $\vec{v}_{SR} = 4.0 \text{ km/h}$ in the direction perpendicular to the river. The velocity of

river w.r.t. the ground is $\overrightarrow{v}_{RG} = 3.0 \text{ km/h}$ along the length of river. Y

EXAMPLE DIMENSION
 EXAMPLE ASSUAL EXAMPLE ASSUAL EXAMPLE ASSUAL EXAMPLE ASSUAL EXAMPLE ASSUAL EXAMPLE ASSUAL AND TRIMATE CONSIDERATION AND TRIMATE CONSIDERATION CONSIDERATION CONSIDERATION (W.T.L. water Tolowing at 3 k Example 47:

A swimmer can swim in

swims in a river flowing

(w.r.t. water) perpendicu

w.r.t. the ground.

Sol. The velocity of the swim

in the direction perpend

river w.r.t. the ground is

of river.

The velocity of The velocity of the swimmer w.r.t. the ground is \overrightarrow{v}_{SG} where \overrightarrow{v}_{SR} \overrightarrow{v}_{SG} 17:

SORRADVANCED LEATRNING

Then the sin a river flowing at 3 km/h and keeps his direction

t. water) perpendicular to the current. Find his velocity

the ground.

Herefore, the swimmer w.r.t. water $\vec{v}_{SR} = 4.0 \text{ km/h}$
 EDIMADVANCED LEARNING

EDIMADVANCED LEARNING

ET CAN SURVEY TO PRECIDE AT A THAT AND A READ AND A READ AND A READ SURVEY TO PEPERDUCIDAT to the current. Find his velocity

round.

The swimmer w.r.t. water $\vec{v}_{SR} = 4.0 \text{$ 17:

The simmer can swim in still water at a rate 4 km/h. If he

is in a river flowing at 3 km/h and keeps his direction

the ground.

The simulation of the swimmer w.r.t. water $\vec{v}_{SR} = 4.0$ km/h

edirection perpendicul **EDENTION IN CONFIDENTIFY**

In swim in still water at a rate 4 km/h. If he

reflowing at 3 km/h and keeps his direction

erpendicular to the current. Find his velocity

d.

f the swimmer w.r.t. water $\vec{v}_{SR} = 4.0 \text{ km/h}$
 on perpendicular to the river. The velocity of

e ground is $\vec{v}_{RG} = 3.0$ km/h along the length

of the swimmer

and is \vec{v}_{SG} where
 \vec{v}_{SR}
 $\vec{v}_{SR} + \vec{v}_{RG}$
 $\vec{v}_{SR} + \vec{v}_{RG}$
 $\vec{v}_{SR} + \vec{v}_{RG} = \sqrt{4^2 + 3^2}$
 $=$ ter) perpendicular to the current. Find his velocity
ground.
city of the swimmer w.r.t. water $\vec{v}_{SR} = 4.0 \text{ km/h}$
ection perpendicular to the river. The velocity of
t. the ground is $\vec{v}_{RG} = 3.0 \text{ km/h}$ along the length
 1.

the swimmer w.r.t. water $\vec{v}_{SR} = 4.0 \text{ km/h}$

perpendicular to the river. The velocity of

cound is $\vec{v}_{RG} = 3.0 \text{ km/h}$ along the length

the swimmer
 V_{SG} where \vec{v}_{SG}
 \vec{v}_{SG} where \vec{v}_{SG}
 \vec{v}_{SG}
 $\$ v of the swimmer w.r.t. water $\vec{v}_{SR} = 4.0 \text{ km/h}$

ion perpendicular to the river. The velocity of

ne ground is $\vec{v}_{RG} = 3.0 \text{ km/h}$ along the length

y of the swimmer

y of the swimmer
 \vec{v}_{SG} where \vec{v}_{SR}
 $\vec{v$ Framer can swint in star was at at a tase at star. In the

is in a river flowing at 3 km/h and keeps his direction

t. water) perpendicular to the current. Find his velocity

the ground.

welocity of the swimmer w.r.t. wa

$$
=\sqrt{16+9} = \sqrt{25} = 5
$$
 km/hr

The angle θ made with the direction of flow is

$$
\theta = \tan^{-1} \left[\frac{V_{\rm SR}}{V_{\rm RG}} \right] = \tan^{-1} \left(\frac{4}{3} \right)
$$

TRY IT YOURSELF-4

- **Q.1** Balls A and B are thrown vertically upward with velocity, 5 m/s and 10 m/s respectively ($g = 10$ m/s²). Find separation between them after one second.
- v_{r-d} drop are hitting his head vertically. Find the speed of AB which is the
 $V_{SG} = V_{SR} + V_{RG}$
 $\frac{d}{\sqrt{v_m^2 - v_r^2}}$
 $V_{SG} = \sqrt{v_{SR}^2 + v_{RG}^2}$
 $= \sqrt{16 + 9}$
 $= \sqrt{16 + 9}$

The angle θ made with
 $\theta = \tan^{-1} \left[\frac{V_{SR}}{V_{RG}} \right]$
 $\theta = \tan^{-1} \left[\frac{V_{SR}}{V_{RG}} \right]$
 $\theta = \tan^{-1} \left[\frac{V_{SR}}{V_{RG}}$ $v_{\rm m}$ and $v_{\rm m}$ are inting instituted vertically. Find the speed of raindrops with respect to (a) road (b) the moving man. **Q.2** A man standing on a road has to hold his umbrella at 30º with the vertical to keep the rain away. He throws the umbrella and starts running at 10km/hr. He finds that rain
	- **Q.3** To a man walking at the rate of 3 km/hr the rain appears to fall vertically. When he increases his speed to 6 km/hr it appears to meet him at an angle of 45º with vertical. Find the speed of rain.
	- **Q.4** A man swims at an angle $\theta = 120^{\circ}$ to the direction of water flow with a speed $v_{\text{mw}} = 5$ km/hr relative to water. If the speed of water $v_w = 3$ km/hr, find the speed of the man.
	- **Q.5** A man crosses the river in shortest time at an angle $\theta = 60^{\circ}$ to the direction of flow of water. If the speed of water is $v_w = 5 \text{km/hr}$, find the speed of the man.
	- E **Q.6** Two points P and Q move in same plane such that the relative acceleration of P with respect to Q is zero. They are moving such that the distance between them is decreasing. Pick the correct statement for P and Q to collide
		- (A) The line joining P and Q should not rotate.
		- (B) The line joining P and Q should rotate with constant angular speed
		- (C) The line joining P and Q should rotate with variable angular speed.
		- (D) All the above statements are correct.

Q.7 An eagle flies at constant velocity horizontally across the sky, carrying a turtle in its talons. The eagle releases the turtle while in flight. From the eagle's perspective, the turtle falls vertically with speed v_1 . From an observer on the ground's perspective, at a particular instant the turtle falls at an angle with speed v_2 . What is the speed of the eagle with respect to an observer on the ground? **EXAMPLE ARRIFTS**

An eagle flies at constant velocity horizontall

sky, carrying a turtle in its talons. The eagle

turtle while in flight. From the eagle's perspecti

falls vertically with speed v_1 . From an obse

gro 1 2 v v (D) 2 2 perizontally across the

the eagle releases the

perspective, the turtle

1 an observer on the

1 and observer on the

1 and observer

(A)
$$
v_1 + v_2
$$

\n(B) $v_1 - v_2$
\n(C) $\sqrt{v_1^2 - v_2^2}$
\n(D) $\sqrt{v_2^2 - v_1^2}$

- **Q.8** A man who is wearing a hat of extended length of 12 cm is running in rain falling vertically downwards with speed 10 m/s. The maximum speed with which man can run, so that rain drops do not fall on his face (the length of his face below the extended part of the hat is 16 cm) will be: (A) (15/2) m/s (B) (40/3) m/s (C) 10 m/s (D) zero **EXECUTE:**
 EXEC
- **Q.9** A train is moving with velocity $\vec{v}_{TG} = 3\hat{i} + 4\hat{j}$ relative to water? the ground. A bullet is fired in the train with velocity

 $\vec{v}_{\text{BT}} = 15\hat{i} - 6\hat{j}$ relative to the train. What is the bullets' velocity \vec{v}_{BG} relative to the ground?

- **Q.10** Two aeroplanes fly from their respective positions A and B starting at the same time and reach the point C simultaneously when wind was not blowing. On a windy day they head towards C but both reach the point D simultaneously in the same time which they took to reach
- C. Then the wind is blowing in (A) North-East direction (B) North-West direction (C) Direction making an angle $A \longleftarrow C S$ D B $W \leftarrow \rightarrow E$ E S N $0 < \theta < 90$ with North A towards West. (D) North direction **ANSWERS (1)** 5m **(2)** (a) 20kph, (b) $10\sqrt{3}$ kph **Sol.** (a) round. A bullet is fired in the train with velocity
 $= 15\hat{i} - 6\hat{j}$ relative to the train. What is the bullets'
 $= 15\hat{i} - 6\hat{j}$ relative to the ground?

(a) Usi

aeroplanes fly from their respective positions A and
 velocity v_{BG} relative to the ground?

Two aeroplanes fly from their respective positions A

B starting at the same time and reach the point

is simultaneously when wind was not blowing. On a w

day they head towards C b
	- **(3)** $3\sqrt{2} \frac{\text{km}}{\text{hr}}$ **(4)** $\sqrt{19}$ m/sec. **(5)** 8 km/hr **(6)** (A) **(7)** (D) **(8)** (A)

ADDITIONAL EXAMPLES

Example 1 :

A ball is projected vertically up with an initial speed of 20 m/s on a planet where acceleration due to gravity is 10m/s^2 .

- (a) How long does it take to reach the highest point?
- (b) How high does it rise above the point of projection? (c) How long will it take for the ball to reach a point 10 m above the point of projection?
- **Sol.** As here motion is vertically upwards,

$$
a = - g \text{ and } v = 0
$$

(a) From 1st equation of motion, i.e., $v = u + at$, $0 = 20 - 10t$ i.e. $t = 2$ sec.

(b) Using
$$
v^2 = u^2 + 2ax
$$

0 = (20)² - 2 × 10 × h i.e. h = 20 m

STUDY MATERIAL: PHYSICS
\nby horizontally across the
\n8. The edge releases the
\n9 = 20 – 10t i.e. t = 2 sec.
\n1e's perspective, the turtle
\n1ar instant the turtle falls
\nis the speed of the edge
\nhe ground?
\n10
$$
3y y_1 - y_2
$$

\n11e. $t^2 - 4t + 2 = 0$ or $t = 2 \pm \sqrt{2}$,
\n12f. $y = 2y^2 - y_1^2$
\n13g. $y = 2y - 1$
\n14g. $y = 20$
\n15h. $y = 20$
\n16h. $y = 20$
\n17i. $y = 2$
\n18i. $y = 2$
\n19i. $y = 2$
\n10j. $y = 2$
\n11k = 20 or $y = 2$
\n12k = 20 or $y = 2$
\n13l = 20
\n15p. $y = 2$
\n16p. $y = 2$
\n17p. $y = 2$
\n18p. $y = 2$
\n19p. $y = 2$
\n10p. $y = 2$
\n11p. $y = 2$
\n12p. $y = 2$
\n13p. $y = 2$
\n15p. $y = 2$
\n16p. $y = 2$
\n17p. $y = 2$
\n18p. $y = 2$
\n19p. $y = 2$
\n10p. $y = 2$
\n11p. $y = 2$
\n12p. $y = 2$
\n13p. $y = 2$
\n23p. $y = 2$
\n24p. $y = 2$
\n25p. $y = 2$
\n26p. $y = 2$
\n28p. $y = 2$
\n29p. $y = 2$
\n20p. $y = 2$
\n21p. <

, there are two times, at which the ball passes through $h = 10$ m, once while going up and then coming down.

Example 2 :

A ball is thrown vertically upwards from a bridge with an initial velocity of 4.9 m/s. It strikes the water after 2 s. If acc due to gravity is 9.8 m/s² (a) What is the height of the bridge? (b) With which velocity does the ball strike the water?

Sol. Taking the point of projection as origin and downward direction as positive,

(a) Using
$$
s = ut + \frac{1}{2}at^2
$$
 we have

$$
h = -4.9 \times 2 + \frac{1}{2} \times 9.8 \times 2^2 = 9.8 \text{ m}
$$

(u is taken to be negative as it is upwards.)

(b) Using
$$
v = u + at
$$

 $v = -4.9 + 9.8 \times 2 = 14.7$ m/s

Example 3 :

A rocket is fired vertically up from the ground with a resultant vertical acc. of 10 m/s^2 . The fuel is finished in 1 minute and it continues to move up.

- (a) What is the maximum height reached ?
- (b) After how much time from then will the maximum height be reached? (Take $g = 10 \text{ m/s}^2$).
- The distance travelled by the rocket during burning interval (1 minute $= 60$ s) in which resultant acc. is vertically upwards and 10 m/s^2 will be

$$
h_1 = 0 \times 60 + \frac{1}{2} \times 10 \times 60^2 = 18000 \text{ m} \dots (1)
$$

Velocity acquired by it is

$$
v = 0 + 10 \times 60 = 600 \text{ m/s}
$$
(2)

After one minute the rocket moves vertically up with initial velocity of 600 m/s and continues till height $h₂$ till its velocity becomes zero.

$$
0 = (600)^2 - 2gh_2
$$

or $h_2 = 18000 \text{ m}$ (3) [as g = 10 m/s²]

From eqⁿ. (1) and (3) the maximum height reached by the rocket from the ground is

 $H = h_1 + h_2 = 18 + 18 = 36$ km

(b) The time to reach maximum height after burning of fuel is $0 = 600 - gt$ or $t = 60 s$

After finishing fuel the rocket goes up for 60 s.

MOTION IN ONE DIMENSION

Example 4 :

A body is released from a height and falls freely towards the earth. Exactly 1 sec later another body is released. What is the distance between the two bodies after 2 sec the release of the second body, if $g = 9.8$ m/s².

Sol. The 2nd body falls for 2s, so $h_2 = \frac{1}{2} g(2)^2$ (1) **Sol.** If the dep(1)

while 1st has fallen for $2 + 1 = 3$ sec so

$$
h_1 = \frac{1}{2} g(3)^2
$$
(2)

 \therefore Separation between two bodies after 2 sec the release of

2nd body,
$$
d = h_1 - h_2 = \frac{1}{2} g(3^2 - 2^2) = 4.9 \times 5 = 24.5 \text{ m}
$$

Example 5 :

If a body travels half its total path in the last second of its fall from rest, find : (a) The time and (b) height of its fall. Explain the physically unacceptable solution of the quadratic time equation. $(g = 9.8 \text{ m/s}^2)$

Sol. In time t, the body falls a height $h = \frac{1}{2}gt^2$

 $[u = 0$ as the body starts from rest](1) Now, as the distance covered in $(t - 1)$ s is

$$
h' = \frac{1}{2} g(t-1)^2
$$
(2)

from eqⁿs (1) and (2) distance travelled in the last sec.

h-h' =
$$
\frac{1}{2}
$$
 gt² - $\frac{1}{2}$ g(t-1)²
i.e., h-h' = $\frac{1}{2}$ g(2t-1) (

But according to given problem as $(h - h') = \frac{h}{2}$

i.e., 1 2 h = 1 2 g (2t – 1) or 1 2 gt² = g (2t – 1) [as from eqⁿ . (1) h = gt²] or t² – 4t + 2 = 0 2 (4) (4) 4 2 = 2 ± ²

or
$$
t = \frac{-(-4) \pm \sqrt{(-4)^2 - 4 \times 2}}{2} = 2 \pm \sqrt{2}
$$

hence $t = 0.59$ s or $t = 3.41$ sec.

0.59 s is physically unacceptable as it gives the total time t taken by the body to reach ground lesser than one sec while according to the given problem time of motion must be greater than 1 s.

so
$$
t = 3.41
$$
 s and $h = \frac{1}{2} \times (9.8) \times (3.41)^2 = 57$ m

Example 6 :

A stone is dropped into a well and the sound of impact of stone on the water is heard after 2.056 sec. of the release of stone from the top. If acc. due to gravity is 980 cm/sec² and velocity of sound in air is 350 m/s, calculate the depth of the well.

Sol. If the depth of well is h and time taken by stone to reach

the bottom is t₁, then
$$
h = \frac{1}{2}gt_1^2
$$
(1)

time taken by sound to reach surface

$$
t_2 = \frac{h}{350}
$$
(2)

 $= 4.9 \times 5 = 24.5 \text{ m}$ But $t_1 + t_2 = 2.056$ (3) Now as negative time is not physically acceptable, so $t_1 = 2$ sec

> the depth of well h = $\frac{1}{2} \times 9.8 \times 2^2 = 19.6$ m $\frac{1}{2}$ × 9.8 × 2² = 19.6 m

Example 7 :

 $\frac{1}{2}$ gt² Train A is moving with a speed of 40 ms⁻¹ from North to $2 \frac{\text{S}}{\text{S}}$ South along one track, while train B is moving with a Two railway tracks are parallel to North-South direction. speed of 30 ms^{-1} from South to North. Calculate (i) relative velocity of B w.r.t. A and (ii) relative velocity of ground w.r.t. A.

- **Sol.** Consider the direction from North to South as positive.
	- \therefore $v_A = +40$ ms⁻¹ and $v_B = -30$ ms⁻¹
	- (i) Relative velocity of \overline{B} w.r.t. $A = v_B - v_A = -30 - 40 = -70$ ms⁻¹ Thus train B appears to move from South to North with speed of 70 m s^{-1} for an observer in A.
	- (ii) Velocity of ground, $v_g = 0$
- h $A = v_g v_A = 0 40 = -40$ ms⁻¹ 2
north with speed of 40 ms⁻¹ w.r.t. A. \therefore Relative velocity of ground w.r.t. Thus, the ground will appear to move from south to

Example 8 :

 $\frac{1}{2}$ or² The gun is mounted on a tank moving with a speed $2^{5^{2}}$ 20 m/s with respect to the ground. If the bullet is fired in The velocity of the bullet with respect to gun is 60 m/s. the direction of tank's motion than calculate velocity of bullet with respect to the ground. **Sol.** Consider the direction from North to South as positive.
 $\therefore v_A = +40 \text{ ms}^{-1}$ and $v_B = -30 \text{ ms}^{-1}$

(i) Relative velocity of B w.r.t.
 $A = v_B - v_A = -30 - 40 = -70 \text{ ms}^{-1}$

Thus train B appears to move from South to North
 we velocity of ground

to South as positive.
 $1s^{-1}$
 -70 ms^{-1}

from South to North

bserver in A.

t.

1.

1.

2. move from south to

t.t. A.

bect to gun is 60 m/s.

ing with a speed

f the bullet is fired in

cal (i) Relative velocity of B w.r.t.
 $A = v_B - v_A = -30 - 40 = -70 \text{ ms}^{-1}$

Thus train B appears to move from South to North

with speed of 70 m s⁻¹ for an observer in A.

(ii) Velocity of ground, $v_g = 0$
 \therefore Relative velocity(2) Thus train B appears to move from South to North

with speed of 70 m s⁻¹ for an observer in A.

(ii) Velocity of ground $v_g = 0$
 \therefore Relative velocity of ground w.r.t.
 $A = v_g - v_A = 0 - 40 = -40 \text{ ms}^{-1}$

Thus, the ground w 70 ms⁻¹

com South to North

herver in A.

ms⁻¹

move from south to

. A.

ct to gun is 60 m/s.

g with a speed

the bullet is fired in

alculate velocity of
 $\rightarrow \rightarrow \rightarrow \text{v}_T - \text{v}_g = 20$ (1)
 $\rightarrow \rightarrow \text{v}_B - \text{v}_T = 60$.. Relative velocity of ground w.r.t.
 $A = v_g - v_A = 0 - 40 = -40 \text{ ms}^{-1}$

Thus, the ground will appear to move from south to

north with speed of 40 ms⁻¹ w.r.t. A.
 ple 8 :
 ple 8 :
 De B is mounted on a tank moving wi eity of ground, $v_g = 0$

eity of ground, $v_g = 0$

tive velocity of ground w.r.t.

A = $v_g - v_A = 0 - 40 = -40$ ms⁻¹

in with speed of 40 ms⁻¹ w.r.t. A.

he ground will appear to move from south to

with speed of 40 ms⁻¹ w A $- v_g - v_A - v - v_A - v_A - v_B$

S, the ground will appear to move from south to

with speed of 40 ms⁻¹ w.r.t. A.

city of the bullet with respect to gun is 60 m/s.

simulated on a tank moving with a speed

ith respect to the gro velocity of ground w.r.t.

v_g - v_A = 0 - 40 ms⁻¹

ground will appear to move from south to

spround will appear to move from south to

speed of 40 ms⁻¹ w.r.t. A.

of the bullet with respect to gun is 60 m/s.

soun

$$
\rightarrow
$$

$$
v_{\rm F} = v_{\rm T} = 60 \dots (2)
$$

On adding eqn (1) and eqn (2)
\n
$$
\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow
$$

\n $\rightarrow \rightarrow \rightarrow \rightarrow$
\n $v_{Tg} + v_{BT} = v_B - v_g = v_{Bg}$
\n $v_{Bg} = 20 + 60 = 80 \text{ m/sec}$

Example 9 :

A man can swim in still water at a speed of 3 km/h. He wants to, cross a 500 m wide river flowing at 2 km/h. He keeps himself always at an angle of 120º with the river flow while swimming. (a) Find the time he takes to cross the river. (b) At what point on the opposite bank will he arrive.

Sol. Width of river $AB = d = 500$ m = $1/2$ km.

 $V_m = 3 \text{ km/hr}$ velocity of man in still water $V_r = 2$ km/hr velocity of river $V =$ resultant velocity of man in flowing river

$$
\overrightarrow{V} = V_x \hat{i} + V_y
$$

Now,
$$
V_x = V_r - V_m \sin 30^\circ = 2 - 3 \times \frac{1}{2} = \frac{1}{2} \text{ km/hr}
$$

 $V_y = V_m \cos 30^\circ = \frac{3\sqrt{3}}{2} \text{ km/hr}$

Displacement along Y-axis, $d = V_y \times t$

$$
V_m = 3 \text{ km/hr}
$$
 velocity of man in still water
\n
$$
V_r = 2 \text{ km/hr velocity of from an it.}
$$
0n addi
\n
$$
V_r = 2 \text{ km/hr velocity of from an it.}
$$
0n addi
\n
$$
V_r = 2 \text{ km/hr velocity of from an it.}
$$
0n addi
\n
$$
V_r = 2 \text{ km/hr velocity of from an it.}
$$
0n addi
\n
$$
V_r = 2 \text{ km/hr}
$$
 (a) By t
\n
$$
V_r = V_m \cos 30^\circ = 2 - 3 \times \frac{1}{2} = \frac{1}{2} \text{ km/hr}
$$
 (b) Now
\n
$$
V_y = V_m \cos 30^\circ = \frac{3\sqrt{3}}{2} \text{ km/hr}
$$
 (c) Now
\n
$$
V_y = V_m \cos 30^\circ = \frac{3\sqrt{3}}{2} \text{ km/hr}
$$
 (d) Now
\n
$$
V_y = V_m \cos 30^\circ = \frac{3\sqrt{3}}{2} \text{ km/hr}
$$
 (e) Now
\n
$$
V_s = \frac{1}{2} \times \frac{1}{3\sqrt{3}} \text{ km}
$$
 (f) Now
\n
$$
V = \frac{1}{\sqrt{y}} = \frac{1}{\sqrt{3}} \times \frac{1}{\sqrt{3}} = \frac{1}{\sqrt{3}} \text{ km}
$$

isplacement along λ -axis,

$$
BC = V_x \times t = \frac{1}{2} \times \frac{1}{3\sqrt{3}} = \frac{1}{6\sqrt{3}} \text{ km.}
$$

Example 10 :

A girl standing on a road has to hold her umbrella at 30° with the vertical to keep the rain away. She throws the umbrella and starts running at 10 km/h. She finds that raindrops are hitting her head vertically. Find the speed of raindrops with respect to (a) the road (b) the moving girl. $t = \frac{d}{V_y} = \frac{\frac{1}{2}}{\frac{3}{2}}$ $\therefore t = \frac{1}{3\sqrt{3}}$ Inc.

Increment along X-axis,

BC = $V_x \times t = \frac{1}{2} \times \frac{1}{3\sqrt{3}} = \frac{1}{6\sqrt{3}}$ km.

BC = $V_x \times t = \frac{1}{2} \times \frac{1}{3\sqrt{3}} = \frac{1}{6\sqrt{3}}$ km.

BC = $V_x \times t = \frac{1}{2} \times \frac{1}{3\sqrt{3}} = \frac{1}{6$ $\frac{1}{y} = \frac{1}{\frac{2}{3\sqrt{3}}}$ $\therefore t = \frac{1}{3\sqrt{3}}$ In:

Two boats A and B move in political interval as a smoothed at some point

leading X-axis,
 $V_x \times t = \frac{1}{2} \times \frac{1}{3\sqrt{3}} = \frac{1}{6\sqrt{3}}$ km.

With velocity and the responsible Rg R g v v v(2) t = $\frac{d}{v_y} = \frac{1}{3\sqrt{3}}$:. $t = \frac{1}{3\sqrt{3}}$ in the space of a some point

lacement along X-axis,

BG = $v_x \times t = \frac{1}{2} \times \frac{1}{3\sqrt{3}} = \frac{1}{6\sqrt{3}}$ km.

BG = $v_x \times t = \frac{1}{2} \times \frac{1}{3\sqrt{3}} = \frac{1}{6\sqrt{3}}$ km.

SHE throws along t The set along the river of same and a set of the two boats and the river, where v is
 $V_x \times t = \frac{1}{2} \times \frac{1}{3\sqrt{3}} = \frac{1}{6\sqrt{3}}$ km.

We two boats return. Find the experimediant to it. After trave

of the two boats return.

Sol. Suppose the velocity of rain with respect to girl = V_{RG} The velocity of rain with respect to the ground = V_{Rg} The velocity of girl with respect to ground = $V_{Gg} = 10$ km/ h

$$
\begin{array}{ccc}\n\rightarrow & \rightarrow & \rightarrow & \rightarrow \\
v_{RG} = v_R - v_G & \dots (1) \\
\rightarrow & \rightarrow & \rightarrow & \n\end{array}
$$
\n
$$
\begin{array}{ccc}\nv_{RG} = v_R - v_g & \dots (2) \\
v_{Gg} = v_G - v_g & \dots (3)\n\end{array}
$$

On adding eqⁿ . (1) and eqⁿ . (3)

$$
\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow
$$

$$
v_{\rm RG} + v_{\rm Gg} = v_{\rm R} - v_{\rm g} = v_{\rm Rg}
$$

(a) By triangle AOB,
$$
\sin 30^\circ = \frac{AB}{OB} = \frac{10}{V_{Rg}}
$$

$$
V_{\text{Rg}} = \frac{10}{\sin 30^{\circ}} = \frac{10}{1/2} = 20 \text{ km/hr}
$$

(b) Now, taking
$$
\frac{V_{RG}}{V_{Gg}} = \cot 30^{\circ}
$$

$$
\frac{V_{RG}}{10} = \sqrt{3} \qquad \text{or} \qquad V_{RG} = 10\sqrt{3} \text{ km/h}
$$

V_r **Example 11 :**

 \mathbf{v}^{t}

A
 $\frac{1}{\sqrt{y}}$
 $\sqrt{y} = \sqrt{x} - \sqrt{x} = \sqrt{x} = \sqrt{x} = \sqrt{x}$

velocity of man in still water

city of river

cocity of man in flowing river

cocity of man in flowing river

(a) By triangle AOB, $\sin 30^\circ = \frac{AB}{OB}$
 $\sqrt{x} = \frac{1}{\sin 30^\circ}$ $\frac{1}{1}$ $\frac{1}{2}$ O the two boats return. Find the ratio of the time taken by Two boats A and B move in perpendicular direction to a buoy anchored at some point O on a river. They travel with velocity 1.2 v, where v is the stream velocity. Boat A moves along the river, whereas boat B moves perpendicular to it. After traversing an equal distance from the two boats. $V_{\text{RG}} = \sqrt{3}$ or $V_{\text{RG}} = 10\sqrt{3} \text{ km/h}$
 \therefore
 $V_{\text{RG}} = 10\sqrt{3} \text{ km/h}$
 \therefore

and

and B move in perpendicular direction to a and

and

and B move in perpendicular direction to a hastened elocity 1.2 v, where v is Now, taking V_{Gg}
 $\frac{V_{\text{RG}}}{10} = \sqrt{3}$ or $V_{\text{RG}} = 10\sqrt{3} \text{ km/h}$

11:

11:

b boats A and B move in perpendicular direction to a

v anchored at some point O on a river. They travel

v velocity 1.2 v, where v is $-\sqrt{3}$ or $V_{RG} = 10\sqrt{3}$ km/h
A and B move in perpendicular direction to a
ored at some point O on a river. They travel
tiy 1.2 v, where v is the stream velocity. Boat A
ong the river, whereas boat B moves
alar to it. A $V_{RG} = 10\sqrt{3}$ km/h

s A and B move in perpendicular direction to a

hored at some point O on a river. They travel

city 1.2 v, where v is the stream velocity. Boat A

long the river, whereas boat B moves

where the stre ular direction to a
river. They travel
m velocity. Boat A
boat B moves
qual distance from
the time taken by
A along the river
r in one direction.
bect to the ground
 $v + v$.
ect to the ground
 $v + v$.
ect to the ground
 $= 1.2$ V_{RG} = 10 $\sqrt{3}$ km/h
erpendicular direction to a
c. O on a river. They travel
the stream velocity. Boat A
whereas boat B moves
rsing an equal distance from
ne ratio of the time taken by
the boat A along the river
s the $R = 10\sqrt{3}$ km/h

endicular direction to a

on a river. They travel

stream velocity. Boat A

reas boat B moves

g an equal distance from

atio of the time taken by

boat A along the river

e river in one direction.

h r = 10 $\sqrt{3}$ km/h
dicular direction to a
n a river. They travel
ream velocity. Boat A
as boat B moves
an equal distance from
o of the time taken by
oat A along the river
river in one direction.
respect to the ground
 $.2$ v ats A and B move in perpendicular direction to a

achored at some point O on a river. They travel

locity 1.2 v, where v is the stream velocity. Boat A

along the river, whereas boat B moves

licular to it. After traversi 0.44v² v A and B move in perpendicular direction to a
red at some point O on a river. They travel
y 1.2 v, where v is the stream velocity. Boat A
ng the river, whereas boat B moves
ar to it. After traversing an equal distance from

Sol. Let ℓ = distance covered by the boat A along the river as well as by the boat B across the river in one direction. Resultant velocity of boat A with respect to the ground when boat goes along the river $= 1.2$ v + v.

Resultant velocity of boat A with respect to the ground when the boat goes against the stream $= 1.2$ v – v.

 \therefore Time taken by the boat A to cover the whole journey is

$$
t_{A} = \frac{\ell}{1.2v + v} + \frac{\ell}{1.2v - v} = \frac{\ell(1.2v + v + 1.2v - v)}{(1.2v)^{2} - v^{2}}
$$

$$
= \frac{2.4v\ell}{0.44v^{2}} = \frac{5.45\ell}{v} \qquad \qquad \dots (1)
$$

For boat B to move from O perpendicular to the direction of flow of stream, its velocity must be at an angle θ to the direction of the stream velocity so that the resultant velocity is directed perpendicular to the flow of stream

 \therefore Resultant speed of boat is given by

$$
V = \sqrt{(1.2v)^2 - v^2} = v\sqrt{0.44} = 0.66v
$$

 \therefore Time taken by the boat B to cover the whole journey is

$$
t_B = \frac{2\ell}{V} = \frac{2\ell}{0.66v} = \frac{\ell}{0.33v}
$$
(2)

From (1) and (2) , we have

$$
\frac{\mathrm{t_A}}{\mathrm{t_B}} = \frac{5.45\ell}{\mathrm{v}} \times \frac{0.33\mathrm{v}}{\ell} = 1.80
$$

Example 12 :

The velocity of a particle moving in the positive direction

Assuming that at the moment $t = 0$, the particle was located at $x = 0$, find (i) the time dependance of the velocity and the acceleration of the particle and (ii) the average velocity of the particle averaged over the time that the particle takes to cover first s metres of the path. Example 14

taken by the boat B to cover the whole journey is
 $-\frac{2\ell}{v} = \frac{2}{0.66v} = \frac{\ell}{0.33v}$ (2)

and (2), we have
 $= \frac{5.45\ell}{v} \times \frac{0.33v}{\ell} = 1.80$
 $= \frac{5.45\ell}{v} \times \frac{0.33v}{\ell} = 1.80$
 $= \frac{5.45\ell}{v} \times \frac{0.$ the positive direction
is positive constant.
particle was located
f the velocity and the
e average velocity of
nat the particle takes
So.
 $\int_{0}^{x} \frac{dx}{\sqrt{x}} = \int_{0}^{t} \alpha dt$ $\frac{\partial \ell}{\partial x} \times \frac{0.33v}{\ell} = 1.80$
 $\frac{\partial \ell}{\partial y} \times \frac{0.33v}{\ell} = 1.80$

as $v = \alpha \sqrt{x}$ where α is positive constant.

at the moment t = 0, the particle was located

the time dependance of the velocity and the

the particl $-\frac{1}{\ell} = 1.80$

a particle moving in the positive direction

as $v = \alpha \sqrt{x}$ where α is positive constant.

the moment t = 0, the particle was located

the time dependance of the velocity and the

the particle and (ii) y of a particle moving in the positive direction

ries as $v = \alpha \sqrt{x}$ where α is positive constant.

hat at the moment $t = 0$, the particle was located

1(i) the time dependance of the velocity and the

a of the particl velocity of a particle moving in the positive dire

axis varies as $v = \alpha \sqrt{x}$ where α is positive con

ming that at the moment $t = 0$, the particle was lo

=0, find (i) the time dependance of the velocity at

leration

$$
\Rightarrow \frac{dx}{dt} = \alpha \sqrt{x} \quad \therefore \quad \frac{dx}{\sqrt{x}} = \alpha \, dt \quad \Rightarrow \int_{0}^{x} \frac{dx}{\sqrt{x}} = \int_{0}^{t} \alpha \, dt
$$

$$
2\sqrt{x} = \alpha \, t \Rightarrow x = (\alpha^{2} t^{2} / 4)
$$

Velocity,
$$
\frac{dx}{dt} = \frac{1}{2}\alpha^2 t
$$
 and acceleration $\frac{d^2x}{dt^2} = \frac{1}{2}\alpha^2$

(ii) Time taken to cover first s metres

At x = 0, find (i) the time dependence of the velocity and the acceleration of the particle and (ii) the average velocity of the particle averaged over the time that the particle takes to cover first s metres of the path.
\n**Sol.** (i) Given that v = α√x
\n⇒
$$
\frac{dx}{dt} = \alpha\sqrt{x}
$$
 ∴ $\frac{dx}{\sqrt{x}} = \alpha dt$ ⇒ $\int_0^x \frac{dx}{dx} = \int_0^1 \alpha dt$ ⇒ $v - v_0 = \frac{kt^2}{2} = \frac{2}{\sqrt{x}} = \frac{2\sqrt{x}}{2} = 2\sqrt{x} = \alpha t$ ⇒ $x = (\alpha^2 t^2 / 4)$
\n $\therefore \frac{dx}{dx} = \frac{1}{2}\alpha^2 t$ and acceleration $\frac{d^2x}{dt^2} = \frac{1}{2}\alpha^2$ ⇒ $\int_0^1 \alpha dt = \frac{1}{2}v_0 dt + \frac{1}{2}v_0 dt$
\n(ii) Time taken to cover first s metres
\n $s = \frac{\alpha^2 t^2}{4} \Rightarrow t^2 = \frac{4s}{\alpha^2} \Rightarrow t = \frac{2\sqrt{s}}{\alpha}$ ⇒ $s = v_0 t + \frac{k}{2}t^3$
\nAverage velocity = $\frac{\text{total displacement}}{\text{total time}} = \frac{s\alpha}{2\sqrt{s}} = \frac{1}{2}\sqrt{s}\alpha$ A person moves d
\nwhich is blowing to solve toivity of wind bl
\nthe particle moves in the plane xy with constant acceleration d
\nmotion of the particle has the form y = px – qx² where p
\nand q are positive constants. Find the velocity of the particle that the origin of coordinates.
\n**Sol.** (i) w
\n**6.6. c** (ii) 24
\n $\frac{dy}{dt} = p\frac{dx}{dt} - q.2x\frac{dx}{dt}$

Example 13:

A particle moves in the plane xy with constant acceleration a directed along the negative y-axis. The equation of motion of the particle has the form $y = px - qx^2$ where p and q are positive constants. Find the velocity of the particle at the origin of coordinates.

Sol.
$$
\frac{dy}{dt} = p \frac{dx}{dt} - q \cdot 2x \frac{dx}{dt}
$$

(MOTION IN ONE DIMENSIONS)
\n
$$
\frac{1}{81}
$$
\n
$$
\frac{1}{129}
$$
\n
$$
\
$$

Example 14 :

A particle start with initial velocity v_0 and acceleration $a = kt$, where k is constant. Find velocity and displacement after time t.

.. Time taken by the boat B to cover the whole journey is
\n
$$
t_B = \frac{2\ell}{\sqrt{6}} = \frac{2\ell}{0.66\nu}
$$
 (1) and (2), we have
\n $\frac{t_A}{t_B} = \frac{5.45\ell}{\nu} \times \frac{0.33\nu}{\ell} = 1.80$
\n $\frac{t_A}{t_B} = \frac{0.45\ell}{\nu} \times \frac{0.33\nu}{\ell} = 1.80$
\n $\frac{t_A}{t_B} = \frac{0.45\ell}{\nu} \times \frac{0.45\ell}{\ell} = 1.80$
\n $\frac{t_A}{t_B} = \frac{0.45\ell}{\nu} \times \frac{0.45\ell}{\ell} = 1.80$
\n $\frac{t_A}{t_B} = \frac{0.45\ell}{\nu} \times \frac{0.45\ell}{\nu} = 1.80$
\n $\frac{t_A}{t_B} = \frac{0.45\ell}{\nu} \times \frac{0.45\ell}{\nu} = 1.80$
\n $\frac{t_A}{t_B} = \frac{0.45\ell}{\nu} \times \frac{0.45\ell}{\nu} = 1.80$
\n $\frac{t_A}{t_B} = \frac{0.45\ell}{\nu} \times$

Example 15 :

 $\frac{\alpha}{\sqrt{2}} = \frac{1}{2} \sqrt{s} \alpha$ A person moves due east at speed 6 m/s and feels the wind is blowing to south at speed 6 m/s. (a) Find the actual velocity of wind blow. (b) If person doubles his velocity then find the relative velocity of wind blow w.r.t. man.

- $\vec{v}_{w} = \vec{v}_{wm} + \vec{v}_{m} = -6\hat{j} + 6\hat{i}$; $\vec{v}_{w} = 6\hat{i} 6\hat{j}$
- \vec{v} $\vert = 6\sqrt{2}$ m/s and it blowing to S–E
- (ii) Person doubles its velocity then $\vec{v}_m = 12\hat{i}$ velocity and average s

$$
\vec{v}_{wm} = \vec{v}_{w} - \vec{v}_{m} = (6\hat{i} - 6\hat{j}) - 12\hat{i} = -6\hat{i} - 6\hat{j}
$$

Example 16 :

A particle moves along x-axis with acc. $a = a_0 (1 - t/T)$ where a_0 and T are constant if velocity at $t = 0$ is zero then find the average velocity from $t = 0$ to the time when $a = 0$.

$$
\vec{v}_{wm} = \vec{v}_{w} - \vec{v}_{m}
$$
\nExample 16:
\n
$$
\vec{v}_{w} = \vec{v}_{wm} + \vec{v}_{m} = -6\hat{j} + 6\hat{i} \quad \vec{v}_{w} = 6\hat{i} - 6\hat{j}
$$
\nExample 18:
\n
$$
|\vec{v}| = 6\sqrt{2} \text{ m/s}
$$
 and it blowing to S-E
\n(i) Person doubles its velocity then $\vec{v}_{m} = 12\hat{i}$
\n
$$
|\vec{v}| = 6\sqrt{2} \text{ m/s}
$$
\n
$$
|\vec{v}| = 6\sqrt{2} \text{ m/s}
$$
\n
$$
|\vec{v}| = 6\sqrt{2} \text{ m/s}
$$
\n
$$
|\vec{v}| = 4\sqrt{2} \text{ m/s}
$$

$$
ext{Av. velocity} = \frac{\text{displacement}}{\text{time}} = \frac{a_0 \left(\frac{1}{2} - \frac{1}{6T} \right)}{T} = \frac{a_0 T}{3}
$$

Example 17 :

EXAMPLE 17:
 $\vec{v}_{wm} = \vec{v}_{w} - \vec{v}_{m}$
 $\vec{v}_{w} = \vec{v}_{wm} + \vec{v}_{m} = -6\hat{j} + 6\hat{i}$; $\vec{v}_{w} = 6\hat{i} - 6\hat{j}$
 $|\vec{v}| = 6\sqrt{2}$ m/s and it blowing to S-E

Person doubles its velocity then $\vec{v}_{m} = 12\hat{i}$
 $\vec{v}_{m} = 4s$. **EXAMINE EVALUATE STUDY**

FOLLEARNING
 $\vec{v}_{\text{wm}} = \vec{v}_{\text{w}} - \vec{v}_{\text{m}}$
 $\vec{v}_{\text{w}} = \vec{v}_{\text{wm}} + \vec{v}_{\text{m}} = -6\hat{j} + 6\hat{i}$; $\vec{v}_{\text{w}} = 6\hat{i} - 6\hat{j}$
 $\vec{v}| = 6\sqrt{2} \text{ m/s}$ and it blowing to S-E

Person doubles its velo **EXAMINATERENT STUDY MATERIES AND EXAMPLE 17:**
 $\vec{v}_{\text{w}} = \vec{v}_{\text{w}} - \vec{v}_{\text{m}}$
 $\vec{v}_{\text{w}} = \vec{v}_{\text{w}} - \vec{v}_{\text{m}}$
 $\vec{v} = 6\sqrt{2} \text{ m/s}$ and it blowing to S-E

Person doubles its velocity then $\vec{v}_{\text{m}} = 12\hat{i}$

N EXAMPLE $\vec{v}_{wm} = \vec{v}_{w} - \vec{v}_{m}$
 $\vec{v}_{wm} = \vec{v}_{w} - \vec{v}_{m}$
 $\vec{v}_{v} = \vec{v}_{wm} + \vec{v}_{m} = -6\hat{j} + 6\hat{i} \quad ; \quad \vec{v}_{w} = 6\hat{i} - 6\hat{j}$
 $\vec{v} = 6\sqrt{2} \text{ m/s}$ and it blowing to S-E

Person doubles its velocity then $\vec{v}_{m} = 12\hat$ $\vec{v}_w = 6\hat{i} - 6\hat{j}$ magnitude of velocity is given by $v = (3t^2 - 6t)$ m/s, where **STUDYMATERIAL: PHYSICS**
 Example 17:

A particle moves along a straight line path such that its

magnitude of velocity is given by $v = (3t^2 - 6t)$ m/s, where

tis the time in seconds. If it is initially located at the o **Example 17:**

A particle moves a

magnitude of veloc

o S-E
 $\vec{v}_m = 12\hat{i}$

Sol. Av. velocity = $\frac{\int v \cdot d\vec{v}}{\int dt}$ A particle moves along a straight line path such that its t is the time in seconds. If it is initially located at the origin O then determine the magnitude of particle's average velocity and average speed in time interval from $t = 0$ to $t = 4s$. **EXIAL: PHYSICS**
path such that its
 $2-6t$ m/s, where
cated at the origin
article's average
val from $t = 0$ to
 $\frac{3-3t^2\Big)^4_0}{(t)^4_0} = 4$ m/s **STUDY MATERIAL: PHYSICS**

g a straight line path such that its

s given by $v = (3t^2 - 6t)$ m/s, where

If it is initially located at the origin

magnitude of particle's average

eed in time interval from $t = 0$ to
 $\int_0^$ **UDY MATERIAL: PHYSICS**
traight line path such that its
en by $v = (3t^2 - 6t)$ m/s, where
s initially located at the origin
mitude of particle's average
in time interval from $t = 0$ to
 $\frac{t^2 - 6t}{t} dt = \frac{(t^3 - 3t^2) \frac{4}{0}}{(t$ **STUDY MATERIAL: PHYSICS**

s along a straight line path such that its

ocity is given by $v = (3t^2 - 6t)$ m/s, where

conds. If it is initially located at the origin

ne the magnitude of particle's average

rage speed in ti **STUDY MATERIAL: PHYSICS**

ong a straight line path such that its

y is given by $v = (3t^2 - 6t)$ m/s, where

s. If it is initially located at the origin

ne magnitude of particle's average

speed in time interval from $t =$ light line path such that its

by $v = (3t^2 - 6t)$ m/s, where

initially located at the origin

tude of particle's average

time interval from $t = 0$ to

6t) dt
 $\frac{6t}{1} = \frac{(t^3 - 3t^2) \frac{4}{0}}{(t)_0^4} = 4$ m/s
 $\frac{2}{1}$
 \int

Sol. Av. velocity
$$
=
$$
 $\frac{\int v dt}{\int dt} = \frac{\int_{0}^{4} (3t^2 - 6t) dt}{\int_{0}^{4} dt} = \frac{(t^3 - 3t^2)_{0}^{4}}{(t)_{0}^{4}} = 4 \text{ m/s}$

Average speed

IDENTIFY of SET UP:
$$
\vec{v}_{\text{w}} = \vec{v}_{\text{w}} - \vec{v}_{\text{m}}
$$

\n $\vec{v}_{\text{w}} = \vec{v}_{\text{w}} - \vec{v}_{\text{m}}$
\n $\vec{v}_{\text{w}} = \vec{v}_{\text{w}} - \vec{v}_{\text{m}}$
\n $\vec{v}_{\text{w}} = \vec{v}_{\text{w}} - \vec{v}_{\text{m}}$
\n $\vec{v}_{\text{w}} = \vec{v}_{\text{m}} + \vec{v}_{\text{m}} = -6\hat{j} + 6\hat{i}$; $\vec{v}_{\text{w}} = 6\hat{i} - 6\hat{j}$
\n $\vec{v}_{\text{w}} = \vec{v}_{\text{w}} - \vec{v}_{\text{m}}$
\n \vec{v}_{m}
\n $\$

Example 18 :

c. a = a₀ (1 - t/T)

at t = 0 is zero then

time when a = 0.
 Example 18 :

A rocket is moving in a gravity free incomendant and the relation of 2 m/s² along + x different of the change of 0.3 m/s relative to the wi 6 $\sqrt{2}$ m/s to S-W.

acc. a = a₀ (1 - t/T)

yatt = 0 is zero then

the time when a = 0.
 Example 18 :

A rocket is moving in a gravity free space with a constant

acceleration of 2 m² along + x direction (see figur acc. a = a₀ (1 - t/T)

y at t = 0 is zero then

the time when a = 0.
 Example 18:

A rocket is moving in a gravity free space with a constant

acceleration of 2 m/s² along + x direction (see figure).

The length of acc. $a = a_0 (1 - t/T)$
 $= \frac{(3t^2 - t^2)\delta + (t^2 - 3t^2)^2}{(t)\delta} = \frac{24}{4} = 6 \text{ m/s}$

the time when a = 0.

the time when a = 0.

A rocket is moving in a gravity free space with a constant

acceleration of 2 ms³ along + x directio A rocket is moving in a gravity free space with a constant acceleration of 2 m/s² along + x direction (see figure). The length of a chamber inside the rocket is 4 m. A ball is thrown from the left end of the chamber in $+x$ direction with a speed of 0.3 m/s relative to the rocket. At the same time, another ball is thrown in –x direction with a speed of 0.2 m/s from its right end relative to the rocket. The time in seconds when the two balls hit each other is – $\frac{(t^2 - t^3)\delta + (t^2 - 3t^2)\delta}{(t)_0^4} = \frac{24}{4} = 6 \text{ m/s}$

:

:

therefore is moving in a gravity free space with a constant

leration of 2 m/s² along + x direction (see figure).

length of a chamber inside the rocket is 4 $\left(-t^3\right)_0^2 + (t^3 - 3t^2)_2^4 = \frac{24}{4} = 6 \text{ m/s}$

(t) $\frac{4}{9}$

(t) $\frac{4}{9}$

(t) $\frac{4}{9}$

(t) $\frac{4}{9}$

(d) $\frac{4}{$ 1 Section 1 Section 1 Am

1 Section of 2 m/s² along + x direction (see figure).

Length of a chamber inside the rocket is 4 m. A ball is

1 Am from the left end of the chamber in +x direction

a speed of 0.3 m/s relativ (1)₀
tis moving in a gravity free space with a constant
tion of 2 m/s² along + x direction (see figure).
ght of a chamber inside the rocket is 4 m. A ball is
from the left end of the chamber in +x direction
other ball

Sol. 8.
$$
S_1 = 0.2t + \frac{1}{2} \times 2 \times t^2
$$

\n $\frac{0T}{3}$
\n $S_2 = 0.3t - \frac{1}{2} \times 2 \times t^2$
\n $S_1 + S_2 = 4; 0.5t = 4; t = 8$

QUESTION BANK CHAPTER 3 : MOTION IN ONE DIMENSION

EXERCISE - 1 [LEVEL-1]

Choose one correct response for each question. PART - 1 : POSITION, PATH LENGTH AND DISPLACEMENT

- **Q.1** The numerical ratio of distance to displacement is
	- (A) always equal to one
	- (B) always less than one
	- (C) always greater than one
	- (D) equal to or more than one
- **Q.2** An athlete is running on a circular track of radius 50 **Q.8** meter. Calculate the displacement (in m) of the athlete after completing 5 rounds of the track.

Q.3 A monkey is moving on circular path of radius 80m. Calculate the distance covered by the monkey in one round.

- **Q.4** Which of the following statements is incorrect?
	- (A) Displacement is independent of the choice of origin of the axis.
	- (B) Displacement may or may not be equal to the distance travelled.
	- (C) When a particle returns to its starting point, its displacement is not zero.
	- (D) Displacement does not tell the nature of the actual motion of a particle between the points.
- **Q.5** A drunkard walking in a narrow lane takes 5 steps forward and 3 steps backward, followed again by 5 steps forward and 3 steps backward, and so on. Each step is 1m long and requires 1s. Determine how long the drunkard takes to fall in a pit 13 m away from the start.

PART - 2 : AVERAGE VELOCITY AND AVERAGE SPEED

Q.6 One drop of oil falls straight down onto the road from the engine of a moving car every 5 s. Figure shows the pattern of the drops left behind on the pavement. What Q.10 is the average speed of the car over this section of its motion?

Q.7 The graph accompanying this problem shows a threepart motion. For each of the three parts, a, b, and c, identify the direction of the motion. A positive velocity denotes motion to the right.

 (A) a right, b left, c right (B) a right, b right, c left (C) a right, b left, c left (D) a left, b right, c left **Q.8** A jogger runs along a straight and level road for a

- distance of 8.0 km and then runs back to her starting point. The time for this round-trip is 2.0h. Which one of the following statements is true?
- (A) Her average speed is 8.0 km/h, but there is not enough information to determine her average velocity.
- (B) Her average speed is 8.0 km/h, and her average velocity is 8.0 km/h.
- (C) Her average speed is 8.0 km/h, and her average velocity is 0 km/h.
- (D) None of these

For Q.9-Q.13

The position versus time for a certain particle moving along the x axis is shown in Figure.

Find the average velocity in the time intervals 0 to 2 s.

- (C) 5 m/s (D) 2 m/s Find the average velocity in the time intervals 0 to 4s.
- (A) 1.2 m/s (B) 3.2 m/s
- (C) 4.2 m/s (D) 5.2 m/s **Q.11** Find the average velocity in the time intervals 2 s to 4 s. $(A) - 0.5$ m/s $(B) - 1.5$ m/s $(C) - 2.5$ m/s $(D) - 3.5$ m/s
- **Q.12** Find the average velocity in the time intervals 4 s to 7 s $(A) - 1.3$ m/s $(B) - 2.5$ m/s $(C) - 6.1 \text{ m/s}$ (D) – 3.3 m/s **Q.13** Find the average velocity in the time intervals 0 to 8 s.
- (A) 1 m/s (B) 0 m/s (C) 5 m/s (D) 2 m/s

Q.14 A bicyclist is travelling along a straight road for the Q.19 first half time with speed v_1 and for second half time with speed v_2 . What is the average speed of the bicyclist? **(QUESTION BANK**

ng a straight road for the **Q.19** Which of the

and for second half time

in the average speed of the (A) Position

(C) Velocity

(B) $\frac{v_1 - v_2}{2}$ **For Q.20-Q.21**

The position

by x = a + bt

(D) Non

MEEOLUTION BANK					
A bicycleist is travelling along a straight road for the first half time with speed v_1 and for second half time with speed v_2 . What is the average speed of the bicyclist?	(A) $\frac{v_1 + v_2}{2}$	(B) $\frac{v_1 - v_2}{2}$	For Q.20-Q.21 The position of by x = a + bt ² , w Figure gives the x-t plot of a particle in one-dimensional motion. Three different equal intervals of time are shown.	(C) $\frac{2v_1v_2}{v_1 + v_2}$	(D) None of these t = 2 s and t = 4 (A) 5 m s ⁻¹ (C) 15 m s ⁻¹
2.21 The velocity of shown.	(A) 5 m/s (C) 15 m/s (D) 15 m/s (E) 15 m/s				

Q.15 Figure gives the x-t plot of a particle in one-dimensional motion. Three different equal intervals of time are shown.

Choose the correct statement –

- (A) Average speed is greatest in interval 3.
- (B) Average speed is least in interval 2.
- (C) Average speed is greatest in interval 1.
- (D) Both (A) and (B)
- **Q.16** Which of the following graphs represents the position time graph of a particle moving with negative velocity? $Q.23$

- **Q.17** The area under velocity-time graph for a particle in a given interval of time represents (A) velocity (B) acceleration (C) work done (D) displacement
- **Q.18** A table clock has its minute hand 4 cm long. Choose the correct statement
	- (A) Average velocity of the tip of the minute hand in between 6 a.m. to 6.30 a.m. is 4.4×10^{-3} cm/s
	- (B) Average velocity of the tip of the minute hand in between 6 a.m. to 6.30 p.m is 1.8×10^{-4} cm/s
	- (C) Average velocity of the tip of the minute hand in between 6 a.m. to 6.30 p.m is 4.4×10^{-4} cm/s
	- (D) Both (A) and (B)

Which of the following changes when a particle is moving with uniform velocity? (A) Position (B) Speed

- $t = 2$ s and $t = 4$ s is (A) 5 m s^{-1} (B) 10 m s^{-1} (C) 15 m s^{-1} (D) 20 m s^{-1} **Q.21** The velocity of the object at $t = 2s$ is (A) 5 m/s (B) 10 m/s (C) 15 m/s (D) 20 m/s
- **Q.22** A vehicle travels half the distance L with speed v_1 and the other half with speed v_2 , then its average speed is

STUDY MATERIAL: PHYSICS
\nWhich of the following changes when a particle is
\nmoving with uniform velocity?
\n(A) Position (B) Speed
\n(C) Velocity (D) Acceleration
\n0-Q.21
\nThe position of an object moving along x-axis is given
\nby x = a + bt², where a = 8.5 m and
\nb = 2.5 m s⁻² and t is measured in seconds.
\nThe average velocity of the object between
\nt = 2 s and t = 4 s is
\n(A) 5 m s⁻¹ (B) 10 m s⁻¹
\n(C) 15 m s⁻¹ (D) 20 m s⁻¹
\nThe velocity of the object at t = 2s is
\n(A) 5 m/s (B) 10 m/s
\n(C) 15 m/s (D) 20 m/s
\nA vehicle travels half the distance L with speed v₁ and
\nthe other half with speed v₂, then its average speed is
\n(A)
$$
\frac{v_1 + v_2}{2}
$$
 (B)
$$
\frac{2v_1 + v_2}{v_1 + v_2}
$$

\n(C)
$$
\frac{2v_1v_2}{v_1 + v_2}
$$
 (D)
$$
\frac{L(v_1 + v_2)}{v_1v_2}
$$

\n3-Q.24
\nA particle moves according to the equation x = 10t²
\nwhere x is in meters and t is in seconds.
\nFind the average velocity for the time interval from

For Q.23-Q.24

Find the average velocity for the time interval from 2.00s to 3.00 s. (A) 50.0 m/s (B) 31.0 m/s

- **Q.24** Find the average velocity for the time interval from 2.00 to 2.10 s.
- (A) 50.0 m/s (B) 31.0 m/s (C) 41.0 m/s (D) 20.0 m/s
- **Q.25** A cyclist moving on a circular track of radius 40m completes half a revolution in 40 s. His average velocity is
	- (A) zero $(B) 4\pi m/s$ (C) 2 m/s (D) $8 \pi \text{ m/s}$

For Q.26-Q.27

A person walks first at a constant speed of 5m/s along a straight line from point A to point B and then back along the line from B to A at a constant speed of 3 m/s.

PART - 3 : INSTANTANEOUS VELOCITY AND SPEED

For Q.28-Q.30

A position-time graph for a particle moving along the x axis is shown in figure.

- **Q.28** Find the average velocity in the time interval t = 1.50 s
to t = 4.00 s to $t = 4.00$ s.
	- $(A) 1.2$ m/s $(B) 2.4$ m/s
	- $(C) 3.8$ m/s $(D) 4.2$ m/s
- **Q.29** Determine the instantaneous velocity at $t = 2.00s$ by
measuring the slope of the tangent line shown in the $Q.36$ measuring the slope of the tangent line shown in the graph.
	- $(A) 1.2$ m/s $(B) 2.4$ m/s
	- $(C) 3.8$ m/s $(D) 4.2$ m/s
- **Q.30** At what value of t is the velocity zero?
	- (A) $4s$ (B) $2s$ (C) 6s (D) 8s
- **Q.31** A particle moves with uniform velocity. Which of the following statements about the motion of the particle Q.37 following statements about the motion of the particle is true?
	- (A) Its speed is zero.
	- (B) Its acceleration is zero.
	- (C) Its acceleration is opposite to the velocity.
	- (D) Its speed may be variable.
- **Q.32** With the help of given fig. find the instantaneous velocity at point F for the object whose motion the curve represents.

- **Q.33** Figure shows the displacement (x)-time (t) graph of the particle moving on the x-axis.
	- (A) The particle is at rest.
	- (B) The particle is continuously going along x-direction.

 X

- (C) The velocity of the particle increases upto time t_0 and then becomes constant.
- (D) The particle moves at a constant velocity up to a time t_0 and then stops.

For Q.34-Q.35

The position of a particle moving along the x axis varies in time according to the expression $x = 3t^2$, where x is in meters and t is in seconds.

d

 e f

Time

Q.34 Evaluate its position at $t = 3$ s

- Evaluate the limit of $\Delta x/\Delta t$ as Δt approaches zero, to find the velocity at $t = 3$ s.
	- (A) 7.0 m/s (B) 20.0 m/s
	- $(C) 27.0 \text{ m/s}$ (D) 18.0 m/s **Q.36** The displacement-time graph of a moving particle is as shown in Displacement the figure. The instantaneous velocity of the particle is negative at the point (A) c (B) e $(C) d$ (D) f
- Look at the graphs (a) to (d) (Fig.) carefully which of these cannot possibly represent one-dimensional motion of a particle.

For Q.38-Q.40

Find the instantaneous velocity of the particle described in figure at the following times:

- **Q.38** $t = 1.0$ s, (A) 5 m/s (B) 3 m/s $(C) 0 \text{ m/s}$ (D) 4 m/s **Q.39** $t = 3.0$ s, $(A) -1.5 \text{ m/s}$ (B) –3.5 m/s $(C) -2.5$ m/s $(D) -4.5$ m/s **Q.40** $t = 4.5 s$ (A) 5 m/s (B) 3 m/s $(C) 0 \text{ m/s}$ (D) 4 m/s **Q.41** $t = 7.5$ s. $(A) 5 m/s$ (B) $3 m/s$ $(C) 0 \text{ m/s}$ (D) 4 m/s
- **Q.42** The position-time (x-t) graphs for two children A and B returning from their school O to their homes P and Q respectively are shown in Fig.

Choose the INCORRECT statement –

- (A) A lives closer to the school than B.
- (B) A starts from the school earlier than B.
- (C) A walks faster than B.

(D) A and B reach home at the same time.

PART - 4 : ACCELERATION

Q.43 The velocity of a train is 80.0 km/h, due west. One and a half hours later its velocity is 65.0 km/h, due west. What is the train's average acceleration?

(A) 10.0 km/h^2 , due west (B) 43.3 km/h^2 , due west (C) 10.0 km/h², due east (D) 43.3 km/h², due east

- **Q.44** When the pilot reverses the propeller in a boat moving **Q.49** north, the boat moves with an acceleration directed south. Assume the acceleration of the boat remains constant in magnitude and direction. What happens 0.50 to the boat?
	- (A) It eventually stops and remains stopped.
	- (B) It eventually stops and then speeds up in the forward direction.
	- (C) It eventually stops and then speeds up in the reverse direction.
	- (D) It never stops but loses speed more and more slowly forever.
- **Q.45** As an object moves along the x axis, many measurements are made of its position, enough to generate a smooth, accurate graph of x versus t. Which of the following quantities for the object cannot be obtained from this graph alone?
	- (A) the velocity at any instant.
	- (B) the acceleration at any instant.
	- (C) the displacement during some time interval
	- (D) the average velocity during some time interval

Q.46 Each of the strobe photographs (a), (b), and (c) in Figure was taken of a single disk moving toward the right, which we take as the positive direction. Within each photograph, the time interval between images is constant.

Choose the correct option –

(A)Photograph (b) shows motion with zero acceleration. (B)Photograph(c) shows motion with positive acceleration. (C) Photograph (a) shows motion with negative acceleration. (D) All of these

Q.47 Position-time graph for motion with zero acceleration is

Q.48 An athlete takes 2 second to reach the maximum speed of 18 km/h from rest. What is the magnitude of his average acceleration ?

(A)
$$
1.5 \text{ m/s}^2
$$

(B) 2.5 m/s^2
(C) 3.5 m/s^2
(D) 0.5 m/s^2

- **Q.49** A car starts from rest and acquires velocity equal to 10 m/s after 5 sec. Find the acceleration of the car. (A) 1.5 m/s² (B) 2.5 m/s² (C) 3.5 m/s^2 (D) 2.0 m/s^2
- The position x of a particle varies with time 't' as $x = at^2 - bt^3$. When will the acceleration of the particle become zero?

$$
(A) t = a/3b
$$

(B) t = a/2b
(C) t = a/b
(D) t = 2a/b

Q.51 A 50.0-g superball traveling at 25.0 m/s bounces off a brick wall and rebounds at 22.0 m/s. A high-speed camera records this event. If the ball is in contact with the wall for 3.50 ms, what is the magnitude of the average acceleration of the ball during this time interval?

(Note: 1 ms =
$$
10^{-3}
$$
 s.)
(A) 0.34×10^4 m/s²
(C) 2.17×10^4 m/s²

(D) 1.34×10^4 m/s² **Q.52** The area under acceleration-time graph represents the (A) initial velocity (B) final velocity (C) change in velocity (D) distance travelled

(B) 1.34×10^6 m/s²

MOTION IN ONE DIMENSION QUESTION BANK

Q.53 Figure gives a speed-time graph of a particle in motion Q.58 along a constant direction. Three equal intervals of time are shown.

- Choose the correct statement –
- (a) Average acceleration is greatest in interval 2
- (b) Average speed is greatest in interval 2
- (c) Velocity is positive only in interval 3
- (d) Acceleration is positive in intervals 1 and 3 and negative in interval 2
- (A) a, b (B) c, d

$$
(C) b, c \qquad (D) a, d
$$

- **Q.54** The slope of the tangent drawn on velocity-time graph at any instant of time is equal to the instantaneous (A) acceleration (B) velocity (C) impulse (D) momentum
- **Q.55** Given below are four curves describing variation of velocity with time of a particle. Which one of these describe the motion of a particle initially in positive direction with constant negative acceleration?

PART - 5 : KINEMATIC EQUATIONS FOR UNIFORMLY ACCELERATED MOTION

- **Q.56** In which one of the following situations can the equations of kinematics not be used?
	- (A) When the velocity changes from moment to moment.
	- (B) When the velocity remains constant.
	- (C) When the acceleration changes from moment to moment.
	- (D) When the acceleration remains constant.
- **Q.57** In a race two horses, Silver Bullet and Shotgun, start from rest and each maintains a constant acceleration. In the same elapsed time Silver Bullet runs 1.20 times farther than Shotgun. According to the equations of kinematics, which one of the following is true concerning the accelerations of the horses?
	- (A) $a_{\text{Silver Bullet}} = 1.44 a_{\text{Shotgun}}$
	- (B) $a_{\text{Silver Bullet}} = a_{\text{Shotgun}}$
	- (C) $a_{\text{Silver Bullet}} = 2.40 \,\tilde{a}_{\text{Shotgun}}$
	- (D) $a_{\text{Silver Bullet}} = 1.20 a_{\text{Shotgun}}$
- **Q.58** A skateboarder starts from rest and moves down a hill with constant acceleration in a straight line, traveling for 6 s. In a second trial, he starts from rest and moves along the same straight line with the same acceleration for only 2 s. How does his displacement from his starting point in this second trial compare with that from the first trial?
	- (A) one-third as large (B) three times larger
	- (C) one-ninth as large (D) nine times larger
- **Q.59** A racing car starts from rest at $t = 0$ and reaches a final speed v at time t. If the acceleration of the car is constant during this time, which of the following statements are true?
	- (a) The car travels a distance vt.
	- (b) The average speed of the car is v/2.
	- (c) The magnitude of the acceleration of the car is v/t.
	- (d) The velocity of the car remains constant.

$$
(A) a, b \qquad (B) b, c
$$

- (C) a, d (D) c, d
- The velocity of a particle (moving with uniform acceleration) at an instant is 10m/s. After 3s its velocity will becomes 16 m/s. The velocity at 2s, before the given instant will be

(A) 6 m/s (B) 4 m/s (C) 2 m/s (D) 1 m/s

Q.61 A particle starts moving from the position of rest under a constant acc. If it covers a distance x in t sec, what distance will it travel in next t sec?

(A)
$$
y = 3x
$$

\n(B) $y = x$
\n(C) $y = 2x$
\n(D) $y = 4x$

- **Q.62** Which of the following statements is not correct?
	- (A) The zero velocity of a body at any instant does not necessarily imply zero acceleration at that instant.
		- (B) The kinematic equation of motions are true only for motion in which the magnitude and the direction of acceleration are constants during the course of motion.
		- (C) The sign of acceleration tells us whether the particle's speed is increasing or decreasing. (D) All of these
- **Q.63** The velocity-time graph of a particle in one-dimensional motion is shown in figure :

Which of the following formulae are correct for describing the motion of the particle over the time-interval t_1 to t_2 :

(a)
$$
x(t_2) = x(t_1) + v(t_1)(t_2 - t_1) + (\frac{1}{2})a(t_2 - t_1)^2
$$

\n(b) $v(t_2) = v(t_1) + a(t_2 - t_1)$
\n(c) $v_{average} = (x(t_2) - x(t_1)) / (t_2 - t_1)$
\n(d) $a_{average} = (v(t_2) - v(t_1)) / (t_2 - t_1)$

 h^{-1} is brought to a stop within a distance 200m. How **PAR** long does it take for the car to stop? (A) 5s

(C) 15s (D) 20s

Q.66 Which of the following equations does not represent the kinematic equations of motion?

(A)
$$
v = u + at
$$
 (B) $S = ut + \frac{1}{2}at^2$

(C)
$$
S = vt + \frac{1}{2}at^2
$$
 (D) $v^2 - u^2 = 2aS$

where, $u =$ initial velocity of a body

 $v =$ final velocity of the body

- a = uniform acceleration of the body
- $S =$ distance travelled by the body in time t
- **Q.67** A body starting from rest moves along a straight line with a constant acceleration. The variation of speed (v) with distance (s) is given by

Q.68 A particle starts with a constant acceleration. At a time t second speed is found to be 100 m/s and one second later speed becomes 150 m/s. Find acceleration of the particle.

Q.69 A person travelling at 43.2 km/h applies the brakes $Q.76$ giving a deceleration of 6 m/s² to his scooter. How far will it travel before stopping ?

For Q.70-Q.72

A particle starts with an initial velocity 2.5 m/s along the positive x-direction and it accelerates uniformly at the rate 0.50 m/s^2 .

Q.70 Find the distance travelled by it in the first two seconds. $(A) 2.0 m$ (B) 4.0 m $(C) 6.0 m$ (D) 8.0 m

- (A) 40 m (B) 50 m (C) 30 m (D) 20 m **Q.73** A particle starts from rest with constant acceleration
- $= 2m/s²$. Find displacement in 5th sec. $(A) 9 m$ (B) 18 m $(C) 25 m$ (D) 20 m

PART - 6 : MOTION UNDER GRAVITY

- **Q.74** A juggler throws a bowling pin straight up in the air. After the pin leaves his hand and while it is in the air, which statement is true?
	- (A) The velocity of the pin is always in the same direction as its acceleration.
	- (B) The velocity of the pin is never in the same direction as its acceleration.
	- (C) The acceleration of the pin is zero.
	- (D) The velocity of the pin is opposite its acceleration on the way up.
- **Q.75** A rocket is sitting on the launch pad. The engines ignite, and the rocket begins to rise straight upward, picking up speed as it goes. At about 1000 m above the ground the engines shut down, but the rocket continues straight upward, losing speed as it goes. It reaches the top of its flight path and then falls back to earth. Ignoring air resistance, decide which one of the following statements is true.
	- (A) All of the rocket's motion, from the moment the engines ignite until just before the rocket lands, is free-fall.
	- (B) Only part of the rocket's motion, from just after the engines shut down until just before it lands, is free-fall.
	- (C) Only the rocket's motion while the engines are firing is free-fall.
	- (D) Only the rocket's motion from the top of its flight path until just before landing is free-fall.
	- The top of a cliff is located a distance H above the ground. At a distance H/2 there is a branch that juts out from the side of the cliff, and on this branch a bird's nest is located. Two children throw stones at the nest with the same initial speed, one stone straight downward from the top of the cliff and the other stone straight upward from the ground. In the absence of air resistance, which stone hits the nest in the least amount of time?

(A) There is insufficient information for an answer.

- (B) Both stones hit the nest in the same amount of time.
- (C) The stone thrown from the ground.
- (D) The stone thrown from the top of the cliff.

Q.77 A rock is thrown downward from the top of a 40.0-mtall tower with an initial speed of 12m/s. Assuming negligible air resistance, what is the speed of the rock just before hitting the ground? $(A) 28 \text{ m/s}$ (B) 30 m/s

Q.78 On another planet, a marble is released from rest at the Q. top of a high cliff. It falls 4.00 m in the first 1 s of its motion. Through what additional distance does it fall in the next 1 s? $(A) 4.00 \,\mathrm{m}$ (B) 8.00 m

Q.79 A pebble is dropped from rest from the top of a tall cliff and falls 4.9 m after 1.0 s has elapsed. How much farther does it drop in the next 2.0 s? (A) 9.8 m (B) 19.6 m

Q.80 A cannon shell is fired straight up from the ground at Q . an initial speed of 225 m/s. After how much time is the shell at a height of 6.20 \times 10² m above the ground and moving downward?

- **Q.81** A player throws a ball vertically upwards with velocity u. At highest point,
	- (A) both the velocity and acceleration of the ball are zero.
	- (B) the velocity of the ball is u but its acceleration zero. $Q.91$ (C) the velocity of the ball is zero but its acceleration g. (D) the velocity of the ball is u but its acceleration g.
- **Q.82** Which of the following graphs represents the velocitytime variation of an object falls freely under gravity?

Q.83 A girl standing on a stationary lift (open from above) throws a ball upwards with initial speed 50 m/s.The time taken by the ball to return to her hands is (Take $g = 10 \text{ m s}^{-2}$)

Q.84 A body falling freely under gravity passes two points 30 m apart in 1 s. From what point above the upper point it began to fall?

Q.85 Free fall of an object in vacuum is a case of motion with (A) uniform velocity (B) uniform acceleration (C) variable acceleration (D) uniform speed

- **Q.90** Water drops fall at regular intervals from a tap which is 5m above the ground. The third drop is leaving the tap at the instant the first drop touches the ground. How far above the ground is the second drop at that instant (A) 2.50 m (B) 3.75 m (C) 4.00 m (D) 1.25 m
- **Q.91** A stone is shot straight upward with a speed of 20m/ sec from a tower 200 m high. The speed with which it strikes the ground is approximately– (A) 60 m/sec (B) 65 m/sec

 (C) 70 m/sec (D) 75 m/sec

PART - 7 : RELATIVE VELOCITY

Q.92 Which one of the following represents displacement time graph of two objects A and B moving with zero relative velocity?

For Q.93-Q.94

Two cars A and B are running at velocities of $60~{\rm km} \, {\rm h}^{-1}$ and $45~{\rm km} \, {\rm h}^{-1}.$

- **Q.93** What is the relative velocity of car A with respect to car B, if both are moving eastward?
	- (A) 15 km h^{-1} (B) 45 km h^{-1} (C) 60 km h^{-1} (D) 105 km h^{-1}

Q.95 A jet airplane travelling at the speed of

500km/h ejects its products of combustion at the speed of 1500 km h^{-1} relative to the jet plane. What is the speed of the combustion with respect to an observer on the ground ? bu km n² (D) 10

t airplane travelling at the spe

stam/h ejects its products of con

500 km h⁻¹ relative to the je

d of the combustion with res

ne ground ?

- 500 km h⁻¹. (B)-

- 1500 km h⁻¹. (D)-

- 1500 km h

For Q.96-Q.98

Two parallel rail tracks run north-south. On one track train A moves north with a speed of 54 km/h and on the other track train B moves south with a speed of 90km/h. 500km/h ejects its products of combustion at the speed
of 1500km h⁻¹ relative to the jet plane. What is the
of 1500km h⁻¹ relative to the jet plane. What is the
speed of the combustion with respect to an observer
on t

EXERCISE - 2 [LEVEL-2]

Choose one correct response for each question.

Q.1 The average velocity of a particle moving with constant acceleration a and initial velocity u in a straight line in first t seconds is

(A)
$$
u + \frac{1}{2}at
$$

\n(B) $\frac{u}{2}$
\n(C) $u + at$
\n(D) $\frac{u + at}{2}$
\n(D) $\frac{u + at}{2}$
\n10.7 A bird
\n11. (A) 5 m
\n(A) 5 m
\n(C) 18 n

Q.2 The velocity of any particle is related with its $x = 5$ cm.

Q.3 The displacement of a body is given to be proportional to the cube of time elapsed. The magnitude of the $Q.8$ acceleration of the body is

> (A) increasing with time (B) decreasing with time (C) constant but not zero (D) zero

- **Q.4** The velocity of the particle at any time t is given by $v =$ $2t (3-t)$ m/s. At what time is its velocity maximum? $(A) 2 s$ (B) 3 s (C) (2/3) s (D) (3/2) s
- **Q.5** Which of the following statements is not correct regarding the motion of a particle in a straight line? (A) x-t graph is a parabola, if motion is uniformly accelerated.
	- (B) v-t is a straight line inclined to the time axis, if motion is uniformly accelerated.
	- (C) x-t graph is a straight line inclined to the time axis if $Q.10$ motion is uniform and acceleration is zero.
	- (D) v-t graph is a parabola if motion is uniform and acceleration is zero.
- **Q.6** Two towns A and B are connected by a regular bus service with a bus leaving in either direction every T minutes. A man cycling with a speed of 20km/h in the direction A to B notices that a bus goes past him every

18 min in the direction of his motion and every 6 min. in the opposite direction. What is the time period T of the bus service. Assume buses ply on the road with constant speed.

- 2 (C) 18 n 2
has speed of 27 km/h while the other has the speed of $\frac{1 + at}{2}$ moving towards each other on a straight road. One can **Q.7** A bird is tossing (flying to and fro) between two cars 18 km/h. The bird starts moving from first car towards the other and is moving with the speed of 36 km/h when the two cars were separated by 36 km. The total distance covered by the bird is –
	- (A) 28.8 km (B) 38.8 km (C) 48.8 km (D) 58.8 km
	- It is a common observation that rain clouds can be at about 1 km altitude above the ground. If a rain drop falls from such a height freely under gravity, then what will be its speed in $km h^{-1}$?
		- ${\rm (Take g = 10 m s^{-2})}$ (A) 510 (B) 610 (C) 710 (D) 910
	- **Q.9** In one dimensional motion, instantaneous speed v satisfies $0 \le v < v_0$.

(A) The displacement in time T must always take nonnegative values.

- (B) The displacement x in time T satisfies $-v_0T < x < v_0T$. (C) The acceleration is always a non-negative number. (D) The motion has no turning points.
- **Q.10** A police van moving on a highway with a speed of 30 $km h^{-1}$ fires a bullet at a thief's car speeding away in the same direction with a speed of 192 km h^{-1} . If the muzzle speed of the bullet is 150 m s^{-1} , with what speed does the bullet hit the thief's car ? (Obtain that speed which is relevant for damaging the thief's car). (A) 125 m/s (B) 160 m/s $(C) 95 \text{ m/s}$ (D) 105 m/s

MOTION IN ONE DIMENSION QUESTION BANK

- Q.11 A boy walks on a straight road from his home to a Q.19 market 2.5 km with a speed of 5 km h^{-1} . Finding the market closed he instantly turns and walks back with a speed of 7.5 km h^{-1} . What is the average speed and average velocity of the boy between $t = 0$ to $t = 50$ min? $(A) 0, 0$ (B) 6 km h⁻¹, 0 (C) 0, 6 km h⁻¹ (D) 6 km h⁻¹, 6 km/h $Q.20$ **ENSION** Straight road from his home to a **Q.19** A ball A is thrown vertical

the a speed of 5 km h⁻¹. Finding the the same instant another b

stantly turns and walks back with a height h. At time t, the speed
 -1 . Wh **(A)**
 (A) boy walks on a straight road from his home that

market 2.5 km with a speed of 5 km h⁻¹. Finding

market closed he instantly turns and walks back wi

speed of 7.5 km h⁻¹. What is the average speed

averag **ONE DIMENSION** walks on a straight road from his home t

2.5 km with a speed of 5 km h⁻¹. Finding

closed he instantly turns and walks back with

f 7.5 km h⁻¹. What is the average speed :

velocity of the boy between **NONE DIMENSION**

walks on a straight road from

t 2.5 km with a speed of 5 km

t closed he instantly turns and w

of 7.5 km h⁻¹. What is the ave

e velocity of the boy between t =

0 (B) 6 km l

cle moving with uniform **NONE DIMENSION**
 EXECUTE THE VALUATION CONSTIGN B
 EXECUTE 1.5 km with a speed of 5 km h⁻¹. Finding the

t closed he instantly turns and walks back with a

of 7.5 km h⁻¹. What is the average speed and
 0 (B) 6 **COUESTION BANK**

road from his home to a **Q.19** A ball A is

of 5 km h⁻¹. Finding the the same in

its and walks back with a

is the average speed and

etween t= 0 to t= 50 min?

(B) 6 km h⁻¹, 6 km/h

(B) 6 km h⁻¹, **QUESTION BANK**

from his home to a **Q.19** A ball A is

km h⁻¹. Finding the the same in

nd walks back with a height h. A

e average speed and (A) u

ent = 0 to t = 50 min?

km h⁻¹, 6 km/h

(C) $\sqrt{u^2 - 2}$

km h⁻¹, **QUESTION BA**

I from his home to a **Q.19**

5 km h⁻¹. Finding the

and walks back with a

ne average speed and

een t = 0 to t = 50 min?

6 km h⁻¹, 0

6 km h⁻¹, 6 km/h

cceleration has average

e successive interval **(ON IN ONE DIMENSION)**

A boy walks on a straight road from his hom

market 2.5 km with a speed of 5 km h⁻¹. Findi

market closed he instantly turns and walks back

speed of 7.5 km h⁻¹. What is the average speed

ave **IN ONE DIMENSION**

by walks on a straight road from his hom

et 2.5 km with a speed of 5 km h⁻¹. Findit

et closed he instantly turns and walks back

d of 7.5 km h⁻¹. What is the average spee

gge velocity of the boy **IN ONE DIMENSION**

oy walks on a straight road fit

set 2.5 km with a speed of 5 k

set closed he instantly turns and

d of 7.5 km h⁻¹. What is the

age velocity of the boy between

(B) 6 k

(D) 6 k

on, 6 km h⁻¹ (D) **IN ONE DIMENSION**

oy walks on a straight road fr

ket 2.5 km with a speed of 5 kist

do f 7.5 km h⁻¹. What is the is

age velocity of the boy between

(B) 6 km h⁻¹

(D) 6 km h⁻¹

(D) 6 km h⁻¹

(D) 6 km h⁻¹

(D **COLESTION BANK**

road from his home to a **Q.19** A ball A is

of 5 km h⁻¹. Finding the the same i

tims and walks back with a height h. *A*

is the average speed and (A) u

etween t = 0 to t = 50 min?

(B) 6 km h⁻¹, 6 **QUESTION BANK**

from his home to a **Q.19** A ball A is

km h⁻¹. Finding the

nd walks back with a

e average speed and
 $\tan t = 0$ to $t = 50$ min?

km h⁻¹, 0

km h⁻¹, 0

km h⁻¹, 6 km/h

celeration has average

succe **QUESTION BA**

I from his home to a **Q.19**

i km h⁻¹. Finding the

and walks back with a

ne average speed and
 $\tan t = 0$ to t = 50 min?

i km h⁻¹, 0

i km h⁻¹, 6 km/h

celeration has average

e successive intervals

- **Q.12** A particle moving with uniform acceleration has average velocities v_1 , v_2 and v_3 over the successive intervals

of time t_1 , t_2 and t_3 respect

will be –

- (A) $\frac{t_1 t_2}{t_2 t_3}$ (B) $\frac{t_1 t_2}{t_2 + t_3}$ $+t_2$ t_1+t_2 $-t_3$ (D) $t_2 + t_3$ (D)
- **Q.13** An auto travelling along a straight road increases its speed from 30.0 m/s to 50.0 m/s in a distance of 180 m. If the acceleration is constant, how much time elapses while the auto moves this distance?

- **Q.14** In the given v-t graph the distance travelled by the body in 5 sec. will be $40²$ 20 $+\cdots$ $(0,0)$ — (A) 100 m (B) 80 m
(C) 40 m (D) 20 m $(D) 20 m$
- **Q.15** Which of the following statements may be correct? (i) Average velocity is path length divided by time interval.
	- (ii) In general, speed is greater than the magnitude of the velocity.

 v (m/s)

- (iii) A particle moving in a given direction with a nonzero $Q.23$ velocity can have zero speed.
- (iv) The magnitude of average velocity is the average $Q.24$ speed.

Q.16 For the one-dimensional motion, described by $x = t - \sin t$ (A) x $(t) > 0$ for all $t > 0$ (B) v $(t) > 0$ for all $t > 0$

 (C) a (t) > 0 for all t > 0 (D) all of these

Q.17 A body A starts from rest with an acceleration a_1 . After a_2 . $2 \text{ seconds, another body } B \text{ starts from rest with an acceleration } a_1$. Alter $Q.25$ acceleration a_2 . If they travel equal distances in the 5th second, after the start of A, then the ratio $a_1 : a_2$ is equal to $(A) 5 : 9$ (B) $5 : 7$

Q.18 A bus is moving with a speed of 10 m/s on a straight $Q.26$ road. A scooterist wishes to overtake the bus in 100 s. If the bus is at a distance of 1 km from the scooterist with what speed should the scooterist chase the bus? (A) 40 m/s (B) 25 m/s (C) 10 m/s (D) 20 m/s

Q.19 A ball A is thrown vertically upwards with speed u. At the same instant another ball B is released from rest at height h. At time t, the speed of A relative to B is (A) u (B) u – 2gt **EXAMPLE DURING THE SET ON A BOULD AND SET ON A BOULD UP CONTINUES AND A BOULD UP ON A BOULD UP**

(C)
$$
\sqrt{n^2 - 2\sigma h}
$$
 (D)

Among the four graphs, there is only one graph for which average velocity over the time interval (0, T) can vanish for a suitably chosen T. Which one is it?

 Q.21 At a metro station, a girl walks up a stationary escalator in time t_1 . If she remains stationary on the escalator, then the escalator take her up in time t_2 . The time taken by her to walk up on the moving escalator will be At a metro tation, a girl walks up a stationary escalator

in time t₁. If she remains stationary on the escalator

then the escalator take her up in time t₂. The time taken

by her to walk up on the moving escalator w (s) up a stationary escalator

ationary on the escalator,

in time t_2 . The time taken

ving escalator will be

(B) $\frac{t_1 t_2}{t_2 - t_1}$

(D) $t_1 - t_2$

pwards with a velocity of

dlitstorey building of 25 m

(B) 15 m

(A)
$$
\frac{t_1 + t_2}{2}
$$
 (B) $\frac{t_1 t_2}{t_2 - t_1}$
(C) $\frac{t_1 t_2}{t_2 + t_1}$ (D) $t_1 - t_2$

For Q.22-Q.23

A ball is thrown vertically upwards with a velocity of 20 m s^{-1} from the top of a multistorey building of 25 m high. (Take $g = 10$ m s^{-2})

- **Q.23** Time taken by the ball to reach the ground is $(A) 2s$ (B) 3s $(C) 5s$ (D) 4s
- **Q.24** A body initially at rest is moving with uniform acceleration a. Its velocity after n seconds is v. The displacement of the body in last 2 second is

(A)
$$
\frac{2v(n-1)}{n}
$$
 (B) $\frac{v(n-1)}{n}$
(C) $\frac{v(n+1)}{n}$ (D) $\frac{2v(n+1)}{n}$

in time t_1 . If she remains stationary on the escalator,
then the escalator take her up in time t_2 . The time taken
by her to walk up on the moving escalator will be
 $(A) \frac{t_1 + t_2}{2}$ $(B) \frac{t_1 t_2}{t_2 - t_1}$
 $(C) \frac{t_1 t$ ationary on the escalator,

in time t_2 . The time taken

ving escalator will be

(B) $\frac{t_1 t_2}{t_2 - t_1}$

(D) $t_1 - t_2$

pwards with a velocity of

dlitistorey building of 25 m

(B) 15 m

(D) 25 m

ach the ground is

(An object falling through a fluid is observed to have acceleration given by $a = g - bv$ where $g = gravitational$ acceleration and b is constant. After a long time of release, it is observed to fall with constant speed. The value of constant speed is

(A)
$$
g/b
$$
 (B) b/g
(C) bg (D) b

Q.26 A body covers a distance of 4 m in 3rd second and 12m in 5th second. If the motion is uniformly accelerated, how far will it travel in the next 3 seconds? $(A) 10 m$ (B) 30 m

- **Q.27** A ball A is dropped from a building of height 45m. Simultaneously another identical ball B is thrown up with a speed 50 m/s. The relative speed of ball B w.r.t $Q.35$ ball A at any instant of time is (Take $g = 10 \text{ m/s}^2$) $(A) 0 m/s$ (B) $10 m/s$ (C) 25 m/s (D) 50 m/s **EXAMING**

LII A is dropped from a building of height 45m.

LII and interval and the interval ball B is thrown up

a speed 50 m/s. The relative speed of ball B w.r.t

A at any instant of time is (Take g = 10 m/s²)
 >0 **ERAINING**
 ERAINING
 ERAINING
 ERAINING
 ERAINING
 ERAINING
 EXECUTE: THE TRAINER OF INDITED BY A STAND AND THE PROTON AND THE PROOF ONLY A STAND ONES
 25 m/s (B) 10 m/s
 0 m/s
 0 m/s
 $0 \text{ m/s$ **EXERCT ANTEST CONSECTED MEXIC SET ANTEST CONSECTED MATTER CONSECTED AND A SET SIMULATE SIMULAT**
- **Q.28** Two cars A and B are travelling in the same direction with velocities v_1 and v_2 ($v_1 > v_2$). When the car A is at Q a distance d ahead of the car B, the driver of the car A applied the brake producing a uniform retardation a. There will be no collision when

(A)
$$
d < \frac{(v_1 - v_2)^2}{2a}
$$
 (B) $d < \frac{v_1^2 - v_2^2}{2a}$ Q.37
\n(C) $d > \frac{(v_1 - v_2)^2}{2a}$ (D) $d > \frac{v_1^2 - v_2^2}{2a}$ Q.37
\nThe relation $3t = \sqrt{3x} + 6$ describes the displacement
\nof a particle in one direction where x is in metres and t
\nin sec. The displacement, when velocity is zero, is
\n(A) 24 metres (B) 12 metres
\n(C) 5 metres (D) Zero
\nIf the velocity of a particle is given by
\n $v = (180-16x)^{1/2}$ m/s, then its acceleration will
\n(A) Zero (B) 8 m/s²
\n(C) - 8 m/s² (D) 4 m/s²
\nIf a car covers 2/5th of the total distance with v₁ speed
\nand 3/5th distance with v₂ then average speed is
\n(A) $\frac{1}{2}\sqrt{v_1v_2}$ (B) $\frac{v_1 + v_2}{2}$ Q.40
\n(C) $\frac{2v_1v_2}{v_1 + v_2}$ (D) $\frac{5v_1v_2}{3v_1 + 2v_2}$
\nA ball is projected upwards from a height h above the
\nsurface of the earth with velocity v. The time at which Q.41
\nthe ball strikes the ground is
\n $v > 2$

- of a particle in one direction where x is in metres and t $Q.38$ in sec. The displacement, when velocity is zero, is (A) 24 metres (B) 12 metres (C) 5 metres (D) Zero (C) $d > \frac{(v_1 - v_2)^2}{2a}$ (D) $d > \frac{v_1^2 - v_2^2}{2a}$

The relation $3t = \sqrt{3x} + 6$ describes the dis

of a particle in one direction where x is in m

in sec. The displacement, when velocity is

(A) 24 metres (B) 12 metres
 the brack producing a difficult the non-
 $\frac{(v_1 - v_2)^2}{2a}$ (B) $d < \frac{v_1^2 - v_2^2}{2a}$
 $\frac{(v_1 - v_2)^2}{2a}$ (D) $d > \frac{v_1^2 - v_2^2}{2a}$

ation $3t = \sqrt{3x} + 6$ describes the displacementicle in one direction where x is in me g a uniform retardation a.

hen

(B) $d < \frac{v_1^2 - v_2^2}{2a}$

(D) $d > \frac{v_1^2 - v_2^2}{2a}$

(D) $d > \frac{v_1^2 - v_2^2}{2a}$

(D) $d > \frac{v_1^2 - v_2^2}{2a}$

intensitial values contribute in the state continuous is-

lescribes the dis (C) $\frac{2a}{2}$ (D) $\frac{a}{2}$ (D) $\frac{2a}{2}$

The relation $3t = \sqrt{3x} + 6$ describes the c

of a particle in one direction where x is in

in sec. The displacement, when velocity i

(A) 24 metres (B) 12 metres

(C) 5 metres $d < \frac{v_1 - v_2}{2a}$ (B) $d < \frac{v_1^2 - v_2^2}{2a}$
 $1 > \frac{(v_1 - v_2)^2}{2a}$ (D) $d > \frac{v_1^2 - v_2^2}{2a}$

relation $3t = \sqrt{3x} + 6$ describes the displacement

reactively is zero, is 24 metres (B) 12 metres (B) 12 metres

reactives (B) $\frac{1}{2}$ and the displacement

(A) 2:

(C) 50

where x is in metres and t

(C) 50

when velocity is zero, is

(B) 12 metres

(D) Zero

(B) $\frac{1}{2}$ move of the secon

(B) 8 m/s²

(D) 4 m/s²

(D) 4 m/s²

dual d es the displacement
 x is in metres and t

locity is zero, is

metres

ro

(A) 0.2

metres

ro

(A) 0.2

(C) 0.0.2

(C) 0.2

(C) 0.2

(C) 0.2

(C) 0.2

(C) 0.2

40

deceler

travelle

erage speed is
 $+ v_2$
 $\frac{5v_1v_2$ $\frac{v_1^2 - v_2^2}{2a}$ **0.37** The initial v
 $\frac{v_1^2 - v_2^2}{2a}$ **0.37** The initial v

line is $7m/s$.
 $\frac{v_1^2 - v_2^2}{2a}$ line is $7m/s$.

distance cow

motion is –

es the displacement (A) 25 m

motion is –

metres (A) 0 $\frac{d}{dz} = \frac{v_1^2 - v_2^2}{2a}$
 $\frac{dv_2^2 - v_1^2}{2a}$
 $\frac{dv_1^2 - v_2^2}{2a}$
 $\frac{dv_2^2 - v_1^2}{2a}$
 $\frac{dv_1^2 - v_2^2}{2a}$
 $\frac{dv_2^2 - v_1^2}{2a}$
 $\frac{dv_1^2 - v_1^2}{2a}$
 $\frac{dv_1^2 - v_1^2}{2a}$
 $\frac{dv_1^2 - v_1^2}{2a}$
 $\frac{dv_1^2 - v_1^2$
- **Q.30** If the velocity of a particle is given by $v = (180-16x)^{1/2}$ m/s, then its acceleration will (A) Zero (B) 8 m/s^2 $(C) - 8 \text{ m/s}^2$ $(D) 4 m/s²$
- **Q.31** If a car covers $2/5$ th of the total distance with v_1 speed and $3/5$ th distance with v_2 then average speed is

(A)
$$
\frac{1}{2}\sqrt{v_1v_2}
$$

\n(B) $\frac{v_1 + v_2}{2}$
\n(C) $\frac{2v_1v_2}{v_1 + v_2}$
\n(D) $\frac{5v_1v_2}{3v_1 + 2v_2}$

Q.32 A ball is projected upwards from a height h above the surface of the earth with velocity v. The time at which $Q.41$ the ball strikes the ground is

The relation
$$
3t = \sqrt{3x + 6}
$$
 describes the displacement
of a particle in one direction where x is in metres and t
in sec. The displacement, when velocity is zero, is
(A) 24 metres (B) 12 metres
(C) 5 metres (D) Zero
If the velocity of a particle is given by
 $v = (180-16x)^{1/2}$ m/s, then its acceleration will
(A) Zero (B) 8 m/s²
(C) – 8 m/s² (D) 4 m/s²
If a car covers 2/5th of the total distance with v₁ speed
and 3/5th distance with v₂ then average speed is
(A) $\frac{1}{2}\sqrt{v_1v_2}$ (B) $\frac{v_1 + v_2}{2}$
(C) $\frac{2v_1v_2}{v_1 + v_2}$ (D) $\frac{5v_1v_2}{3v_1 + 2v_2}$
A ball is projected upwards from a height h above the
surface of the earth with velocity v. The time at which
the ball strikes the ground is
(A) $\frac{v}{g} + \frac{2hg}{\sqrt{2}}$ (B) $\frac{v}{g} \left[1 - \sqrt{1 + \frac{2h}{g}}\right]$
(C) $\frac{v}{g} \left[1 + \sqrt{1 + \frac{2gh}{v^2}}\right]$ (D) $\frac{v}{g} \left[1 - \sqrt{1 + \frac{2h}{g}}\right]$
A man throws ball with the same speed vertically
upwards one after the other at an interval of 2seconds.
What should be the speed of the throw so that more
than two balls are in the sky at any time?
(Given $\sigma = 9.8$ m/s²)

- **Q.33** A man throws ball with the same speed vertically $Q.42$ upwards one after the other at an interval of 2seconds. What should be the speed of the throw so that more than two balls are in the sky at any time? (Given $g = 9.8 \text{ m/s}^2$)
	- (A) More than 19.6 m/s
	- (B) At least 9.8 m/s
	- (C) Any speed less than 19.6 m/s
	- (D) Only with speed 19.6 m/s
- **Q.34** A particle moves in a straight line with a constant acceleration. It changes its velocity from 10m/s to 20 m/s while passing through a distance 135m in t second. The value of t is –
- $(A) 12$ (B) 9 $(C) 10$ $(D) 1.8$
- **QUESTION BANK**

(c) of height 45m. (A) 12

1 B is thrown up

ed of ball B w.r.t **Q.35** Balls A and B and

g = 10 m/s²) 5 m/s and 10 is

s separation betw

(A) 2m

e same direction (C) 5m

nen the car A is at **Q.36** An **COLESTION BANK** ST

ilding of height 45m. (A) 12

al ball B is thrown up

c speed of ball B w.r.t **Q.35** Balls A and B are thrown

Take g = 10 m/s²) 5 m/s and 10 m/s resp

10 m/s

in the same direction (C) 5m

in the s **QUESTION BANK**

2 3 6 height 45m.

(A) 12

2 1 B is thrown up

2 5 m/s and 10

2 5 m/s and 10

2 5 m/s and 10

8 separation between the car A increases linear

2 2 (A) 2m

2 (A) 3m

2 (A) 9m

2 (A) 9m

2 (A) 9m

2 (A) 9m **COUESTION BANK** ST

1 diang of height 45m. (A) 12

1 ball B is thrown up

(C) 10

e speed of ball B w.r.t **Q.35** Balls A and B are thrown

1 on/s separation between the

50 m/s

10 m/s

10 m/s

10 m/s

10 m/s

10 m/s

10 **Q.35** Balls A and B are thrown vertically upward with velocity, 5 m/s and 10 m/s respectively ($g = 10 \text{m/s}^2$). Find separation between them after one second. (A) 2m (B) 3m (C) 5m (D) 6m **Q.36** An electron starting from rest has a velocity that
	- increases linearly with the time that is $v = kt$, where $k = 2m/sec²$. The distance travelled in the first 3 seconds will be

 (A) 9m (B) 16 m (C) 27m (D) 36m

 $\frac{-v_2^2}{2a}$ **Q.37** The initial velocity of a body moving along a straight $> \frac{v_1^2 - v_2^2}{2a}$ distance covered by the body in the 5th second of its motion is – line is 7m/s. It has a uniform acceleration of 4 m/s^2 . The motion is –

(A) 25 m (B) 35 m (C) 50 m (D) 85 m

If a body starts from rest and travels 120 cm in the 6th second, then what is the acceleration (A) 0.20 m/s² $(B) 0.027$ m/s² (C) 0.218 m/s² (D) 0.03 m/s^2

Q.39 A particle starts from rest, accelerates at 2 m/s^2 for 10s and then goes for constant speed for 30s and then decelerates at 4 m/s^2 till it stops. What is the distance travelled by it

(A) 750 m (B) 800 m (C) 700 m (D) 850 m

2 coordinate X varies with time t according to the equation **Q.40** A particle moves along X-axis in such a way that its $x = (2 - 5t + 6t^2)$ m. The initial velocity of the particle is

(A) – 5m/s (B) 6 m/s
\n(C) – 3m/s (D) 3 m/s
\n
\nThe acceleration versus
\n
$$
\uparrow
$$

 \rightarrow t(sec)

ibes the displacement

velocity is zero, is

velocity is zero, is

velocity is zero, is

12 metres

velocity is zero, is

21 metres

(C) 0.218 m/s²

cend, then what

(A) 0.20 m/s²

cend (A) 0.20 m/s²

cend (A) 0.20 ere x is in metres and t

velocity is zero, is

12 metres

12 metres

12 metres

(A) 0.20 m/s²

(C) 0.218 m/s²

(C) 0.218 m/s²

(C) 0.218 m/s²

(C) 0.218 m/s²

eleration will

8 m/s²

and then goes for

tavell 2a

motion is the displacement

x is in metres and t

(A) 25 m

considers and t

considers and the second, then what is the acceleration

motions

in by

considers and then goes for constant speed at mys²

considers at es the displacement

(A) 25 m

x x is in metres and t

(C) 300 m

looky starts from rest and travels 120 cm in the 6th

looky starts from the acceleration

metres

respectively is zero, is

the motives are constant spee es the displacement

x is in metres and t

considers and the scond, then what is the acceleration

locity is zero, is

second, then what is the acceleration

metres

(A) 0.20 m/s²

(C) 0.218 m/s²

(C) 0.218 m/s²

(C The displacement, when velocity is zero, is

in a ouony stars incomparison and then what is the accelera-

metres (B) 22 metres

(D) Zero (A) 0.20 m/s² (B) 0.

velocity of a particle is given by

velocity of a particle Find the placement, when velocity is zero, is

the metrics

metrics (D) 2row

velocity of a particle is given by

welocity of a particle is given by

welocity of a particle is given by

smos² (D) 2nms²

welocity o In metres

(B) 12 metres

velocity of a particle is given by

velocity of a particle is given by

velocity of a particle is given by

SO-16x)^{1/2} m's, then its acceleration will

SO-16x)^{1/2} m's, then its acceleration w Lero

en by

en by

en den den goes for (C) 0.218 m/s²

an m/s²

istance with v₁ speed

werage speed is

(C) 700 m

w₁ + v₂

2
 Q.40 A particle moves als

(C) 700 m

A particle moves als

(C) 700 m

A particle locity is zero, is

second, then what is the acceleration

metres

(A) 0.20 m/s²

nb

ro

(C) 0.218 m/s²

cD 0.027 m/s²

cD 0.003 m/s²

cD 0.003 m/s²

cD 0.003 m/s²

del then goos for constant speed for 30s an boxy is second, then what is the acceleration

on (A) 0.20 m/s²

(C) 0.218 m/s²

and then goes for constant speed for 30s and then

the decelerat meres (A) 0.20 m/s²

no

no

composition will

contain the contained contains and then gives (D) 0.03 m/s²

and then gives for constant speed for 30s and then

m/s²

and then gives for constant speed for 30s and the **Q.41** The acceleration versus time graph for a particle moving along a straight line is shown in the figure. $4 \rightarrow$ -4 10^{20} If the particle starts from rest at $t = 0$, then its speed at $t = 30$ sec. will be–

 (A) 20m/sec (B) 0 m/sec

- $(C) 40$ m/sec. (D) 40 m/sec.
- The $v t$ graph of a moving object is given in figure. The maximum acceleration is –

EXERCISE - 3 (NUMERICAL VALUE BASED QUESTIONS)

NOTE : The answer to each question is a NUMERICAL VALUE.

- **Q.1** Snow is falling vertically at a constant speed of 8.0 m/s. At π /A angle from the vertical the snowflakes appear to tbe falling as viewed by the driver of a car traveling on a straight, level road with a speed of 50 km/h. Find the value of A.
- **Q.2** A body moves with speed 10 m/s for 10 sec, then with a speed of 20 m/s for distance 300m. Find its average speed (in m/sec).
- **Q.3** Initially car A is 10.5 m ahead of car B. Both start moving at time $t = 0$ in the same direction along a straight line. The velocity time graph of two cars is shown in figure. Find the time (in sec) when the car B will catch the car A Q.9

Q.4 A particle starts from the origin at $t = 0$ and moves in the x-y plane with constant acceleration 'a' in the y direction. Its equation of motion is $y = bx^2$. The x-component of

its velocity is
$$
\sqrt{\frac{a}{Ab}}
$$
. Find the value of A.

- **Q.5** A particle is moving on a straight line with a constant **Q.11** retardation of 1 m/s². Find the average speed (in m/sec) of particle in the last two meters before it stops.
- **Q.6** A boat travels upstream in a river and at $t = 0$ a wooden cork is thrown over the side with zero initial velocity. After 7.5 minutes the boat turns and starts moving downstream catches the cork when it has drifted 1 km downstream. Find the velocity (km/hr) of water current.

A particle starts moving rectilinearly at time $t = 0$ such that its velocity v changes with time t according to the equation

 $v = t² - t$ where t is in seconds and v is in m/s. The time

interval for which the particle retards is $\frac{1}{1} < t < 1$. Find $\frac{1}{\mathbf{A}} < t < 1$. Find

the vlaue of A.

Q.8 The velocity of a particle moving in the direction of xaxis varies as $v = \alpha.x$, where α is a constant. At the moment t=0, the particle was located at $x = 0$, then find the value of α if the magnitude of average velocity and average acceleration over the above internal is same.

Q.9 A car starts from rest and accelerates as shown in the accompanying diagram.

At what time (in sec.) would the car be moving with the greatest velocity

- **Q.10** In above question, at what time (in sec.) would the car be farthest from its original starting position.
- **Q.11** A river is flowing with a velocity of 2m/s. A boat is moving downstream along the river. Velocity of the boat in still water is 3m/s. A person standing on the boat throws a ball (w.r.t. himself) in a plane perpendicular to the direction of motion of the boat with 10m/s at 60° with the horizontal. When the ball reaches highest point of its path. The speed of ball w.r.t. man standing on boat is A m/s

EXERCISE - 4 [PREVIOUS YEARS AIEEE / JEE MAIN QUESTIONS]

- **Q.1** From a builiding two balls A and B are thrown such that **Q.9** A is thrown upwards and B downwards (both vertically). If v_A and v_B are their respective velocities on reaching the ground, then-
[AIEEE-2002]
	- (A) $v_B > v_B$
	- $(B) v_A = v_B$
	- $(C) v_A > v_B$
	- (D) their velocities depends on their masses
- **Q.2** A body loses half of its velocity on penetrating 3 cm in a wooden block, then how much will it penetrate more before coming to rest-
[AIEEE-2002] $(A) 1 cm$ (B) 2 cm (C) 3 cm (D) 4 cm
- **Q.3** A lift is moving down with acceleration a. A man in the lift drops a ball inside the lift. The acceleration of the ball as observed by the man in the lift and a man standing stationary on the ground are respectively**[AIEEE-2002]** (A) g, g (B) g – a, g – a (C) $g - a$, g (D) a , g
- **Q.4**. Speed of two identical cars are u and 4u at a specific instant. The ratio of the respective distances at which the two cars are stopped from that instant is -

Q.5 A car, moving with a speed of 50 km/hr. can be stopped by brakes after at least 6 m. If the same car is moving at a speed of 100 km/hr, the minimum stopping distance is- **[AIEEE-2003]**

Q.6 The coordinates of a moving particle at any time t are given by $x = \alpha t^3$ and $y = \beta t^3$. The speed of the particle at time t is given by **[AIEEE-2003]**

(A) 3t
$$
\sqrt{\alpha^2 + \beta^2}
$$

\n(B) 3t² $\sqrt{\alpha^2 + \beta^2}$
\n(C) t² $\sqrt{\alpha^2 + \beta^2}$
\n(D) $\sqrt{\alpha^2 + \beta^2}$

Q.7 A body is moved along a straight line by machine delivering a constant power. The distance moved by the body in time t is proportional to - **[AIEEE-2003]** (A) $t^{3/4}$ (B) $t^{3/2}$ (C) $t^{1/4}$ (D) $t^{1/2}$

Q.8 Three forces start acting simultaneously on a particle moving with velocity \vec{v} . These forces are represented in magnitude and direction by the three sides of a triangle ABC (as shown). The particle will now move with velocity **[AIEEE-2003]** The coordinates of a moving particle
given by $x = \alpha t^3$ and $y = \beta t^3$. The speed
time t is given by
(A) 3t $\sqrt{\alpha^2 + \beta^2}$ (B) 3t² $\sqrt{\alpha^2 + \beta^2}$ (C) $t^2 \sqrt{\alpha^2 + \beta^2}$ (D) $\sqrt{\alpha^2}$
A body is moved along a straight 1
del

- (A) less than \vec{v}
- (B) greater than \vec{v}
- (C) $|\vec{v}|$ in the direction of largest force BC
- (D) \vec{v} , remaining unchanged $A \rightarrow$

- **Q.9** A particle moves in a straight line with retardation proportional to its displacement. Its loss of kinetic energy for any displacement x is proportional to **[AIEEE-2004]** (A) x^2 $(B) e^X$
- (C) x (D) $log_e x$
Q.10 A ball is released from the topof a tower of height h metres. It takes T seconds to reach the ground. What is the position of the ball in T/3 second ? **[AIEEE-2004]** (A) h/9 meter from the ground
	-
	- (B) 7h/9 meter from the ground
	- (C) 8h/9 meter from the ground (D) 17h/18 meter from the ground
- **Q.11** An automobile travelling with a speed of 60km/h, can brake to stop within a distance of 20m. If the car is going twice as fast, i.e. 120 km/h, the stopping distance will be **[AIEEE-2004]**
	- $(A) 20 m$ (B) 40 m $(C) 60 m$ (D) 80 m
- **Q.12** The relation between time t and distance x is $t = ax^2 + bx$ where a and b are constants. The acceleration is

 [AIEEE-2005]

 6^h

(A) – 2 av³ (B) 2av² (C) – 2 av² (D) 2bv³

Q.13 A car, starting from rest, accelerates at the rate f through a distance S, then continues at constant speed for time t and then decelerates at the rate f/2 to come to rest. If the total distance traversed is 15 S, then **[AIEEE-2005]**

(C) 60 m
\n(D) 80 m
\nThe relation between time t and distance x is t=ax² + bx
\nwhere a and b are constants. The acceleration is
\n[AIEEE-2005]
\n(A) - 2 av³ (B) 2av²
\n(C) - 2 av² (D) 2bv³
\nA car, starting from rest, accelerates at the rate f through
\na distance S, then continues at constant speed for time
\nt and then decelerates at the rate f/2 to come to rest. If
\nthe total distance traversed is 15 S, then [AIEEE-2005]
\n(A) S =
$$
\frac{1}{72}
$$
 ft² (B) S = $\frac{1}{4}$ ft²
\n(C) S = ft (D) S = $\frac{1}{6}$ ft²
\nA particle is moving eastwards with a velocity of 5m/s.
\nIn 10s the velocity changes to 5m/s northwards. The
\naverage acceleration in this time is [AIEEE-2005]
\n(A) zero
\n(B) $1/\sqrt{2}$ ms⁻² towards north-west
\n(C) $1/\sqrt{2}$ ms⁻² towards north-est
\n(D) 1/2 ms⁻² towards north-est
\n(A particle located at x = 0 at time t = 0, starts moving
\nalong the positive x-direction with a velocity v that varies
\nas v = $\alpha \sqrt{x}$. The displacement of the particle varies
\nwith time as [AIEEE-2006]

- (A) 3t $\sqrt{\alpha^2 + \beta^2}$ (B) 3t² $\sqrt{\alpha^2 + \beta^2}$ average acceleration in this time is [AIEEE-2005] **Q.14** A particle is moving eastwards with a velocity of 5m/s. In 10s the velocity changes to 5m/s northwards. The (A) zero
	- (B) $1/\sqrt{2}$ ms⁻² towards north-west

(D) $1/2$ ms^{-2} towards north

Q.15 A particle located at $x = 0$ at time $t = 0$, starts moving along the positive x-direction with a velocity v that varies

> as $v = \alpha \sqrt{x}$. The displacement of the particle varies with time as **[AIEEE-2006]** (A) $t^{1/2}$ (B) t^3 $(C) t²$ $(D) t$

Q.16 A body is at rest at $x = 0$. At $t = 0$, it starts moving in the positive x-direction with a constant acceleration. At the same instant another body passes through $x = 0$ moving in the positive x-direction with a constant speed. The position of the first body is given by x_1 (t) after time t and that of second body by x_2 (t) after the same time interval. Which of the following graphs correctly describes $(x_1 - x_2)$ as a function of time t [AIEEE-2008]

 [AIEEE-2009]

- (A) 8.5 units (B) 10 units
-
- **Q.18** Two fixed frictionless inclined plane making an angle 30° and 60° with the vertical are shown in the figure. Two block A and B are placed on the two planes. What is the relative vertical acceleration of A with respect to B **[AIEEE 2010]**

 (A) 4.9 ms⁻² in horizontal direction (B) 9.8 ms^{-2} in vertical direction

(C) zero

- (D) 4.9 ms^{-2} in vertical direction
- **Q.19** An object moving with a speed of 6.25 m/s, is deceler-

ated at a rate given by : $\frac{dv}{dt} = -2.5\sqrt{v}$,

the object, to come to rest, would be – **[AIEEE 2011]** $(A) 1s$ (B) 2s $(C) 4s$ (D) 8s

- **Q.20** From a tower of height H, a particle is thrown vertically upwards with a speed u. The time taken by the particle, to hit the ground, is n times that taken by it to reach the highest point of its path. The relation between H, u and n is – **[JEE MAIN 2014]** (A) $2gH = nu^2 (n-2)$ (B) $gH = (n-2) u²$
- (C) $2gH = n^2u^2$ (D) $gH = (n-2)^2u^2$ **Q.21** Two stones are thrown up simultaneously from the edge of a cliff 240 m high with initial speed of 10 m/s & 40m/s respectively. Which of the following graph best represents the time variation of relative position of the second stone with respect to the first? (Assume stones do not rebound after hitting the ground and neglect air resistance, take $g = 10 \text{ m/s}^2$) (The figures are schematic and not drawn to scale) **[JEE MAIN 2015]**

Q.22 A body is thrown vertically upwards. Which one of the following graphs correctly represent the velocity vs time? **[JEE MAIN 2017]**

Q.23 All the graphs below are intended to represent the same motion. One of them does it incorrectly. Pick it up. **[JEE MAIN 2018]**

Q.24 A particle is moving with a velocity $\vec{v} = K (y_1 + x_1)$, where K is a constant. The general equation for its path is: **[JEE MAIN 2019 (JAN)]** (A) $xy = constant$ $= x² + constant$

 $\vec{v} = 30\hat{i} + 50\hat{j}$ km/hr where \hat{i} points east and \hat{j} , north. Ship B is at a distance of 80 km east and 150 km north of Ship A and is sailing towards west at 10 km/hr. A will be at minimum distance from B in :

 (A) 4.2 hrs. (C) 3.2 hrs.

Q.26 A particle starts from origin O from rest and moves with a uniform acceleration along the positive x-axis. Identify all figures that correctly represent the motion qualitatively.

> $(a = acceleration, v = velocity, x = displacement, t = time)$ **[JEE MAIN 2019 (APRIL)]**

Q.27 A particle is moving along the x-axis with its coordinate with the time 't' given be x (t) = $10 + 8t - 3t^2$. Another particle is moving the y-axis with its coordinate as a function of time given by y (t) = $5 - 8t^3$. At t = 1s, the speed of the second particle as measured in the frame of **STUDY MATERIAL: PHYSICS**
A particle is moving along the x-axis with its coordinate
with the time t' given be x (t) = 10 + 8t - 3t². Another
particle is moving the y-axis with its coordinate as a
function of time given

the first particle is given as \sqrt{v} . Then v is _

[JEE MAIN 2020 (JAN)]

Q.28 A ball is dropped from the top of a 100 m high tower on a planet. In the last $(1/2)$ s before hitting the ground, it covers a distance of 19 m. Acceleration due to gravity $(in ms^{-2})$ near the surface on that planet is

[JEE MAIN 2020 (JAN)]

Q.29 A particle starts from the origin at $t = 0$ with an initial

velocity of 3.0 \hat{i} m/s and moves in the x-y plane with a

constant acceleration $(6.0\hat{i} + 4.0\hat{j})$ m / s². The xcoordinate of the particle at the instant when its ycoordinate is 32 m is D meters. The value of D is :

[JEE MAIN 2020 (JAN)]

Choose one correct response for each question.

EXERCISE - 5 (PREVIOUS YEARS AIPMT / NEET EXAM QUESTIONS)

Q.1 A ball is dropped from a high platform at $t = 0$ starting from rest. After 6 seconds another ball is thrown downwards from the same platform with a speed v. The two balls meet at $t = 18$ s. What is the value of v? (Take $g = 10 \text{ m/s}^2$)) **[AIPMT (PRE) 2010]** $(A) 75 \text{ m/s}$ (B) 55 m/s (C) 40 m/s (D) 60 m/s **MOTION IN ONE DIMENSION**
 COUESTION BANK
 Choose one correct response for each question.
 Choose one correct response for each question.
 Q.1 A ball is dropped from a high platform at t = 0 starting and the next **EXERCISE - 5 (PREVIOUS YEARS AIPM**
 EXERCISE - 5 (PREVIOUS YEARS AIPM
 cone correct response for each question.

A ball is dropped from a high platform at $t = 0$ starting

from rest. After 6 seconds another ball is t **[AIPMT (PRE) 2010] TION IN ONE DIMENSION**
 EXERCISE - 5 (PREVIOUS YEARS AIPMT / NEET **F**
 EXERCISE - 5 (PREVIOUS YEARS AIPMT / NEET **F**
 COLUSTION BANK
 COLUST CONEX AIRS AIPMT / NEET **F**
 COLUST AIRS AIRS AIPMT / NEET **F**
 COLU (C) 8.5 units (D) 10 units **Q.3** A particle moves a distance x in time t according to equation $x = (t + 5)^{-1}$. The acceleration of particle is proportional to **[AIPMT (PRE) 2010]** (A) (velocity)^{3/2} (B) (velocity)² (C) (velocity)⁻² (D) (velocity)^{2/3} **Q.4** A boy standing at the top of a tower of 20 m height drops a stone. Assuming $g = 10 \text{ ms}^{-2}$, the velocity with which it hits the ground is – **[AIPMT (PRE) 2011]** (A) 5.0 m/s (B) 10.0 m/s $(C) 20.0 \text{ m/s}$ (D) 40.0 m/s **Q.5** A body is moving with velocity 30 m/s towards east. After 10 seconds its velocity becomes 40 m/s towards north. The magnitude of average acceleration of the body is – **[AIPMT (PRE) 2011]** $(A) 5 m/s²$ (B) 1 m/s^2 (C) 7 m/s² (D) 8 m/s^2 **Q.6** A particle covers half of its total distance with speed v_1 and the rest half distance with speed v_2 . Its average $Q.13$ speed during the complete journey is : **[AIPMT (MAINS) 2011]** (A) $\frac{v_1v_2}{v_1 + v_2}$ standing at the top of a tower of

1 stone. Assuming g = 10 ms⁻², the

it hits the ground is – [AIPMT

m/s (B) 10.0 m/s

(B) 10.0 m/s

(D) 40.0 m/s

0 seconds its velocity becomes 4C

The magnitude of average accelerati a stone. Assuming $g = 10 \text{ ms}^{-2}$, the v
it hits the ground is -
(0 m/s
(B) 10.0 m/s
(D) 40.0 m/s
(10 seconds its velocity becomes 40
(The magn ince moves a usually and the calculation of particular

ion x = (t + 5)⁻¹. The acceleration of particular

ritional to [A**IPMT (PRE**)

relocity)^{3/2} (B) (velocity)^{2/3}

elocity)^{2/3} (D) (velocity)^{2/3}
 v standing ortional to [AIPMT (PRE) 20

velocity)^{3/2}

velocity)²

velocity)²

velocity)²

velocity)²

velocity)²

(B) (velocity)^{2/3}

(D) (velocity)^{2/3}

of 10.0 m/s

(D) 40.0 m/s

(D) 40.0 m/s

of 20 m hei

of 20 m he (B) $\frac{2v_1v_2}{v_1 + v_2}$ er of 20 m height

², the velocity with

PMT (PRE) 2011]

1 m/s

0 m/s

m/s towards east.

es 40 m/s towards

es 40 m/s towards

eration of the body

positic

PMT (PRE) 2011]

(A) -
 $\frac{1}{s^2}$

(C) -

ance with speed ⁻², the velocity with (A) 5 h
 MPMT (PRE) 2011]

0.0 m/s (C) 10

0.0 m/s towards east. motior

mes 40 m/s towards v (x) =

eleration of the body
 IPMT (PRE) 2011] as func
 IPMT (PRE) 2011] as func

m/s² (A) -2
 eration of particle is

eration of particle is

velocity)²

velocity)²

velocity)²

wer of 20 m height

star and a ship B

velocity)²⁷³

wer of 20 m height

between ther

star and a ship B

between ther

between t **AIPMT (PRE) 2010 Q.11** A ship A is mov

velocity)² and a ship B 10

(velocity)²⁷³ and a ship B 10

with a speed of 1

serves of 20 m height

between them t

between them t

ol.0m/s

(A) 5 h
 AIPMT (PRE) 2011

(C) This the ground is $-$ [AITMT]

m/s (B) 10.0 m/s

(B) 10.0 m/s

(B) 10.0 m/s

(D) 40.0 m/s

40 m/s

(D) 40.0 m/s

40 m/s

40 m/s

(D) 8 m/s²

(D) 8 m/s²

(D) 8 m m/s

(B) 10.0 m/s

(D) 40.0 m/s

(d) m/s

(D) 6 m/s

(AIPMT (B) 1 m/s²

(D) 8 m/s²

(D) 8 m/s²

(D) 8 m/s²

(D) 8 m 0.0 m/s

(D) 40.0 m/s

dy is moving with velocity 30 m/s to

10 seconds its velocity becomes 40 in

The magnitude of average acceleration

[AIPMT (B) 1 m/s²

(B) 1 m/s²

ticle covers half of its total distance where t 2011 and the complete particle has initial velocity (2i+3j) and
 $\frac{2v_1v_2}{1+v_2}$

The magnitude of average acceleration

I. The magnitude of average acceleration
 $\frac{[APMT]}{(B)1 \text{ m/s}^2}$

(B) 1 m/s^2

(D) 8 m/s^2 velocity)⁻² (D) (velocity)^{2/3}

by standing at the top of a tower of 20 m 1

s a stone. Assuming g = 10 ms⁻², the velocity

h it hits the ground is - [AIPMT (PRE)

i.0 m/s (B) 10.0 m/s

0.0 m/s (D) 40.0 m/s

c 10 sec by standing at the top of a tower of 20 m hei

s a stone. Assuming g = 10 ms⁻², the velocity v

h it hits the ground is - [AIPMT (PRE) 20

5.0 m/s

(B) 10.0 m/s

(D) 40.0 m/s

old) is moving with velocity 30 m/s towards (D) (velocity)^{2/3} with a speed o

10 ms⁻², the velocity with

10 ms⁻², the velocity with

(A) 5 h

[**AIPMT (PRE) 2011]**

(B) 10.0 m/s

(D) 40.0 m/s

towards east.

becomes 40 m/s towards east.

motion such the body
 C.6 A particle coveration of the booth is the ground is $\frac{1}{2}$ (C) $10\sqrt{2}$ has the ground is $\frac{1}{2}$ (C) $10\sqrt{2}$ is $\frac{1}{2}$ and the red magnitude of verage acceleration of the booth is $\frac{1}{2}$ and the rest After 10 seconds its velocity becomes 40 m/s towards
north. The magnitude of average acceleration of the body
is -
[AIPMT (PRE) 2011]
(C) 7 m/s²
A particle covers half of its total distance with speed v_1
and the rest

(C)
$$
\frac{2v_1^2v_2^2}{v_1^2 + v_2^2}
$$
 (D)
$$
\frac{v_1 + v_2}{2}
$$

- - will be : **[AIPMT (MAINS) 2011]** (C) 5 units (D) 9 units
- **Q.8** The motion of a particle along a straight line is described by equation : $x = 8 + 12t - t^3$, where x is in metre and t in second. The retardation of the particle when its velocity becomes zero, is : **[AIPMT (PRE) 2012]** (A) 24 ms⁻² (B) zero (C) 6 ms^{-2} (D) 12 ms^{-2}
- **Q.9** A stone falls freely under gravity. It covers distances

 h_1 , h_2 and h_3 in the first 5 seconds, the next 5 seconds and the next 5 seconds respectively. The relation between h_1 , h_2 and h_3 is – is – **[NEET 2013]** (A) $h_1 = h_2 = h_3$ (B) $h_1 = 2h_2 = 3h_3$ (C) $h_1 = \frac{h_2}{3} = \frac{h_3}{5}$ $=\frac{h_2}{3} = \frac{h_3}{5}$ (D) $h_2 = 3h_1 \& h_3 = 3h_2$ **EXAM QUESTIONS)**
 EXAM QUESTIONS
 \ln_3 in the first 5 seconds, the next 5 seconds

next 5 seconds respectively. The relation
 \ln_1 , \ln_2 and \ln_3 is – [NEET 2013]
 $\ln_2 = \ln_3$ (B) $\ln_1 = 2h_2 = 3h_3$
 $\frac{\ln_2}{3}$ **Exam QUESTION:**
 Exam QUESTION:
 Example 3 and h_3 in the first 5 seconds,

and the next 5 seconds respective

between h_1 , h_2 and h_3 is –

(A) $h_1 = h_2 = h_3$ (B) h_1

(C) $h_1 = \frac{h_2}{3} = \frac{h_3}{5}$ (D) $h_$ **EET EXAM QUESTIONS**

² and h₃ in the first 5 seconds, the next

the next 5 seconds respectively. The

veen h₁, h₂ and h₃ is – [NE

veen h₁, h₂ and h₃ is – [NE

(B) h₁ = 2h₂ = 3

(D) h₂ = 3h₁ &

ur **SOMAD VANCED LEARNING**
 NS
 IS, the next 5 seconds

tively. The relation
 INEET 2013
 $h_1 = 2h_2 = 3h_3$
 $h_2 = 3h_1 \& h_3 = 3h_2$

s position coordinates

1, 7m) at time t=2 s and

range velocity vector
 [AIPMT 2014 IF SET EXAM QUESTIONS

(**GDAMADVANCESTIONS**)
 h_1, h_2 and h_3 in the first 5 seconds, the next 5 second

and the next 5 seconds respectively. The relation

between h_1, h_2 and h_3 is – (**NEET 20**)

(A) $h_1 = h_2 =$ **SO CONVANCEDLEARNING**

19 **NS)**

15, the next 5 seconds

tively. The relation

[NEET 2013]
 $h_1 = 2h_2 = 3h_3$
 $h_2 = 3h_1 \& h_3 = 3h_2$

position coordinates

1, 7m) at time t = 2 s and

range velocity vector

[AIPMT 2014] (a) $\ln A = \ln B$ and $\ln B = 0$ and h_1 , h_2 and h_3 is $\ln A = 2h_2 = 3h_3$

(C) $h_1 = h_2 = \frac{h_3}{3}$ (B) $h_1 = 2h_2 = 3h_3$

(C) $h_1 = \frac{h_2}{3} = \frac{h_3}{5}$ (D) $h_2 = 3h_1$ & $h_3 = 3h_2$

Q.10 A particle is moving such that its position coordinates (x, y) are $(2m, 3m)$ at time t = 0, $(6m, 7m)$ at time t = 2 s and (13m, 14m) at time $t = 5$ s. Average velocity vector

 (\vec{V}_{av}) from t = 0 to t = 5 s is – **[AIPMT 2014]**

(A)
$$
\frac{1}{5}
$$
(13 \hat{i} + 14 \hat{j})
\n(B) $\frac{7}{3}(\hat{i} + \hat{j})$
\n(C) $2(\hat{i} + \hat{j})$
\n(D) $\frac{11}{7}(\hat{i} + \hat{j})$

Q.11 A ship A is moving Westwards with a speed of 10 km/h and a ship B 100 km South of A, is moving Northwards with a speed of 10 km/h. The time after which the distance between them becomes shortest, is: **[AIPMT 2015]**

$$
(A) 5 h \t\t (B) 5\sqrt{2} h
$$

$$
(C) 10\sqrt{2} h \qquad (D) 0 h
$$

- between n_1 , n_2 and n_3 is \sim

(A) $h_1 = h_2 = h_3$

(B) $h_1 = 2h_2 = 3h_3$

(C) $h_1 = \frac{h_2}{3} = \frac{h_3}{5}$

(D) $h_2 = 3h_1$ & $h_3 = 31$

A particle is moving such that its position coordin

(x, y) are (2m, 3m) at tim **Q.12** A particle of unit mass undergoes one-dimensional motion such that its velocity varies according to : $v(x) = b x^{-2n}$, where b and n are constants and x is the position of the particle. The acceleration of the particle as function of x, is given by : **[AIPMT 2015]** $(A) -2nb^2x^{-4n-1}$ $-4n-1$ (B) $-2b^2x^{-2n+1}$ (C) $-2nb^2e^{-4n+1}$ $-4n+1$ (D) $-2nb^2x^{-2n-1}$ $\frac{3}{2}$
 $\frac{3}{2}$ A + 4B
 $\frac{3}{2}$ A + $\frac{7}{2}$
 $\frac{3}{2}$ A + $\frac{7}{2}$
 $\frac{1}{2}$
 $\frac{3}{2}$ A + $\frac{4}{3}$
 $\frac{3}{2}$ A + $\$ simp B 100 km South of A, is moving Northwards
a speed of 10 km/h. The time after which the distance
een them becomes shortest, is: [AIPMT 2015]
in (B) $5\sqrt{2}$ h
(B) $6\sqrt{2}$ h
(B) $6\sqrt{2}$ h
(B) $6\sqrt{2}$ h
(B) $6\sqrt{2}$ aspect of To Kin/ii. The time after which the distance

een them becomes shortest, is: [AIPMT 20

(b) $5\sqrt{2}$ h

(b) $2h$

(c) $2h$

(c) $2h$

(c) $2h$

(c) $2h$

(d) $2h$ is moving Northwards
fer which the distance
is: [AIPMT 2015]
5 $\sqrt{2}$ h
2h
2h
2h
2h
2h
2h
2h
2h
2_n
2h² x⁻²ⁿ⁺¹
2h² x⁻²ⁿ⁺¹
2h² x⁻²ⁿ⁺¹
2h² x⁻²ⁿ⁺¹
2h² x⁻²ⁿ⁺¹
2h² x⁻²ⁿ⁺¹
2h² x⁻²ⁿ⁺¹
4 + Bt², wher s: [AIPMT 2015]

S: [AIPMT 2015]
 $\sqrt{2}$ h
 $\sqrt{2}$ constants and x is the
 $\sqrt{2}$ a $\sqrt{2}$ a $\sqrt{2}$
 $\sqrt{2}$ a $\sqrt{2}$
 $\sqrt{2}$
 $\sqrt{2}$
 on such that its velocity varies
 $= b x^{-2n}$, where b and n are co

ion of the particle. The acceler

metion of x, is given by :
 $-2nb^2x^{-4n-1}$ (B) $-2nb^2e^{-4n+1}$ (D) $-2nb^2e^{-4n+1}$
 \therefore velocity of a particle is $v = At$ s velocity varies according to

re b and n are constants and x

icle. The acceleration of the pa

given by : [AIPMT

(B) -2b² x⁻²ⁿ⁺¹

(D) -2nb²x⁻²ⁿ⁻¹

article is v = At + Bt², where A

the distance travelled by according to :

according to :

onstants and x is the

ration of the particle

[AIPMT 2015]
 $2b^2 x^{-2n+1}$
 $2nb^2x^{-2n-1}$
 $+ Bt^2$, where A and B

welled by it between
 EET 2016 PHASE 1]
 $\lambda + 7B$
 $\frac{1}{t} + \frac{B}{3}$

at finite in a set of the particle Γ 2015]
 Γ 2015]
 Γ 2015]
 Γ 2015]
 Γ a and B between
 Γ
 Γ a Γ
 Γ a an
- **Q.13** If the velocity of a particle is $v = At + Bt^2$, where A and B are constants, then the distance travelled by it between 1 s and 2 s is **[NEET 2016 PHASE 1]**

$$
\begin{array}{ccc}\n\text{(A)} & \frac{3}{2} \text{A} + 4 \text{B} & \text{(B)} & 3 \text{A} + 7 \text{B} \\
+ \text{v}_2 & \text{(C)} & \frac{3}{2} \text{A} + \frac{7}{3} \text{B} & \text{(D)} & \frac{\text{A}}{2} + \frac{\text{B}}{3}\n\end{array}
$$

2 **Q.14** Two cars P and Q start from a point at the same time in a straight line and their positions are represented by $x_P(t) = at + bt²$ and $x_Q(t) = ft - t²$. At what time do the cars have the same velocity? **[NEET 2016 PHASE 2]**

(A)
$$
\frac{a-f}{1+b}
$$
 (B) $\frac{a+f}{2(b-1)}$ (C) $\frac{a+f}{2(1+b)}$ (D) $\frac{f-a}{2(1+b)}$

= b x⁻²ⁿ, where b and n are constants and x is

ion of the particle. The acceleration of the par

nction of x, is given by :
 $[APMT 2^2 - 2nb^2x^{-4n-1}$ (B) $-2b^2x^{-2n+1}$
 $-2nb^2e^{-4n+1}$ (D) $-2nb^2x^{-2n-1}$
 \therefore velocity here b and n are constants and x is

rticle. The acceleration of the particle. The acceleration of the part

given by : [AIPMT 2(

(B) -2b² x⁻²ⁿ⁻¹

(D) -2nb² x⁻²ⁿ⁻¹

particle is $v = At + Bt^2$, where A an

in the dist constants and x is the
eration of the particle

[AIPMT 2015]
 $-2b^2 x^{-2n+1}$
 $-2nb^2x^{-2n-1}$
 $t + Bt^2$, where A and B

avelled by it between
 IEET 2016 PHASE 1]
 $3A + 7B$
 $\frac{A}{2} + \frac{B}{3}$

at at the same time in a

re d x is the

e particle
 1T 2015
 2015

e A and B

between
 HASE 1]

time in a

d by

me do the
 HASE 2]
 $\frac{f-a}{2(1+b)}$

that the

tationary

remains

escalator

walk up **Q.15** Preeti reached the metro station and found that the escalator was not working. She walked up the stationary escalator in time t_1 . On other days, if she remains stationary on the moving escalator, then the escalator takes her up in time $\mathfrak{t}_2.$ The time taken by her to walk up on the moving escalator will be – **[NEET 2017]** A + $\frac{7}{3}$ B (D) $\frac{A}{2}$ + $\frac{B}{3}$

ars P and Q start from a point at the

t line and their positions are repre-
 $a + b t^2$ and $x_Q(t) = ft - t^2$. At wh

we the same velocity? [NEET 24
 $\frac{-f}{+b}$ (B) $\frac{a+f}{2(b-1)}$ (C) $\frac{1}{2}$ A + $\frac{1}{3}$ B (D) $\frac{1}{2}$ + $\frac{1}{3}$

cars P and Q start from a point at the s

ht line and their positions are repres
 $=$ at + bt² and x_Q(t) = ft – t². At wha

ave the same velocity? [NEET 201

(B) $\$ the d 2 s is
 $\frac{1}{2}$ A + 4B
 $\frac{1}{2}$ A + 4B
 $\frac{1}{2}$ (
 $\frac{1}{3}$ A + $\frac{7}{3}$ B

(ars P and Q start from a p

ht line and their position
 $=$ at + bt² and $x_Q(t) = ft$

ave the same velocity?
 $\frac{-f}{+b}$ (B) $\frac{a+f$ $\frac{3}{2}$ A + 4B (B) 3A + 7B
 $\frac{3}{2}$ A + $\frac{7}{3}$ (B) $\frac{4}{2}$ + $\frac{8}{3}$
 $\frac{3}{2}$ A + $\frac{7}{3}$ (D) $\frac{A}{2}$ + $\frac{B}{3}$

cars P and Q start from a point at the same time

then the and their positions are repres $\frac{R}{3}$ B
 $\frac{R}{3}$ B
 $\frac{R}{3}$ B
 $\frac{R}{3}$

and Q start from a point at the same time in a

e and their positions are represented by

bt² and $x_Q(t) = ft - t^2$. At what time do the

e same velocity? [NEET 2016 PHASE 2] (D) $\frac{1}{2} + \frac{1}{3}$

art from a point at the same time in a

ir positions are represented by
 $x_Q(t) = ft - t^2$. At what time do the

elocity? [NEET 2016 PHASE 2]
 $\frac{1}{10} + \frac{1}{10}$ (C) $\frac{1}{2(1+b)}$ (D) $\frac{1}{2(1+b)}$

metro (B) $3A + 7B$

(D) $\frac{A}{2} + \frac{B}{3}$

or from a point at the san ir positions are represent
 $x_Q(t) = ft - t^2$. At what the san ir positions are represent
 $x_Q(t) = ft - t^2$. At what the docity? [NEET 2016
 $\frac{+f}{+b-1}$ (C) $\frac{a+f}{$ (B) 3A + 7B

(D) $\frac{A}{2} + \frac{B}{3}$

art from a point at the same time in a

eir positions are represented by
 $x_Q(t) = ft - t^2$. At what time do the

elocity? [NEET 2016 PHASE 2]
 $\frac{a+f}{(b-1)}$ (C) $\frac{a+f}{2(1+b)}$ (D) $\frac{f-a}{2(1$ 2016 PHASE 1]

B

B
 $\frac{3}{5}$
 $\frac{1}{5}$

e same time in a

resented by

what time do the

2016 PHASE 2]
 $\frac{1}{2}$
 $\frac{1}{2}$

(A)
$$
\frac{t_1 t_2}{t_2 - t_1}
$$
 (B) $\frac{t_1 t_2}{t_2 + t_1}$ (C) $t_1 - t_2$ (D) $\frac{t_1 + t_2}{2}$

Q.16 A toy car with charge q moves on a frictionless horizontal plane surface under the influence of a uniform electric field \vec{E} . Due to the force $q\vec{E}$, its velocity increases from The

0 to 6 m/s in one second duration. At that instant the direction of the field is reversed. The car continues to move for two more seconds under the influence of this field. The average velocity and the average speed of the toy car between 0 to 3 seconds are respectively

 [NEET 2018]

Q.17 When an object is shot from the bottom of a long smooth inclined plane kept at an angle 60° with horizontal, it can travel a distance x_1 along the plane. But when the inclination is decreased to 30° and the same object is shot with the same velocity, it can travel x_2 distance.
Then $x_1 : x_2$ will be: [NEET 2019] Then $x_1 : x_2$ will be : **[NEET 2019]**

STUDY MATERIAL: PHYSICS
inclination is decreased to 30° and the same object is
shot with the same velocity, it can travel x_2 distance.
Then $x_1 : x_2$ will be :
(A) 1: $\sqrt{2}$ (B) $\sqrt{2}$:1
(C) 1: $\sqrt{3}$ (D) 1: $2\sqrt$ **STUDY MATERIAL: PHYSICS**
inclination is decreased to 30° and the same object is
shot with the same velocity, it can travel x_2 distance.
Then $x_1 : x_2$ will be :
(NEET 2019)
(A) $1 : \sqrt{2}$ (B) $\sqrt{2} : 1$
(C) $1 : \sqrt{3}$ (**Q.18** The speed of a swimmer in still water is 20 m/s. The speed of river water is 10 m/s and is flowing due east. If he is standing on the south bank and wishes to cross the river along the shortest path the angle at which he should make his strokes w.r.t. north is given by :

ANSWER KEY

MOTION IN ONE DIMENSION TRY IT YOURSELF-1

(1) (i) Distance travelled = Area under speed - time graph

$$
= \frac{1}{2} \times 20 \times 8 = 80 \text{ m}
$$

(ii) Acc = $\frac{\Delta v}{\Delta t} = \frac{20}{8} = \frac{5}{2} = 2.5 \text{ m/s}^2$

- **E DIMENSION**
 N IN ONE DIMENSION
 Y IT YOURSELF-1

avelled = Area under speed time graph
 $= \frac{1}{2} \times 20 \times 8 = 80 \text{ m}$
 $= \frac{20}{8} = \frac{5}{2} = 2.5 \text{ m/s}^2$
 $(2t^2 + t + 5) = 4t + 1 \text{ m/s}$
 $= \frac{d}{dt}(4t + 1)$; a = 4 m/s² (**E DIMENSION**
 N IN ONE DIMENSION
 Y IT YOURSELF-1

avelled = Area under speed - time graph
 $= \frac{1}{2} \times 20 \times 8 = 80 \text{ m}$
 $= \frac{20}{8} = \frac{5}{2} = 2.5 \text{ m/s}^2$
 $(2t^2 + t + 5) = 4t + 1 \text{ m/s}$
 $= \frac{d}{dt}(4t + 1)$; a = 4 m/s² (**(2)** $v = \frac{dv}{dt} = \frac{dv}{dt} (2t^2 + t + 5) = 4t + 1$ m/s **OTION IN ONE DIMENSION**
 IRY IT YOURSELF-1

istance travelled = Area under speed - time gr
 $= \frac{1}{2} \times 20 \times 8 = 80 \text{ m}$
 $\text{Acc} = \frac{\Delta v}{\Delta t} = \frac{20}{8} = \frac{5}{2} = 2.5 \text{ m/s}^2$
 $\frac{dx}{dt} = \frac{d}{dt} (2t^2 + t + 5) = 4t + 1 \text{ m/s}$
 $a =$ **N IN ONE DIMENSION**
 OTION IN ONE D
 TRY IT YOURS

sistance travelled = Area und
 $= \frac{1}{2} \times 20 \times 8$

Acc $= \frac{\Delta v}{\Delta t} = \frac{20}{8} = \frac{5}{2} = 2.5$ m
 $\frac{dx}{dt} = \frac{d}{dt} (2t^2 + t + 5) = 4t + 1$
 $a = \frac{dv}{dt} = \frac{d}{dt} (4t + 1)$; $a =$
 and $a = \frac{dv}{dt} = \frac{d}{dt}(4t+1)$; $a = 4$ m/s² $\frac{dv}{dt} = \frac{d}{dt} (4t + 1)$; a = 4 m/s² **MOTION IN ONE DIMENSI**
 MOTION IN ONE DIMENSI

(i) Distance travelled = Area under speed - tim
 $= \frac{1}{2} \times 20 \times 8 = 80 \text{ m}$

(ii) Acc $= \frac{\Delta v}{\Delta t} = \frac{20}{8} = \frac{5}{2} = 2.5 \text{ m/s}^2$
 $v = \frac{dx}{dt} = \frac{d}{dt} (2t^2 + t + 5) = 4t + 1 \text$
- **(3)** Here, $u = 20 \text{ ms}^{-1}$, $v = 0$, $t = 5 \text{ sec}$. Using $a = \frac{v a}{t}$,

e have
$$
a = \frac{(0-20)}{5} = -4 \text{ m/s}^2
$$

–ve acceleration is known as retardation. Thus, retardation of the car = 4 ms^{-2} . of $\frac{dv}{dt} = \frac{d}{dt} (4t + 1)$; $a = 4 \text{ m/s}^2$ (6)
 20 ms^{-1} , $v = 0$, $t = 5 \text{ sec}$. Using $a = \frac{v - u}{t}$,
 $= \frac{(0 - 20)}{5} = -4 \text{ m/s}^2$

Eration is known as retardation. Thus, retardation
 $= 4 \text{ ms}^{-2}$.

Simme that t is giv

(4) Here we assume that t is given in seconds and x in meters, so that v is m/s and a is m/s². .

$$
v = \frac{dx}{dt} = 4 + 12t + 12t^2
$$
; $a = \frac{dv}{dt} = 12 + 24t$

For a given v we have

$$
12t^2 + 12t + 4 - v = 0 \Rightarrow t^2 + t + \frac{4 - v}{12} = 0
$$

So the quadratic formula gives

$$
t = \frac{-1 \pm \sqrt{1 - (4 - v)/3}}{2}
$$

and for $v = 10$ we have

$$
t = \frac{-1 + \sqrt{1 - (4 - 10)/3}}{2} = 0.37s
$$

where we take the positive sign as usual. The acceleration at this time is $a = 21$ m/s².

20 ms⁻¹, v = 0, t = 5 sec. Using a = $\frac{1}{t}$,

= $\frac{(0-20)}{5}$ = -4 m/s²

eration is known as retardation. Thus, retardation

= 4 ms⁻².

ssume that t is given in seconds and x in meters, so

n/s and a is m/s².
 ave $a = \frac{(0-20)}{5} = -4 \text{ m/s}^2$

acceleration is known as retardation. Thus, retardation

we assume that t is given in seconds and x in meters, so

v is m/s and a is m/s².
 $v = \frac{dx}{dt} = 4 + 12t + 12t^2$; $a = \frac{dv}{dt} = 12 + 24t$ **(5)** The direction of an acceleration actually identifies for you the direction of the change of velocity of an object. The meaning of this is not intuitively obvious, at least as far as most people are concerned. The easiest way to get a handle on it is to notice that acceleration and net force are directly proportional to one another. The idea of a negative force isn't mysterious. If an object is moving in the negative direction and a force (hence acceleration) in the negative

EVALUATION SERVIEWSION
 EVALUATION SERVIEWSION

TRY SOLUTIONS

TRY SOLUTIONS

TRY SOLUTIONS

TRY SOLUTIONS

TRY SOLUTIONS

TRY SOLUTIONS

direction is applied to it, the box

megative direction. By the same toked

in TRY SOLUTIONS

THET SOLUTIONS

THET SURVEY (THET ALSO THE 101 OF THE ARRENGENT AND THE THE SIGNAL THE SIGNAL THE SIGNAL THE SIGNAL THEORY (i.e., they have the same net force (hence accelerate the velocity vector (i.e., tw (i.e., they have the velocity v
 $\frac{1}{2}$ v = 0

(i.e., they have the velocity v

will slow dow

necessarily n

(6) See the sketc

(a) $|d| = |-1|$

Since the special c

(b) The acture innergiance

tion. Thus, retardation
 direction is applied to it, the body will speed up in the negative direction. By the same token, if an object is moving in the negative direction and a force (hence acceleration) in the positive direction is applied to it, the body will slow down. The rule of thumb is: if the net force (hence acceleration) is in the same direction as the velocity vector (i.e., they have the same sign), the body will speed up. If the net force (hence acceleration) is in the opposite direction of the velocity vector (i.e., they have different signs), the body will slow down. In short, a negative acceleration does NOT necessarily mean slowing down. applied to it, the body will speed up in the
ction. By the same token, if an object is moving
ve direction and a force (hence acceleration) in
direction is applied to it, the body will slow
rule of thumb is: if the net fo populad to it, the body will speed up in the
ion. By the same token, if an object is moving
direction and a force (hence acceleration) in
increction is applied to it, the body will slow
sime of thumb is: if the net force

(6) See the sketch

(a) $|d| = |-10.0$ **i** $|= 10.0$ m

 $\frac{-u}{t}$, Since the displacement is a straight line from point A to point C. point C.

> (b) The actual distance walked is not equal to the straightline displacement. The distance follows the curved path of the semicircle (ABC).

$$
s = \frac{1}{2}(2\pi r) = 5.00\pi \text{ m} = 15.7\text{m}
$$

(c) If the circle is complete, **d** begins and ends at point A. Hence, $|\mathbf{d}| = 0$.

 $\frac{dv}{dx} = 12 + 24t$ (7) (a) The total distance traversed (versus the net displacement) divided by the elapsed time. That scalar is: $s = \text{dist} / \text{time} =$ $(440 \text{ m})/(49 \text{ sec}) = 8.98 \text{ m/s}.$

 $\frac{1-\mathbf{v}}{12} = 0$ (b) The magnitude of the average velocity is the displacement divided by the elapsed time. That is: (b) The magnitude of the average velocity is the net

 $v = (net disp)/time = (0 m)/(49 sec) = 0 m/s.$

 $\frac{dS}{dt}$ = 4+12t + 12t²; a = $\frac{dV}{dt}$ = 12 + 24t

and time size of the seated in the season of the seated in the seated of the seated of the seated in the se Making sense of this: The woman finished where she started, so her net displacement is zero. The average velocity tells us the constant velocity she would have to travel to effect that displacement in 49 seconds. That velocity is zero. **(8)** Let origin be O then :

(a) Distance covered $= OA + AB + BC = 50 + 40 + 20 = 110m$

$$
=\sqrt{40^2+30^2}=50 \text{ m}
$$

$$
\overrightarrow{d} = 50\hat{j} + 40\hat{i} - 20\hat{j} = 30\hat{j} + 40\hat{i}
$$

$$
|\overrightarrow{d}| = \sqrt{40^2 + 30^2} = 50m
$$

 s_T

(9) Yes, at turning point of motion. If ball is thrown upward then at highest point velocity will be zero but acceleration is not zero $(= g = acceleration due to gravity)$. (**9)** Yes, at turning point of motion. If ball is thrown up

at highest point velocity will be zero but accelerat

zero (= g = acceleration due to gravity).

(10) $|\vec{v}_f| = |\vec{v}_i| = 5$ m/s

Acceleration $\neq 0$ (due to cha **EXECUTIONS**

EXECUTIONS

EXECUTIONS

EXECUTIONS

EXECUTIONS

EXECUTIONS

EXECUTIONS

EXECUTIONS

EXECUTIONS

EXECUTIONS

INSISTENT OF THE INTITIONS

Therefore can will over
 $\vec{v}_f = \frac{1}{2}$ at 2 or
 $\vec{v}_f = \frac{1}{\vec{v}_i}$ **TRY SOLUTIONS**

is thrown upward then

but acceleration is not
 $s_T = \frac{1}{2}$ at² or

y).

irection of velocity
 $t^2 = \frac{450 \times 2}{1.5}$

Therefore car

Therefore car

(3) Here, $v_0 = 501$
 $\frac{1}{2}\hat{i} + \frac{1}{2}\hat{j}$

and v **TRY SOLUTIONS**

is thrown upward then

but acceleration is not

s_T = $\frac{1}{2}$ at² or

y).

irection of velocity
 $t^2 = \frac{450 \times 2}{1.5}$

Therefore car
 $t = \frac{1}{2} \hat{i} + \frac{1}{2} \hat{j}$

(3) Here, $v_0 = 50$

and $v = 60$ kr

(10)
$$
|\vec{v}_f| = |\vec{v}_i| = 5 \text{ m/s}
$$

Acceleration $\neq 0$ (due to change in direction of velocity

EXAMPLEARINING
\nYes, at turning point of motion. If ball is thrown upward then
\nat highest point velocity will be zero but acceleration is not
\nzero (= g = acceleration due to gravity).
\nArea
\nAcceleration ≠ 0 (due to change in direction of velocity
\nAt acceleration,
$$
\Delta \vec{v} = \vec{v}_r - \vec{v}_i = \vec{v}_f + (-\vec{v}_i)
$$

\n
$$
\vec{a} = \frac{\vec{v}_f - \vec{v}_i}{\Delta t} = \frac{5\hat{j} - 5\hat{i}}{10} \Rightarrow \vec{a} = -\frac{1}{2}\hat{i} + \frac{1}{2}\hat{j}
$$
\n
$$
\vec{a} = \frac{1}{\sqrt{2}}\hat{i} + (\frac{1}{2})^2 = \frac{1}{\sqrt{2}} \text{ m/s}^2
$$
\n
$$
\vec{a} = \frac{1}{2} \text{ m/s}^2
$$
\n
$$
\vec{a} = \frac{1}{2}
$$

TRY IT YOURSELF-2

$$
(1) \qquad v = u + at
$$

(2) Let car overtakes after t second In time t distance travelled by truck

$$
s_T = \frac{1}{2}at^2
$$
 or $s_T = \frac{1}{2}(1.5)t^2$ (1)
Truck (6) Method l

Let car overtakes after t second
\nIn time t distance travelled by truck
\n
$$
s_T = \frac{1}{2}at^2
$$
 or $s_T = \frac{1}{2}(1.5)t^2$ (1)
\n $s_T = \frac{1}{2}at^2$ or $s_T = \frac{1}{2}(1.5)t^2$ (1)
\n $s_T = \frac{1}{2}(2)t$
\n $s_C = \frac{1}{2}(2)t^2$ [acc. of car = 2 m/s²]
\n $s_S = 8 \times 1 + \frac{1}{2} \times 2(1)^2 = 9$
\n $s_T = 1.5$ or $1 + \frac{150}{s_T} = \frac{20}{1.5} = \frac{4}{3}$
\n $s_T = \frac{150}{3} = 4 - 1 = \frac{1}{3}$ or $s_T = 450$
\n $s_T = 60$
\n $s_T = 1.5$ or $s_T = 450$
\n $s_T = 42$
\n $s_T = 42$

Distance covered by car when car overtakes the truck

$$
s_c = \frac{1}{2} (2) t^2 \qquad [\text{acc. of car} = 2 \text{ m/s}^2]
$$

or $(s_T + 150) = \frac{1}{2} (2) t^2$ (2)

$$
divide eqn. (2) by eqn. (1)
$$

$$
\frac{s_T + 150}{s_T} = \frac{2}{1.5} \quad \text{or} \quad 1 + \frac{150}{s_T} = \frac{20}{15} = \frac{4}{3}
$$

or
$$
\frac{150}{s_T} = \frac{4}{3} - 1 = \frac{1}{3} \quad \text{or} \quad s_T = 450
$$

distance travelled by car = $450 + 150 = 600$ meter Now by $eq^n(1)$

S **STUDY MATERIAL: PHYSICS**
\n
$$
r = \frac{1}{2} \text{ at}^2 \text{ or } 450 = \frac{1}{2} \times 1.5 \times t^2
$$
\n
$$
= \frac{450 \times 2}{1.5} \implies t = \sqrt{300 \times 2} = 24.5 \text{ sec.}
$$
\nTherefore car will over take the truck after 24.5 sec.
\n
$$
\text{ere, } v_0 = 50 \text{ km/h} = 50 \times \frac{5}{18} \text{ m/s} = \frac{250}{18} \text{ m/s}
$$

STUDY MATERIAL: PHYSICS
\n
$$
s_T = \frac{1}{2} \text{ at}^2 \text{ or } 450 = \frac{1}{2} \times 1.5 \times t^2
$$

\n $t^2 = \frac{450 \times 2}{1.5} \implies t = \sqrt{300 \times 2} = 24.5 \text{ sec.}$
\nTherefore car will over take the truck after 24.5 sec.
\nHere, $v_0 = 50 \text{ km/h} = 50 \times \frac{5}{18} \text{ m/s} = \frac{250}{18} \text{ m/s}$
\nand $v = 60 \text{ km/h} = 60 \times \frac{5}{18} = \frac{300}{18} \text{ m/s}$
\n $v - v_0 = \frac{300}{18} - \frac{250}{18} = \frac{50}{18} = \frac{5$

Therefore car will over take the truck after 24.5 sec.

(3) Here,
$$
v_0 = 50 \text{ km/h} = 50 \times \frac{5}{18} \text{ m/s} = \frac{250}{18} \text{ m/s}
$$

and
$$
v = 60 \text{ km/h} = 60 \times \frac{5}{18} = \frac{300}{18} \text{ m/s}
$$

IFball is thrown upward then	STUDY MATERIAL: PHYSICS
If ball is thrown upward then	\n $s_T = \frac{1}{2} \text{ at}^2 \text{ or } 450 = \frac{1}{2} \times 1.5 \times t^2$ \n
gravity).\n	\n $t^2 = \frac{450 \times 2}{1.5} \implies t = \sqrt{300 \times 2} = 24.5 \text{ sec.}$ \n
ig. in direction of velocity	\n $t^2 = \frac{450 \times 2}{1.5} \implies t = \sqrt{300 \times 2} = 24.5 \text{ sec.}$ \n
g. in direction of velocity	\n $t^2 = \frac{450 \times 2}{1.5} \implies t = \sqrt{300 \times 2} = 24.5 \text{ sec.}$ \n
Therefore, can will over take the truck after 24.5 sec.\n	
Therefore, can will over take the truck after 24.5 sec.\n	
Therefore, can will over take the truck after 24.5 sec.\n	
Therefore, $v_0 = 50 \text{ km/h} = 50 \times \frac{5}{18} \text{ m/s}^2 \implies \frac{250}{18} \text{ m/s}$ \n	
and $v = 60 \text{ km/h} = 60 \times \frac{5}{18} = \frac{300}{18} \text{ m/s}$ \n	
Since $a = \frac{v - v_0}{t} = \frac{300}{18} = \frac{250}{18} \text{ m/s}$ \n	
Since $a = \frac{v - v_0}{t} = \frac{300}{18} = \frac{250}{2} \text{ cm.}$ \n	
Using $v^2 - v_0^2 = 2ax$	
0	0. (10) ² = 2 <i>a</i> (0.2) <math< td=""></math<>

STUDY MATERIAL: PHYSICS
\n
$$
s_T = \frac{1}{2} \text{ at}^2 \text{ or } 450 = \frac{1}{2} \times 1.5 \times t^2
$$

\n $t^2 = \frac{450 \times 2}{1.5} \implies t = \sqrt{300 \times 2} = 24.5 \text{ sec.}$
\nTherefore car will over take the truck after 24.5 sec.
\n**(3)** Here, $v_0 = 50 \text{ km/h} = 50 \times \frac{5}{18} \text{ m/s} = \frac{250}{18} \text{ m/s}$
\nand $v = 60 \text{ km/h} = 60 \times \frac{5}{18} = \frac{300}{18} \text{ m/s}$
\nSince $a = \frac{v - v_0}{t} = \frac{\frac{300}{18} - \frac{250}{18}}{2} = \frac{50}{2} = \frac{50}{36} = 1.39 \text{ m/s}^2$
\n**(4)** Here, $v_0 = 10 \text{ m/s}$, $v = 0$ & $s = 20 \text{ cm.} = \frac{2}{100} = 0.02 \text{ m}$
\nUsing $v^2 - v_0^2 = 2ax$
\n $0 - (10)^2 = 2a (0.2) \implies \frac{-100}{2 \times 0.02} = a$
\nor $a = -2500 \text{ m/s}^2$
\nRetardation = 2500 m/s²
\n**(5)** Using, $x = (\frac{u + v}{2})t$
\n $x = \frac{1}{2} vt_1$; $2x = vt_2$; $5x = \frac{1}{2} vt_3$
\nAverage speed
\n $= \frac{x + 2x + 5x}{t_1 + t_2 + t_3} = \frac{8x}{2x + \frac{2x}{v} + \frac{10x}{v}} = \frac{8x}{14x}v = \frac{4}{7}v$
\n**(6)** Method I:
\nUsing $S_{\text{nth}} = u + \frac{2}{2}(2n - 1) = 0 + \frac{2}{2}(2 \times 5 - 1) = 9\text{m}$
\n($\$

Therefore car will over take the truck after 24.5 sec.
\nHere,
$$
v_0 = 50 \text{ km/h} = 50 \times \frac{5}{18} \text{ m/s} = \frac{250}{18} \text{ m/s}
$$

\nand $v = 60 \text{ km/h} = 60 \times \frac{5}{18} = \frac{300}{18} \text{ m/s}$
\nSince $a = \frac{v - v_0}{t} = \frac{\frac{300}{18} - \frac{250}{18}}{2} = \frac{50}{2} = \frac{50}{36} = 1.39 \text{ m/s}^2$
\nHere, $v_0 = 10 \text{ m/s}$, $v = 0$ & s = 20 cm. $= \frac{2}{100} = 0.02 \text{ m}$
\nUsing $v^2 - v_0^2 = 2ax$
\n $0 - (10)^2 = 2a (0.2) \Rightarrow \frac{-100}{2 \times 0.02} = a$
\nor $a = -2500 \text{ m/s}^2$
\nRetardation = 2500 m/s²
\nUsing, $x = (\frac{u + v}{2})t$
\n $x = \frac{1}{2} vt_1$; $2x = vt_2$; $5x = \frac{1}{2} vt_3$
\nAverage speed
\n $= \frac{x + 2x + 5x}{t_1 + t_2 + t_3} = \frac{8x}{2x} + \frac{2x}{v} + \frac{10x}{v} = \frac{8x}{14x}v = \frac{4}{7}v$

$$
Retardation = 2500 \text{ m/s}^2
$$

(5) Using,
$$
x = \left(\frac{u+v}{2}\right)t
$$

$$
x = \frac{1}{2} vt_1
$$
; 2x = vt₂; 5x = $\frac{1}{2} vt_3$

Average speed

Here,
$$
v_0 = 10
$$
 m/s, $v = 0$ & s = 20 cm. = $\frac{2}{100} = 0.02$ m
\nUsing $v^2 - v_0^2 = 2ax$
\n $0 - (10)^2 = 2a (0.2) \Rightarrow \frac{-100}{2 \times 0.02} = a$
\nor $a = -2500$ m/s²
\nRetardation = 2500 m/s²
\nUsing, $x = (\frac{u+v}{2})t$
\n $x = \frac{1}{2}vt_1$; $2x = vt_2$; $5x = \frac{1}{2}vt_3$
\nAverage speed
\n $= \frac{x + 2x + 5x}{t_1 + t_2 + t_3} = \frac{8x}{2x + 2x + 10x} = \frac{8x}{14x}v = \frac{4}{7}v$
\nMethod I:
\nUsing $S_{\text{nth}} = u + \frac{2}{2}(2n - 1) = 0 + \frac{2}{2}(2 \times 5 - 1) = 9$ m

(6) Method I :

Using
$$
S_{nth} = u + \frac{2}{2}(2n - 1) = 0 + \frac{2}{2}(2 \times 5 - 1) = 9m
$$

(In S_n th formula, u is speed at t = 0)

Method II : $S = u' \times 1 + \frac{1}{2} a (1)^{2}$; $u' = 0 + 2 \times 4 = 8$ m/s $\frac{1}{2}$ a (1)^{2;} u' = 0 + 2 × 4 = 8 m/s $(5th sec \rightarrow time interval = 1 sec., u' initial speed for 5th sec)$

$$
S = 8 \times 1 + \frac{1}{2} \times 2 (1)^2 = 9 m
$$

t second

Average speed
 $s_F = \frac{1}{2} (1.5) t^2$ (1)

Truck
 $s_F = \frac{1}{2} (1.5) t^2$ (1)

Truck

(6) Method I:
 $\frac{1}{2} \left(\frac{1}{2} \right) \left(\frac{1}{2} \right) \left(\frac{1}{2} \right)$
 $\frac{1}{2} \left(\frac{1}{2} \right) \left(\frac{1}{2} \right) \left(\frac{1}{2} \right)$
 $\frac{1}{2$ **(7)** Let P be the point, where the two engines cross each other. If t hr be the time to occur this event, then total distance covered by the two trains should be equal to 100 km.(fig.) i.e., $AP + BP = 100$ age speed
 $+2x+5x$
 $+2x+5x$
 $\frac{2x}{v} + \frac{2x}{v} + \frac{10x}{v} = \frac{8x}{14x}v = \frac{4}{7}v$

rood I :
 $g S_{n\text{th}} = u + \frac{2}{2}(2n-1) = 0 + \frac{2}{2}(2 \times 5 - 1) = 9m$
 \int_{0}^{h} for formula, u is speed at t = 0)

rood II : $S = u' \times 1 + \frac{1}{2}$ a $\frac{5x}{1 + 3} = \frac{8x}{\frac{2x}{y} + \frac{2x}{y} + \frac{10x}{y}} = \frac{8x}{14x}v = \frac{4}{7}v$
 $= u + \frac{2}{2}(2n - 1) = 0 + \frac{2}{2}(2 \times 5 - 1) = 9m$

Equality and $\frac{1}{2}$ a $(1)^{2}$; $u' = 0 + 2 \times 4 = 8$ m/s

time interval = 1 sec., u' initial speed for 5th e speed
 $t_2 + 5x$
 $t_2 + t_3 = \frac{8x}{2x + 2x + 10x} = \frac{8x}{14x}v = \frac{4}{7}v$
 t I 1:
 $S_{nth} = u + \frac{2}{2}(2n - 1) = 0 + \frac{2}{2}(2 \times 5 - 1) = 9m$

1 formula, u is speed at t = 0)
 $H \to S = u' \times 1 + \frac{1}{2}$ a (1)²: $u' = 0 + 2 \times 4 = 8$ m/s
 $x \$

$$
\Rightarrow 50t + \frac{1}{2} \times 18t^2 + 50t - \frac{1}{2} \times 18t^2 = 100
$$

 \implies 100t = 100 \implies t = 1 hr.

$$
\therefore x = AP = 50 (1) + \frac{1}{2} \times 18(1) \Rightarrow x = 50 + 9 = 59 \text{ km.}
$$

(8)
$$
t_{AB} = 40 \text{ sec.},
$$

ATION IN ONE DIMENSION)
\n⇒ 100t = 100 ⇒ t = 1 hr. (1) First stone is thrown so as to reach the
\nits initial velocity is
\n
$$
x = AP = 50(1) + \frac{1}{2} \times 18(1) \Rightarrow x = 50 + 9 = 59
$$
 km.
\n $t_{AB} = 40$ sec.,
\nLet us take the time t = t₀, when the
\nheight h above the foot of the tower.
\n15² = 5² + 2a(8x) ⇒ ax = $\frac{15^2 - 5^2}{16} = \frac{200}{16}$
\n
\n*A*
\n \overrightarrow{A}
\n \overrightarrow{B}
\n \overrightarrow{C}
\n \overrightarrow{A}
\n \overrightarrow{B}
\n \overrightarrow{C}
\n

 $v^2 = 5^2 + 2a(3x) = 25 + 6 \times (200/16) = 100 \implies v = 10$ m/s As $a = constant using, v = u + at$

$$
10 = 5 + a \times 50 \implies a = \frac{5}{40} = \frac{1}{8} \text{ m/s}^2
$$

(9)
$$
v_2^2 = v_1^2 + 2aL P aL = \frac{v_2^2 - v_1^2}{2}
$$

$$
\begin{array}{ll}\n & B & C \\
\uparrow \text{ s} & \uparrow \\
\downarrow \text{ 15m/s} & \text{ 5m/s} & \text{ 5m/s} & \text{ 5m/s} \\
\downarrow \text{ 2} & \downarrow \text{ 3m/s} & \text{ 5m/s} & \text{ 5m s} \\
\downarrow \text{ 3} & = \text{constant using, } v = u + at \\
10 = 5 + a \times 50 \Rightarrow a = \frac{5}{40} = \frac{1}{8} \text{ m/s}^2 & \text{ 10m/s} & \text{ 21m/s} & \text{ 22m/s} \\
\downarrow \text{ 1} & = 2.5 \times 10 \Rightarrow a = \frac{5}{40} = \frac{1}{8} \text{ m/s}^2 & \text{ 10m/s} & \text{ 10m/s} & \text{ 10m/s} \\
\downarrow \text{ 2} & = \text{ 2m/s} & \text{ 1} & \text{ 2m/s} & \text{ 1} & \text{ 1} & \text{ 1} \\
\downarrow \text{ 3} & = 2.5 \times 10 \Rightarrow a = \frac{5}{40} = \frac{1}{8} \text{ m/s}^2 & \text{ 1} & \text{ 1} & \text{ 1} \\
\downarrow \text{ 2} & = \text{v}_1^2 + 2 \text{a} \cdot \frac{L}{2} = \text{v}_1^2 + \frac{\text{v}_2^2 - \text{v}_1^2}{2} & \text{ 1} & \text{ 1} & \text{ 1} \\
\downarrow \text{ 3} & \downarrow \text{ 1} & \downarrow \text{ 1} & \text{ 1} & \text{ 1} & \text{ 1} \\
\downarrow \text{ 30sec} & \downarrow \text{ 3} & \text{ 1} \\
\downarrow \text{ 30sec} & \downarrow \text{ 3} & \text{ 1} & \text{ 1} & \text{ 1} & \text{ 1} \\
\downarrow \text{ 4} & \downarrow \text{ 1} & \text{ 1} & \text{ 1} & \text{ 1} & \text{ 1} \\
\downarrow \text{ 5} & \downarrow \text{ 1} & \text{ 1} & \text{ 1} & \text{ 1} & \text{ 1} \\
\downarrow \text{ 6
$$

$$
v \hat{\xi} = \frac{v_2^2 + v_1^2}{2} \mathbf{b} \quad v \hat{\xi} = \sqrt{\frac{v_1^2 + v_2^2}{2}}
$$

(10)

$$
v_2^2 = v_1^2 + 2aL b \t aL = \frac{v_2^2 - v_1^2}{2}
$$
\n
$$
v_2^2 = v_1^2 + 2a \t L \frac{L}{2} = v_1^2 + \frac{v_2^2 - v_1^2}{2}
$$
\n
$$
v_2^2 = \frac{v_1^2 + v_1^2}{2} b \t v_2^2 = \sqrt{\frac{v_1^2 + v_2^2}{2}}
$$
\n
$$
v_2^2 = \frac{v_2^2 + v_1^2}{2} b \t v_2^2 = \sqrt{\frac{v_1^2 + v_2^2}{2}}
$$
\n
$$
1000 = u \times 30 + \frac{1}{2}a(30)^2
$$
\n
$$
u = \frac{1 \text{ km}}{30 \text{ sec}}
$$
\n
$$
2000 = u \times 90 + \frac{1}{2}a(90)^2
$$
\n
$$
2000 = u \times 90 + \frac{1}{2}a(90)^2
$$
\n
$$
2000 = 180 u \Rightarrow u = \frac{700}{18} m/s = \frac{350}{9} m/s
$$
\n
$$
v_2^2 = \frac{1}{2}gt^2, \quad h - y = ut - \frac{1}{2}gt^2
$$
\n
$$
y = \frac{1}{2}gt^2, \quad h - y = ut - \frac{1}{2}
$$
\n
$$
h = ut \Rightarrow t = \frac{h}{\sqrt{8gh}} = \sqrt{\frac{h}{8g}}
$$
\n
$$
h = ut \Rightarrow t = \frac{h}{\sqrt{8gh}} = \sqrt{\frac{h}{8g}}
$$
\n
$$
h = ut \Rightarrow t = \frac{1}{2}gt^2, \quad h = \frac{1}{2}gt^2
$$
\n
$$
u = \frac{700}{18}m/s = \frac{350}{9}m/s
$$
\n
$$
u = \frac{700}{18}t
$$
\n
$$
S_1 = u + \frac{f}{2}(2t - 1) \text{ and } S_2 = u + \frac{f}{2}[2(t + 1) - 1]
$$
\n
$$
S_1 + S_2 = 100
$$

Multiply eq. (1) by a both side & sub. (2)

$$
7000 = 180 \text{ u} \Rightarrow u = \frac{700}{18} \text{ m/s} = \frac{350}{9} \text{ m/s}
$$

(11) Let distance travelled in tth second = $s₁$ and in $(t + 1)th$ $seconds = s_2$ then

$$
\frac{A}{\leftarrow} \frac{C}{C} = \frac{B}{2}
$$
\n
$$
v\zeta^2 = \frac{v_2^2 + v_1^2}{2} \text{ by } v\zeta = \sqrt{\frac{v_1^2 + v_2^2}{2}}
$$
\n
$$
1000 = u \times 30 + \frac{1}{2}a(30)^2 \qquad \dots \dots \dots (1)
$$
\n
$$
y = \frac{1}{2}gt^2, \quad h - y = ut - \frac{1}{2}gt^2
$$
\n
$$
h = ut \Rightarrow t = \frac{h}{\sqrt{8gh}} = \sqrt{\frac{h}{8g}}
$$
\n
$$
2000 = u \times 90 + \frac{1}{2}a(90)^2 \qquad \dots \dots \dots (2)
$$
\n
$$
7000 = 180 u \Rightarrow u = \frac{700}{18} m/s = \frac{350}{9} m/s \qquad \frac{1}{2}gt^2 + 1 = \frac{1}{2}gt^2 + \frac{1}{2}g(0.2)^2 + \frac{1}{2}g \times 2 \times 0.2t
$$
\nLet distance travelled in tth second = s₁ and in (t + 1)th\nseconds = s₂ then\n
$$
S_1 = u + \frac{f}{2}(2t - 1) \text{ and } S_2 = u + \frac{f}{2}[2(t + 1) - 1]
$$
\n
$$
S_1 + S_2 = 100
$$
\n
$$
2u + \frac{f}{2}(2t - 1 + 2t + 2 - 1) = 100 \Rightarrow 2u + 2ft = 100
$$
\n
$$
\Rightarrow u + ft = 50 \Rightarrow v = u + ft = 50 \text{ cm/s}
$$
\n**TRY IT YOURSELF-3**

(1) First stone is thrown so as to reach the top of the tower, so its initial velocity is

$$
u = \sqrt{2gH} = \sqrt{2 \times 10 \times 90} = 42.5 \text{ m/s}
$$

 $ax = \frac{15^2 - 5^2}{16} = \frac{200}{16}$ elled a height h in the duration t₀ and the second stone has **IVEN**

IVEN SOLUTIONS

(1) First stone is thrown so as to reach the top of the tow

its initial velocity is
 $u = \sqrt{2gH} = \sqrt{2 \times 10 \times 90} = 42.5$ m/s

Let us take the time $t = t_0$, when the two stones meer

height h above t **ENSION**

1 hr.

(1) First stone is thrown so as to reach the top
 $ax = \frac{15^2 - 5^2}{16} = \frac{200}{16}$
 $\frac{5x}{15m/s}$
 $x = 42.5 \text{ m/s}$

Let us take the time t = 0₀, when the two method of the tower. The
 $\frac{5x}{16} = \frac{200}{1$ **EDMADVANCEDLEARNING**

statone is thrown so as to reach the top of the tower, so

initial velocity is
 $u = \sqrt{2gH} = \sqrt{2 \times 10 \times 90} = 42.5$ m/s

us take the time $t = t_0$, when the two stones meet at a

th h above the foot of Let us take the time $t = t_0$, when the two stones meet at a height h above the foot of the tower. The first stone travfallen a distance $(90 - h)$ in time $(t_0 - 2)$. thrown so as to reach the top of the tower, so

city is
 $\overline{f} = \sqrt{2 \times 10 \times 90} = 42.5$ m/s

ee time t = t₀, when the two stones meet at a

ee the foot of the tower. The first stone trav-

h in the duration t₀ and the **hology**
 hology
 hology
 i giv is
 $= \sqrt{2 \times 10 \times 90} = 42.5 \text{ m/s}$
 i time $t = t_0$, when the two stones meet at a
 i the foot of the tower. The first stone trav-
 in the duration t_0 and the second stone has BENTIFY THE CONTROLL ON THE CONTROLL ON THE CONTROLL ON THE $\sqrt{2 \times 10 \times 90} = 42.5$ m/s

in is $\sqrt{2 \times 10 \times 90} = 42.5$ m/s

ime t = t_0 , when the two stones meet at a

he foot of the tower. The first stone trav-

n the

For first stone,
$$
h = 42.5 t_0 - \frac{1}{2} (10) t_0^2
$$
;

For second stone, $90 - h = \frac{1}{2}(10)(t_0 - 2)^2$ $\frac{1}{2}$ (10) $(t_0 - 2)^2$

Adding above two equation, 22.5 $t_0 = 70$ or $t_0 = 3.11$ s Thus height h is given as,

$$
h = 42.5 (3.11) - \frac{1}{2} (10) (3.11)^{2} = 83.82 m.
$$

$$
\frac{1}{2} \quad \text{(2)} \quad \text{Max. height, } 4h = \frac{u^2}{2g} \Rightarrow u = \sqrt{8gh}
$$

$$
y = \frac{1}{2}gt^2, \quad h - y = ut - \frac{1}{2}gt^2
$$

$$
h = ut \implies t = \frac{h}{\sqrt{8gh}} = \sqrt{\frac{h}{8g}}
$$

(2) Max. height,
$$
4h = \frac{u}{2g} \Rightarrow u = \sqrt{8gh}
$$

\nh
\nh
\n $y = \frac{1}{2}gt^2$, $h - y = ut - \frac{1}{2}gt^2$
\n $h = ut \Rightarrow t = \frac{h}{\sqrt{8gh}} = \sqrt{\frac{h}{8g}}$
\n(3) Using, $h = ut + \frac{1}{2}gt^2$; $h = \frac{1}{2}gt^2$; $h + 1 = \frac{1}{2}g(t + 0.2)^2$
\n $\frac{1}{2}gt^2 + 1 = \frac{1}{2}gt^2 + \frac{1}{2}g(0.2)^2 + \frac{1}{2}g \times 2 \times 0.2t$

$$
\frac{1}{2}gt^2 + 1 = \frac{1}{2}gt^2 + \frac{1}{2}g(0.2)^2 + \frac{1}{2}g \times 2 \times 0.2t
$$

TRY IT YOURSELF-3

$$
1 = \frac{1}{5} + 0.2gt \quad ; \quad \frac{4}{5} = 2t \Rightarrow t = \frac{2}{5} \quad ; \quad h = \frac{1}{2}g\frac{4}{25} = \frac{4}{5}m
$$

- **(4) (C).** The ball reaches its highest point when its velocity is zero; the acceleration of gravity is never zero (it is always 9.8 (9) m/s² downward).
- **(5) (C).** (Coordinate system: positive x-axis upwards.)

Upon its descent, the velocity of an object thrown
 W object thrown straight up with an initial x-component of velocity

 $v_{x,0} > 0$ has velocity $v_x = -v_{x,0} < 0$ when it passes the point at which it was first released. This is exactly the same x-component of velocity as the ball that was thrown downward, so both balls will hit the ground with the same xcomponent of velocity. Let t_f denote the time interval that (1) the ball thrown downwards takes to hit the ground, then the x-component of the velocity of both balls when they hit the ground is given by $v_s(t_f) = v_{x,0} - gt_f$. Upon its descent, the velocity of an object thrown

geht up with an initial x-component of velocity
 $v_x_0 > 0$ has velocity $v_x = -v_x_0 < 0$ when it passes the

at which it was first released. This is exactly the same

wore

(6) (A). Both objects are falling with the same acceleration (gravity), and as both are accelerating without friction and with the same initial velocity, the two ought to stay the same distance apart throughout the motion.

(7) Down is positive; over his height
$$
s = ut + \frac{1}{2}at^2
$$
 (12) (A)

$$
2m = u (0.20s) + \frac{1}{2} (9.81 \text{ m/s}^2) (0.20s)^2;
$$

u = 9.02 m/s + (9.81 m/s²) (0.20s) = 10.98 m/s; for total fall,

$$
v^2 = u^2 + 2as_B ;
$$

$$
(10.98 \text{ m/s})^2 = 0 + 2 (9.81 \text{ m/s}^2) s_B
$$
; $s_B = 6.1 \text{ m}$

(8) We select earth as the origin so that $\bar{g} = -9.8 \text{ ms}^{-2}$

(i) At the highest point, velocity is zero

$$
v^2 - v_0^2 = 2gh ,
$$

Here
$$
v = 0
$$
, $v_0 = +15$ m/s, $g = -9.8$ ms⁻²
\n
$$
\therefore (0)^2 - (15)^2 = 2 \times (-9.8)
$$
 h

∴ max. height,
$$
h = \frac{- (+15)^2}{2 \times (-9.8)} = 11.5 \text{ m}
$$
; $h = v_0 t + \frac{1}{2}gt^2$,

THEOREMALICIS
\nHere h = 0, v₀ = ± 15 m/s, g = -9.8 ms⁻²
\n
$$
h\uparrow
$$

\n $h\uparrow$
\n $h\uparrow$ <

m solution corresponds to initial point A and second solution ATERIAL: PHYSICS
 s^{-2}

9 t²
 $\frac{15}{4.9} = 3.06$ s

and 3.06 S. The first

and second solution

re, the ball is in the air

the ball is instanta-That there are two solution for t, 0 S and 3.06 S. The first corresponds to return point C. Therefore, the ball is in the air for 3.06 S.

(9) At the highest point the velocity of the ball is instantaneously zero. Take the y-axis to be upward, set $v = 0$ in

$$
v^2 = v_0^2 - 2gy
$$
, and solve for v_0 : $v_0 = \sqrt{2gy}$.
Substitute $g = 9.8$ m/s² and $y = 50$ m to get

$$
v_0 = \sqrt{2 (9.8 \text{m/s}^2) (50 \text{m})} = 31 \text{m/s}
$$

(10) (B).
$$
v = u - at
$$

 $v = 18 - 10 \sin 30^\circ t = 18 - 15 = 3$ m/s

 $\frac{1}{2}$ at² (12) (A) **(11) (B).** Both children begin with gravitational potential energy mgh at the top of the slide, which is completely transferred to kinetic energy at the end of the slide. Bobby's potential energy is transferred more quickly, however, therefore he attains a higher average velocity and beats Sandy to the end of the slide. Average acceleration is the change in velocity divided by the time interval. Each child has the same change in velocity, but Bobby observes this change over a shorter period of time, resulting in a larger average acceleration. siy zero. Take the y-axis to be upward, set $v = 0$ in
 $v_0^2 - 2gy$, and solve for $v_0 : v_0 = \sqrt{2gy}$.

titute $g = 9.8$ m/s² and $y = 50$ m to get
 $\sqrt{2 (9.8 \text{m/s}^2) (50 \text{m})} = 31 \text{m/s}$
 $v = u - at$
 $v = 18 - 10 \sin 30^\circ t = 18 - 15 =$ titute g = 9.8 m/s² and y = 50m to get
 $\sqrt{2 (9.8 \text{m/s}^2) (50 \text{m})}$ = 31 m/s
 $v = u - at$
 $v = 18 - 10 \sin 30^\circ$ t = 18 - 15 = 3 m/s

Both children begin with gravitational potential energy

at the top of the slide, which is $v = v_0^2 - 2gy$, and solve for $v_0 : v_0 = \sqrt{2gy}$.

Substitute $g = 9.8$ m/s² and $y = 50$ m to get
 $v_0 = \sqrt{2 (9.8 \text{m/s}^2) (50 \text{m})} = 31 \text{ m/s}$
 (B). $v = u - at$
 $v = 18 - 10 \sin 30^\circ t = 18 - 15 = 3 \text{ m/s}$
 (B). Both children begin $\sqrt{2(9.8 \text{m/s}^2)(50 \text{m})} = 31 \text{ m/s}$
 $= u - at$
 $= 18 - 10 \sin 30^\circ t = 18 - 15 = 3 \text{ m/s}$

oth children begin with gravitational potential energy

the top of the slide, which is completely transferred

tic energy at the end of t higher average velocity and beats Sandy to the
slide. Average acceleration is the change in velocity
y the time interval. Each child has the same change
over a shorter
time, resulting in a larger average acceleration.
 \frac

TRY IT YOURSELF-4

(1) Relative acceleration,

$$
\vec{a}_{BA} = \vec{a}_B - \vec{a}_A = (-10) - (-10) = 0
$$

$$
ext{1so}, \vec{v}_{BA} = \vec{v}_{B} - \vec{v}_{A} = 10 - 5 = 5 \text{ m/s}
$$

As relative acceleration is zero we can use

 \vec{s}_{BA} (in 1 sec) = $\vec{v}_{BA} \times t = 5 \times 1 = 5m$

 \therefore Distance between A and B after 1 sec = 5m

(1) Relative acceleration,
 $\frac{1}{2}$, (0.20s) = 10.98 m/s; for total fall,
 $\frac{1}{2}$, $\frac{1}{2}$, (9.81 m/s²) (0.20s)²;

(a) Relative acceleration,

invs²) (0.20s) = 10.98 m/s; for total fall,

in $\bar{a}_{BA} = \bar{a}_B - \bar{a}_A = (-10) - (-10) = 0$

int, velocity is zero

be origin so that $g = -9.8$ ms⁻²

oint, velocity is ze (1) Relative acceleration,
 $\sqrt{2}$, (0.200s) = 10.98 m/s; for total fall,
 $\frac{1}{a_{BA}} = \frac{1}{a_B} - \frac{1}{a_A} = (-10) - (-10) = 0$

Also, $\vec{v}_{BA} = \vec{v}_B - \vec{v}_A = 10 - 5 = 5$ m/s

origin so that $g = -9.8$ ms⁻²

B

(B)

A sendative acce **(1)** Relative acceleration,
 $\vec{a}_{BA} = \vec{a}_B - \vec{a}_A = (-10) - (-10) = 0$

Also, $\vec{v}_{BA} = \vec{v}_B - \vec{v}_A = 10 - 5 = 5$ m/s
 \approx 8.8 ms⁻²
 $\frac{5}{8}$
 $\frac{25}{100}$

As relative acceleration is zero we can use
 \vec{v}_{BA} (in 1 sec) **(2)** Given that the velocity of rain drops with respect to road is making an angle 30º with the vertical, and the velocity of the man is 10kph, also the velocity of rain drops with respect to main is vertical. We have

 $1 \n_{at}²$ The situation is shown in velocity triangle in figure. $v_{RM} = v_R - v_M$ hence $v_R = v_{RM} - v_M$

It shows clearly that, $v_R = V_M$ cosec $\theta = 10 \times 2 = 20$ kph and $V_{RM} = V_M \cos \theta = 10 \times \sqrt{3} = 10 \sqrt{3}$ kph. **EVALUATE CONSTRANT CONSTRANT (TRY SO**

Let shows clearly that, $v_R = V_M \csc \theta = 10 \times 2 = 20 \text{kph}$

and $V_{RM} = V_M \cos \theta = 10 \times \sqrt{3} = 10 \sqrt{3} \text{ kph}$.

Let \hat{i} and \hat{j} be the unit vectors in horizontal and vertical

directions It shows clearly that, $v_R = V_M \csc \theta = 10 \times 2 = 20 \text{kph}$

It shows clearly that, $v_R = V_M \csc \theta = 10 \times 2 = 20 \text{kph}$

and $V_{RM} = V_M \cos \theta = 10 \times \sqrt{3} = 10 \sqrt{3} \text{ kph}$.

Let \hat{i} and \hat{j} be the unit vectors in horizontal and vertic

(MOTION IN ONE DIMENSION) (TRY SOLU)
 $\frac{V_M}{30}$ **Let** $\frac{V_N}{W}$ **Let** $V_M \cos \theta = 10 \times \sqrt{3} = 10 \sqrt{3}$ kph.
 (3) Let \hat{i} and \hat{j} be the unit vectors in horizontal and vertical directions respectively.

Let velo directions respectively.

Let velocity of rain be $\vec{v}_r = a\hat{i} + b\hat{j}$ (i)

 $|\vec{v}| = \sqrt{a^2 + b^2}$ (ii)

In the first case \vec{v}_m = velocity of man = $3\hat{i}$

It seems to be in vertical direction. Hence, $a - 3 = 0$ or $a = 3$

In the second case $\vec{v}_m = 6\hat{i}$

$$
\therefore \quad \vec{v}_{rm} = (a-6)\hat{i} + b\hat{j} = -3\hat{i} + b\hat{j}
$$

This seems to be at 45^o with vertical. Hence, $|b| = 3$ Therefore, from eq. (i) speed of rain is

$$
|\vec{v}_r| = \sqrt{(3)^2 + (3)^2} = 3\sqrt{2} \frac{\text{km}}{\text{hr}}
$$

It shows clearly that,
$$
v_R = V_M \csc \theta = 10 \times 2 = 20
$$
kph
\nand $V_{RM} = V_M \cos \theta = 10 \times \sqrt{3} = 10 \sqrt{3}$ kph.
\n(3) Let \hat{i} and \hat{j} be the unit vectors in horizontal and vertical
\ndirection respectively of rain will be $|\vec{v}| = \sqrt{a^2 + b^2}$ (i)
\nThen speed of rain will be $|\vec{v}| = \sqrt{a^2 + b^2}$ (i)
\nIn the first case $\vec{v}_m = \vec{v}_m = \cos 2\hat{i} + b\hat{j}$
\n $\therefore \vec{v}_m = \vec{v}_r = \vec{v}_m = (a-3)\hat{i} + b\hat{j}$
\nIt seems to be in vertical direction. Hence, $a-3=0$ or $a = 3$
\nIt seems to be at 45° with vertical. Hence, $|b| = 3$
\n $\therefore \vec{v}_m = (a-6)\hat{i} + b\hat{j} = -3\hat{i} + b\hat{j}$
\nThis seems to be at 45° with vertical. Hence, $|b| = 3$
\nTherefore, from eq. (i) speed of rain is
\n $|\vec{v}_r| = \sqrt{(3)^2 + (3)^2} = 3\sqrt{2} \frac{k_m}{k_r}$
\n(ii) Using relative velocity concept :
\n $\vec{v}_m = \vec{v}_m - \vec{v}_w$
\n $\vec{v}_m = \vec{v}_{mn} + \vec{v}_w = |\vec{v}_{mn} + \vec{v}_{m} + 2\vec{v}_{mn} + \vec{v}_{mn} \cos \theta|$
\n $\Rightarrow v_m = \sqrt{5^2 + 3^2 + 2(5)(3) \cos 120^\circ}$
\n $\Rightarrow v_m = \sqrt{5^2 + 3^2 + 2(5)(3) \cos 120^\circ}$
\n $\Rightarrow v_m = \sqrt{5^2 + 3^2 + 2(5)(3) \cos 120^\circ}$
\n $\Rightarrow v_m = \sqrt{5^2 + 3^2 + 2(5)(3) \cos 120^\circ}$
\n $\Rightarrow v_m = \sqrt{5^2 + 3^2 + 2(5)(3) \cos 120^\circ}$
\

(5) For minimum time of crossing the man should head perpen-

$$
\vec{v}_{mw} \perp \vec{v}_w
$$

$$
\cos \theta = \frac{v_w}{v_m} \implies \cos 60^\circ = \frac{4}{v_m} \implies v_m = 8 \text{ km/hr}
$$
\n(10) (B). $\overrightarrow{V_{AW}}$ \n(6) (A). $\overrightarrow{V_{AW}}$ In at

Q measures acceleration of P to be zero.

- \therefore Q measures velocity of P, i.e. \vec{v}_{PQ} to be constant. Hence \vec{v}_{QQ}
- Q observes P to move along straight line.

 \therefore For P and Q to collide Q should observe P to move along line PQ.

Hence, PQ should not rotate.

(7) (D). Call the velocity of the turtle with respect to the eagle v_{TE} , also known as v_1 .

Call the velocity of the turtle with respect to the ground v_{TG} , also known as v_2 .

You are asked to find the velocity of the eagle with respect to the ground, v_{EG} .
Analyzing the right triangle, you can use the Pythagorean

Theorem to solve for the magnitude of v_{EG} an use the Pythagorean

e of v_{EG}
 $= \vec{v}_{BG} + \vec{v}_1$
 $v_3 = \sqrt{v_2^2 - v_1^2}$

(a)
 $V = \frac{10 \times 3}{4} = 7.5$

$$
\vec{v}_{TG} = \vec{v}_{EG} + \vec{v}_{TE}
$$

You are asked to find the velocity of the edge with respect
to the ground,
$$
v_{EG}
$$
.
Analyzing the right triangle, you can use the Pythagorean
Theorem to solve for the magnitude of v_{EG}
 $\vec{v}_{TG} = \vec{v}_{EG} + \vec{v}_{TE}$
 $\vec{v}_{TG} = \vec{v}_{EG} + \vec{v}_{TE} - \frac{\vec{v}_{TG} = \vec{v}_2}{\vec{v}_{TE} = \vec{v}_1} \vec{v}_2 = \vec{v}_{BG} + \vec{v}_1$
 $\Rightarrow v_2^2 = v_{EG}^2 + v_1^2 \Rightarrow v_{EG} = \sqrt{v_2^2 - v_1^2}$
(8) (A). $V_{R/G(x)} = 0$, $V_{R/G(y)} = 10$ m/s
 $\frac{12 \text{cm}}{\sqrt{v_{max}}} = \frac{12 \text{cm}}{v_{max}}$
 $\frac{12 \text{cm}}{v_{max}} = 12 \text{cm}$
Then, $v_{R/\text{man}} = v$ (opposite to man)
For the required condition :
 $\tan \theta = \frac{V_{R/M(y)}}{V_{R/M(x)}} = \frac{10}{v} = \frac{4}{3} \Rightarrow V = \frac{10 \times 3}{4} = 7.5$
(9) $\vec{v}_{BG} = \vec{v}_{BT} + \vec{v}_{TG} = 18\hat{i} - 2\hat{j}$
(10) (B). $\vec{v}_{AW} = \frac{\sum_{i=1}^{N} V_{M}(x_i)}{V_{AW}^2} = \frac{1}{V_{H/M(x)}} C$

(8) (A).
$$
V_{R/G(x)} = 0
$$
, $V_{R/G(y)} = 10$ m/s

$$
\underbrace{\text{E}}_{\text{min}} = \underbrace{\text{B}_{\text{max}} \cdot \text{E}_{\text{min}}}{\text{min } \theta} = 4/3
$$

Let, velocity of man $=$ v then, $v_{R/man} = v$ (opposite to man) For the required condition :

$$
\tan \theta = \frac{V_{R/M(y)}}{V_{R/M(x)}} = \frac{10}{v} = \frac{4}{3} \Rightarrow V = \frac{10 \times 3}{4} = 7.5
$$

$$
\vec{v}_{BG} = \vec{v}_{BT} + \vec{v}_{TG} = 18i - 2j
$$

In absence of wind A reaches to C and in presence of wind it reaches to D in same time so wind must deflect from C to D so wind blow in the direction of CD. an $\theta = 4/3$

city of man = v

man = v (opposite to man)

equired condition :
 $\frac{V_{R/M(x)}}{V_{R/M(x)}} = \frac{10}{v} = \frac{4}{3} \Rightarrow V = \frac{10 \times 3}{4} = 7.5$
 $v_{BT} + \bar{v}_{TG} = 18\hat{i} - 2\hat{j}$
 $\frac{D}{V_{AM}t}$
 $\frac{V_{W}V_{M}(s)}{V_{AW}t}$ C

ce of wind A city of man = v

man = v (opposite to man)

equired condition :
 $\frac{V_{\rm R/ M(y)}}{V_{\rm R/ M(x)}} = \frac{10}{v} = \frac{4}{3} \Rightarrow V = \frac{10 \times 3}{4} = 7.5$

BT + $\vec{v}_{\rm TG} = 18\hat{i} - 2\hat{j}$
 $\frac{D}{V_{\rm A0}t}$
 $\frac{V_{\rm W}V_{\rm W}}{V_{\rm AW}t}$ C
 $\frac{V_{\rm A0}$ man = $\sqrt{V_{R/M(x)}} = \frac{10}{v} = \frac{4}{3} \Rightarrow V = \frac{10 \times 3}{4} = 7.5$
 $V_{RT} + \vec{v}_{TG} = 18\hat{i} - 2\hat{j}$
 $V_{BT} + \vec{v}_{TG} = 18\hat{i} - 2\hat{j}$
 $V_{\text{W}} + \sqrt{V_{\text{W}}V_{\text{W}}V_{\text{W}}V_{\text{W}}V_{\text{W}}V_{\text{W}}V_{\text{W}}V_{\text{W}}V_{\text{W}}V_{\text{W}}V_{\text{W}}V_{\text{W}}V_{\text{W$ $\frac{0}{\gamma} = \frac{4}{3} \Rightarrow V = \frac{10 \times 3}{4} = 7.5$
 $18\hat{i} - 2\hat{j}$
 $\bigg\}C$
 \big

$$
V_{AG} = V_{AW} + V_{WG}
$$

\n
$$
\vec{V}_{AG}t = \vec{V}_{AW}t + \vec{V}_{WG}t
$$

\n
$$
AC = \vec{V}_{AW}t \text{ ; } CD = \vec{V}_{WG}t
$$

CHAPTER-3 : MOTION IN ONE DIMENSION EXERCISE-1

(1) (D). Distance \geq [Displacement] **(2) (A).** Since final and initial positions are same hence displacement of athlete will be Δ r = r – r = 0 **(3) (C).** Distance = Circumference of the circle $D = 2 \pi R \implies D = 2 \pi \times 80 = 160 \times 3.14 = 502.40m$ **(4) (C).** When a particle returns to its starting point its displacement is zero. **(5) (C).** Distance covered with 1 step = 1 m Time taken $= 1$ s Time taken to move first 5 m forward $= 5$ s Time taken to move 3 m backward $= 3$ s Net distance covered = $5 - 3 = 2$ m Net time taken to cover $2 m = 8 s$ Drunkard covers 2 m in 8 s. Drunkard covered 4 m in 16 s. Drunkard covered 6 m in 24 s. Drunkard covered 8 m in 32 s. In the next 5 s, the drunkard will cover a distance of 5m and a total distance of 13m and falls into the pit. taken to move 3 m backward=3 s

stance covered = 5-3 = 2 m

are taken to cover 2 m = 8 s

are taken to cover 2 m = 8 s

and covered 4 m in 16 s.

and covered 4 m in 16 s.

and covered 4 m in 16 s.

and covered 4 m in 16 s stance covered = 5 - 3 = 2 m

me taken to cover 2 m = 8 s

arad covered 4 m in 8 s.

arad covered 4 m in 16 s.

arad covered 4 m in 16 s.

arad covered 6 m in 24 s.

arad covered 6 m in 24 s.

next 5 s, the drunkard will me taken to move first 5 m forward = 5 s

and anomalous me taken to move 3 m backward = 3 s

en the stance covered = 5 - 3 = 2 m

and 2 as the slope is positive in the stance of the end of distance of the punker

unkard c

Net time taken by the drumkard to cover 13 m

$$
= 32 + 5 = 37s
$$
 (17)

(6) (B). Count spaces (intervals), not dots. Count 5, not 6. The first drop falls at time zero and the last drop at 5×5 s = 25 s.

The average speed is $600 \text{ m}/25 \text{ s} = 24 \text{ m/s}.$

- **(7) (A).** The slope of the line in a position versus time graph gives the velocity of the motion. The slope for part a is positive. For part b the slope is negative. For part c the slope is positive.
- **(8) (C).** The average speed is the distance of 16.0km divided by the elapsed time of 2.0 h. The average velocity is the displacement of 0km divided by the elapsed time. The displacement is 0 km, because the jogger begins and ends at the same place. **(6) (B).** Count spaces (intervals), not dots. Count 5, not $=32+5=3$.

The first drop falls at time zero and the last drop :
 5×5 s = 25 s.

The average speed is 600 m/25 s = 24 m/s.
 (7) (A). The slope of the kard covered 8 m in 32 s.

next 5 s, the durakard vall cover a distance of of a next 5 s, the durakard will cover a distance of of a negative and a total distance of 13m and falls into the pit.

in exacts in exacts to cov 5 × 5 s = 25 s.

The average speed is 600 m/25 s = 24 m/s.
 (7) (A). The slope of the line in a position versus time grative. For polyton is positive. For part b the slope is negative. For polytone is positive. For part gives the velocity of the motion. The slope for pa

is positive. For part b the slope is negative. For p

c the slope is positive.
 (8) (C). The average speed is the distance of 16.0km divide

by the elapsed time of 2 nt spaces (intervals), not dots. Count 5, not 6.

first drop falls at time zero and the last drop at

first drop falls at time zero and the last drop at

s is $\frac{25}{3}$ s = 24 m/s.

slope of the line in a position versus first drop falls at time zero and the last drop at $s = 25$ s.

section of the line in a position versus time graph

section of the line in a position versus time graph

stolpe of the line in a position versus time graph
 The average speed is the distance of 16.0km c

the displacement of 0.0km of the distance of 16.0km of

by the elapsed time of 2.0 h. The average velet

the displacement is 0 km, because the jogger

and ends at the same pl

(9) **(C).**
$$
\overline{v} = \frac{\Delta x}{\Delta t} = \frac{10m}{2s} = 5 m/s
$$

(10) (A).
$$
\bar{v} = \frac{5m}{4s} = 1.2 \text{ m/s}
$$
 (19) (A). Both speed and particle moving

(11) **(C).**
$$
\overline{v} = \frac{x_2 - x_1}{t_2 - t_1} = \frac{5m - 10m}{4s - 2s} = -2.5 \text{ m/s}
$$

(12) **(D).**
$$
\overline{v} = \frac{x_2 - x_1}{t_2 - t_1} = \frac{-5m - 5m}{7s - 4s} = -3.3
$$
 m/s

(13) **(B).**
$$
\overline{v} = \frac{x_2 - x_1}{t_2 - t_1} = \frac{0 - 0}{8 - 0} = 0
$$
 m/s

(14) (A). Let t be the total time taken then distance covered in

the first half time =
$$
\frac{v_1 t}{2}
$$

 $=\frac{v_2}{2}$

STUDY MATERIAL: PHYSICS
\nDistance covered in the next half time =
$$
\frac{v_2 t}{2}
$$

\nAverage speed $v_{av.} = \frac{\frac{v_1 t}{2} + \frac{v_2 t}{2}}{t} = \frac{v_1 + v_2}{2}$
\nInterval 3 (Greatest), Interval 2 (Least)
\nPositive (Interval 3)
\nThe average speed of a particle shown in the x-t graph
\nis obtained from the along of the graph in a particular

(15) (D). Interval 3 (Greatest), Interval 2 (Least) Positive (Intervals 1 & 2), Negative (Interval 3)

MATERIAL: PHYSICS

t half time $= \frac{v_2 t}{2}$
 $+ \frac{v_2 t}{2} = \frac{v_1 + v_2}{2}$

al 2 (Least)

cle shown in the x-t graph

f the graph in a particular The average speed of a particle shown in the x-t graph is obtained from the slope of the graph in a particular interval of time.

It is clear from the graph that the slope is maximum and minimum in intervals 3 and 2 respectively. Therefore, the average speed of the particle is the greatest in interval 3 and is the least in interval 2. The sign of average velocity is positive in both intervals 1 and 2 as the slope is positive in these intervals. However, it is negative in interval 3 because the slope is negative in this interval. x

(16) (B). The position-time graph of a particle moving with negative velocity is as shown in the figure.

t

 $= 1800s.$

- **(17) (D).** The area under the velocity-time graph represents the displacement over a given time interval.
- shear covered 8 m in 24s.

kard covered 8 m in 32 s.

encest 5 s, the drunkard vill cover a distance of

negative velocity in engaph

encest 5 s, the drunkard will cover a distance of
 $\frac{1}{2}$ in and fall similar the pr unkard overed 4 mm i bs.

unkard overed 6 min 24 s.

unkard overed 6 min 24 s.

unkard cover d 6 min 24 s.

the next 5 s, the drunkard will cover a distance of

the next 5 s, the drunkard to over a distance of

the next 5 rd covered 6 min 24 s.

et accetted 8 min 25 s.

et accetted min 22 s.

et accette moin and tail similar one of

et accette moin and tail similar one of

et accetted moins in the figure.

et accetted with the distance of and a total distance of 13m and falls into the pit.

shown in the figure.

Shown in the f and a total distance of the matching of the particle moving with the figure of the particle model states of 15 mm and fails into the particle moving when the figure of the match of the match of the match of the state and the next 5 s, the drunkard will cover a distance of 15 m d painter moving wind

and a total distance of 13m and falls into the pit.

time taken by the drunkard to cover 13 m

and a total distance of 13m and falls into the a total distance of 13m and falls into the pit.

a total distance of 13m and falls into the pit.

shown in the figure.

shown in the figure.

shown in the figure.

shown in the figure.

shown in the pigure.

a shown in th bunt spaces (intervals), not dots. Count 5. not 6. 0. The area under the velocity-line graph

the displacement over a given time interval

the displacement over a given time interval

to fits a fine zero and the last drop spaces (intervals), not dots. Count 5, not 6

subtrop and the displacement over a given time interval.

it dost of the minute had the subtrop at the subtrop and at a 50 on A. H. 6.00 a.m. or 6.30 pm. it is 180° away. The
 (D). At 6.00 a.m. the tip of the minute hand is at 12 mark and at 6.30 a.m. or 6.30 p.m. it is 180º away. Thus the displacement between the initial and final positions of the tip is equal to the diameter of the clock. Displacement = $2 R = 2 \times 4 cm = 8 cm$ Time taken from 6 a.m. to 6.30 a.m. is 30 minutes negative velocity is as
 (17) (D). The argue.
 (17) (D) The area under the velocity-time graph represents

the displacement over a given time interval.
 (18) (D) At 6.00 a.m. the tip of the minute hand is at 1 ty-time graph represents

ven time interval.

ininute hand is at 12 mark

i. it is 180° away. Thus the

initial and final positions

meter of the clock.

cm = 8 cm

.30 a.m. is 30 minutes

= 1800s.

 $\frac{8}{1800} = 4.4$ minute hand is at 12 mark
n. it is 180° away. Thus the
initial and final positions
ameter of the clock.
 $4 \text{ cm} = 8 \text{ cm}$
5.30 a.m. is 30 minutes
= 1800s.
av
= $\frac{8}{1800} = 4.4 \times 10^{-3} \text{ cm/s}$
n to 6.30 p.m.
= 45000 s
3
= The area under un-velocity-dime graph represents
the displacement over a given time interval.
At 6.00 a.m. the tip of the minute hand is at 12 mark
dAt 6.00 a.m. the tip of the minute hand is at 12 mark
dat 6.30 a.m. or 6 Exercise to the minute hand is at 12 mark
the tip of the minute hand is at 12 mark
n. or 6.30 p.m. it is 180° away. Thus the
between the initial and final positions
qual to the diameter of the clock.
 $= 2 R = 2 \times 4$ cm = 8 in the figure.

Free under the velocity-time graph represents

placement over a given time interval.

Da.m. the tip of the minute hand is at 12 mark

6.30 a.m. or 6.30 p.m. it is 180° away. Thus the

cement between the in at 6.30 a.m. or 6.30 p.m. it is 180° away. Thus the
lacement between the initial and final positions
te tip is equal to the diameter of the clock.
blacement = 2 R = 2 × 4 cm = 8 cm
e taken from 6 a.m. to 6.30 a.m. is 30 m practinuo ver a given three line was

0.a.m. the tip of the minute hand is at 12 mark

6.30 a.m. or 6.30 p.m. it is 180° away. Thus the

exement between the initial and final positions

cement = 2 R = 2 × 4 cm = 8 cm

ake 6.00 a.m. the tip of the minute hand is at 12 mark
d at 6.30 a.m. or 6.30 p.m. it is 180° away. Thus the
splacement between the initial and final positions
the tip is equal to the diameter of the clock.
splacement = $2 \text{$

The average velocity is V_{av}

$$
= \frac{\text{Displacement}}{\text{time}} = \frac{8}{1800} = 4.4 \times 10^{-3} \text{ cm/s}
$$

Again time taken from 6 am to 6.30 p.m.

 $= 12$ hrs $+ 30$ minutes $= 45000$ s

$$
\therefore \quad V_{av} = \frac{\text{Displacement}}{\text{time}} = \frac{8}{45000} = 1.8 \times 10^{-4} \text{ cm/s}
$$

(19) (A). Both speed and velocity are constant in the case of a particle moving with uniform velocity. A particle moving with uniform velocity has zero acceleration.

20) (C). Average velocity,
$$
\overline{v} = \frac{(x)_{t=4} - (x)_{t=2}}{4-2}
$$

displacement between the initial and final positions
of the tip is equal to the diameter of the clock.
Displacement = 2 R = 2 × 4 cm = 8 cm
Time taken from 6 a.m. to 6.30 a.m. is 30 minutes = 1800s.
The average velocity is V_{av}

$$
= \frac{Displacement}{time} = \frac{8}{1800} = 4.4 \times 10^{-3} \text{ cm/s}
$$
Again time taken from 6 am to 6.30 p.m.
= 12 hrs + 30 minutes = 45000 s
V_{av} = $\frac{Displacement}{time} = \frac{8}{45000} = 1.8 \times 10^{-4} \text{ cm/s}$
Both speed and velocity are constant in the case of a particle moving with uniform velocity.
A particle moving with uniform velocity has zero acceleration.
Average velocity, $\overline{v} = \frac{(x)_{t=4} - (x)_{t=2}}{4-2}$

$$
\overline{v} = \frac{(a+b(4)^2)-(a+b(2)^2)}{4-2}
$$

$$
= \frac{(a+16b)-(a+4b)}{4-2} = 6b = 6 (2.5) \text{ m/s} = 15 \text{ m/s}
$$

- **(21) (B).** Here, $x = a + bt^2$ Where, $a = 8.5$ m and $b = 2.5$ m/s² Velocity, $v = \frac{dx}{dt} = \frac{d}{dt}(a + bt^2) = 2bt$ **EDIMENSION**

a + bt² (28) (B). A

= 8.5 m and b = 2.5 m/s² (28) (B). A
 $v = \frac{dx}{dt} = \frac{d}{dt}(a + bt^2) = 2bt$ $\overline{v} = 2(2.5 \text{ m/s}^{-2})(2s) = 10 \text{ m/s}$ (29) (C). T

en to travel first half distance, and t_t (t_v v

en to trave **DIMENSION**
 $+bt^2$
 $+bt^2$
 $+8.5 \text{ m and } b = 2.5 \text{ m/s}^2$
 $= \frac{dx}{dt} = \frac{d}{dt}(a + bt^2) = 2bt$
 $v = 2 (2.5 \text{ m s}^{-2}) (2s) = 10 \text{ m/s}$
 $= 1.5 \text{ s, } x_i = 8.0 \text{ m (Point A)}$
 $\overline{v} = \frac{x_f - x_i}{t_f - t_i} = \frac{(2.0 - 8.0) \text{ m}}{(4 - 1.5) \text{ s}} = -\frac{6.0 \text{ m}}{2.$ At t = 2 s, $v = 2 (2.5 \text{ m s}^{-2}) (2 \text{s}) = 10 \text{ m/s}$ **NE DIMENSION**
 $z = a + bt^2$
 $a = 8.5 \text{ m}$ and $b = 2.5 \text{ m/s}^2$
 $y, v = \frac{dx}{dt} = \frac{d}{dt}(a + bt^2) = 2bt$
 $2 \text{ s}, v = 2 (2.5 \text{ m s}^{-2}) (2 \text{s}) = 10 \text{ m/s}$

aken to travel first half distance,
 $\frac{f}{f} = \frac{L}{2v_1}$

aken to travel second h ONE DIMENSION
 $\frac{x}{2}$, $\frac{x}{3} = 4 + b t^2$
 $\frac{28}{2}$
 $\frac{28}{2}$
 $\frac{3}{2}$
 $\frac{3}{2}$
 $\frac{3}{2}$
 $\frac{3}{2}$
 $\frac{2}{2}$
 $\frac{1}{2}$
 NE DIMENSION
 $= a + bt^2$
 $a = 8.5 \text{ m}$ and $b = 2.5 \text{ m/s}^2$
 $y, v = \frac{dx}{dt} = \frac{d}{dt}(a + bt^2) = 2bt$
 $2.8 \text{ s}, v = 2 (2.5 \text{ m s}^{-2}) (2s) = 10 \text{ m/s}$

aken to travel first half distance,
 $\frac{2}{1} = \frac{L}{2v_1}$

aken to travel second ha ONE DIMENSION
 $x = a + bt^2$ (28) (B). At $t_1 =$
 $t_1 = 2$, $t_2 = \frac{1}{2}$
 $t_1 = \frac{1}{2}$
 $t_2 = \frac{1}{2}$
 $t_3 = \frac{1}{2}$
 $t_4 = \frac{1}{2}$
 $t_5 = \frac{1}{2}$
 $t_6 = \frac{1}{2}$
 $t_7 = \frac{1}{2}$
 $t_8 = \frac{1}{2}$
 $t_9 = \frac{1}{2}$
 $t_1 = \frac{1}{2}$
 (28) (B. SOLUTIONS

(28) (B). At $t_1 = 1.5$
 $\frac{x_1 - 2}{t_1 - 2}$
 $\frac{2x_2 - 10}{t_1 - 2}$
 $\frac{1}{t_2 - 2}$

(29) (C). The slope

(C). The slope

(C) and D.

(C) (C). The slope

(C) and D.

(C) and D.

(C) and D.

(C) and D. re, a = 8.5 m and b = 2.5 m/s²

ity, $v = \frac{dx}{dt} = \frac{d}{dt}(a + bt^2) = 2bt$

ity, $v = \frac{dx}{dt} = \frac{d}{dt}(a + bt^2) = 2bt$
 $t = 2 s$, $v = 2 (2.5 \text{ m s}^{-2}) (2s) = 10 \text{ m/s}$

(29) (C

taken to travel first half distance,
 $\frac{L}{v_1} = \frac{L}{2v_1}$
 EXECUTIONS

Leve, $x = a + b^2$

Where, $a = 8.5$ m and $b = 2.5$ m/s²

Where, $a = 8.5$ m and $b = 2.5$ m/s²

Velocity, $v = \frac{dx}{dt} = \frac{d}{dt}(a + b^2) = 2bt$

Velocity, $v = \frac{dx}{dt} = \frac{d}{dt}(a + b^2) = 2bt$
 $x = \frac{V}{v} = \frac{x_f - x_i}{v} = \frac{(2.5 \text$ ty, $v = \frac{dx}{dt} = \frac{d}{dt}(a + bt^2) = 2bt$

2 s, $v = 2 (2.5 \text{ m s}^{-2}) (2s) = 10 \text{ m/s}$

taken to travel first half distance,
 $\frac{1}{v_1} = \frac{L}{2v_1}$

taken to travel second half distance,
 $\frac{1}{v_2} = \frac{L}{2v_2}$

ime taken $= t_1 + t_2 = \$
- **(22) (C).** Time taken to travel first half distance,

$$
t_1 = \frac{L/2}{v_1} = \frac{L}{2v_1}
$$

Time taken to travel second half distance,

$$
t_2 = \frac{L/2}{v_2} = \frac{L}{2v_2}
$$

Total time taken = $t_1 + t_2 = \frac{L}{2v_1} + \frac{L}{2v_2}$

$$
Average speed = \frac{Total distance travelled}{Total time taken}
$$

At t = 2 s, v = 2 (2.5 m s⁻²)(2s) = 10 m/s

\nTime taken to travel first half distance,

\n
$$
t_1 = \frac{L/2}{v_1} = \frac{L}{2v_1}
$$
\nTime taken to travel second half distance,

\n
$$
t_2 = \frac{L/2}{v_2} = \frac{L}{2v_2}
$$
\nTotal time taken = t₁ + t₂ = $\frac{L}{2v_1} + \frac{L}{2v_2}$

\nAverage speed = $\frac{\text{Total distance travelled}}{\text{Total time taken}}$

\n
$$
= \frac{L}{\frac{L}{2v_1} + \frac{L}{2v_2}} = \frac{1}{\frac{1}{2}\left[\frac{1}{v_1} + \frac{1}{v_2}\right]} = \frac{2v_1v_2}{v_2 + v_1}
$$
\n
$$
x = 10t^2:
$$
\n
$$
t(s) = 2.0 \qquad 2.1 \qquad 3.0
$$
\n
$$
x(m) = 40 \qquad 44.1 \qquad 90 \qquad 31
$$
\n
$$
\overline{v} = \frac{\Delta x}{\Delta t} = \frac{50m}{1.0s} = 50.0 \text{ m/s}
$$
\n
$$
\overline{v} = \frac{\Delta x}{\Delta t} = \frac{4.1 \text{ m}}{0.1 \text{ s}} = 41.0 \text{ m/s}
$$
\nAverage velocity = $\frac{\text{Displacement}}{\text{Time taken}}$

\n
$$
= \frac{2R}{t} = \frac{2 \times 40}{40} = 2 \text{ m/s}
$$
\nLet d represent the distance between A and B. Let t₁ (33)

\nbe the time for which the walker has the higher speed

(23) **(A).**
$$
x = 10 t^2
$$
:

t (s) = 2.0 2.1 3.0
x (m) = 40 44.1 90 (31) (I

$$
\overline{v} = \frac{\Delta x}{\Delta t} = \frac{50m}{1.0s} = 50.0 \text{ m/s}
$$
 (32) (I)

(24) (C).
$$
\overline{v} = \frac{\Delta x}{\Delta t} = \frac{4.1 \text{m}}{0.1 \text{s}} = 41.0 \text{ m/s}
$$

(25) **(C).** Average velocity =
$$
\frac{\text{Displacement}}{\text{Time taken}}
$$
 Hence slope a

$$
=\frac{2R}{t}=\frac{2\times 40}{40}=2 \text{ m/s}
$$

(26) (B). Let d represent the distance between A and B. Let t_1 **(33)** be the time for which the walker has the higher speed in 5.00 m/s = d/t_1 . $\frac{L}{2v_1} + \frac{L}{2v_2} = \frac{1}{2\left[\frac{1}{v_1} + \frac{1}{v_2}\right]} = \frac{2v_1v_2}{v_2 + v_1}$
 $= 10t^2$:
 $= 20$ 2.1 3.0 (31)
 $= \frac{Ax}{\Delta t} = \frac{50m}{1.0s} = 50.0 \text{ m/s}$ (32)
 $= \frac{Ax}{\Delta t} = \frac{4.1 \text{$ = $\frac{L}{2v_1} + \frac{L}{2v_2} = \frac{1}{2} \left[\frac{1}{v_1} + \frac{1}{v_2} \right] = \frac{2v_1v_2}{v_2 + v_1}$

x = 10 t²:

x = 10 t²:

x = 10 t²:

x = 10 t²:

((s) = 20 2.1

x = 0 2.1

x = $\frac{30}{\Delta t} = \frac{50m}{1.0s} = 50.0$ m/s

 $\overline{v} = \frac{\Delta x}{$ 2.1 3.0

4.1 90 (31) (B).

4.1 90 (31) (B).
 $\frac{a}{s} = 50.0 \text{ m/s}$ (32) (C).
 $\frac{m}{s} = 41.0 \text{ m/s}$ (32) (C).
 $\frac{m}{s} = 41.0 \text{ m/s}$
 $= \frac{2R}{t} = \frac{2 \times 40}{40} = 2 \text{ m/s}$

the distance between A and B. Let t₁ (33) (D).

w 44.1 90
 $\frac{500}{1.0s} = 50.0 \text{ m/s}$
 $\frac{4.1 \text{ m}}{0.1 \text{ s}} = 41.0 \text{ m/s}$
 $\frac{4 \text{ km}}{0.1 \text{ s}} = 41.0 \text{ m/s}$
 $\frac{4 \text{ km}}{1 \text{ m}} = 41.0 \text{ m/s}$
 $\frac{4 \text{ km}}{1} = 41.0 \text{ m/s}$
 $\frac{4 \text{ km}}{1} = \frac{2 \text{ m}}{40} = 2 \text{ m/s}$
 $\frac{4 \text{ km}}{1} = \$ $\frac{\Delta x}{\Delta t} = \frac{50 \text{m}}{1.0 \text{s}} = 50.0 \text{ m/s}$ (32)
 $\frac{\Delta x}{\Delta t} = \frac{4.1 \text{m}}{0.1 \text{s}} = 41.0 \text{ m/s}$

rage velocity = $\frac{\text{Displacement}}{\text{Time taken}}$
 $= \frac{2 \text{R}}{\text{t}} = \frac{2 \times 40}{40} = 2 \text{ m/s}$

d represent the distance between A and B. Let $t_$ $y = \frac{\text{Displacement}}{t}$
 $= \frac{2R}{t} = \frac{2 \times 40}{40} = 2 \text{ m/s}$

The negative since slope at

the distance between A and B. Let t₁

t₁,

t₁,

t₁,

t₁,

t₁,

t₁,

t₁,

t₁,

the distance between A and B. Let t₁

(33 $\nabla = \frac{\Delta x}{\Delta t} = \frac{4.1 \text{m}}{0.1 \text{ s}} = 41.0 \text{ m/s}$

Average velocity = $\frac{2 \text{ is placed on}}{1 \text{ time taken}} = \frac{2 \times 40}{40} = 2 \text{ m/s}$

Let d represent the distance between A and B. Let t_1 (33) (D). The the time for which the walker has

Let t_2 represent the longer time for the return trip in $-3.00 = -d/t_2$. Then the times are

$$
t_1 = \frac{d}{(5.00 \text{ m/s})}
$$
 and $t_2 = \frac{d}{(3.00 \text{ m/s})}$.
(35) **(D).** $v = \frac{dx}{dt} = 6t$.

$$
\overline{\mathbf{v}} = \frac{\text{Total distance}}{\text{Total time}}
$$

$$
= \frac{d+d}{\frac{d}{(5.00 \text{ m/s})} + \frac{d}{(3.00 \text{ m/s})}} = \frac{2d}{\frac{(8.00 \text{ m/s})d}{(15.0 \text{ m}^2/\text{s}^2)}}
$$
(37) (D).
(a) The

$$
\overline{v} = \frac{2 (15.0 \text{ m}^2/\text{s}^2)}{8.00 \text{ m/s}} = 3.75 \text{ m/s}
$$

(27) (A). She starts and finishes at the same point A. With total displacement $= 0$, Average velocity $= 0$.

(28) (B). At $t_i = 1.5$ s, $x_i = 8.0$ m (Point A) At $t_f = 4.0$ s, $x_f = 2.0$ m (Point B)

At t_i = 1.5 s, x_i = 8.0 m (Point A)
\nAt t_f = 4.0 s, x_f = 2.0 m (Point B)
\n
$$
\overline{v} = \frac{x_f - x_i}{t_f - t_i} = \frac{(2.0 - 8.0) \text{ m}}{(4 - 1.5) \text{ s}} = -\frac{6.0 \text{ m}}{2.5 \text{ s}} = -2.4 \text{ m/s}
$$
\nThe slope of the tangent line is found from points C and D.
\n
$$
t_C = 1.0 \text{ s}, x_C = 9.5 \text{ m} \text{ and } (t_D = 3.5 \text{ s}, x_D = 0),
$$
\n
$$
v \approx -3.8 \text{ m/s}
$$

(29) (C). The slope of the tangent line is found from points C and D.

$$
(t_C = 1.0 \text{ s}, x_C = 9.5 \text{ m})
$$
 and $(t_D = 3.5 \text{ s}, x_D = 0)$,
 $v \approx -3.8 \text{ m/s}$

- **(30) (A).** The velocity is zero when x is a minimum. This is at $t \approx 4$ s.
- **(31) (B).** A particle moving with uniform velocity has zero acceleration.
- **(32) (C).** The tangent at F is the dashed line GH. Taking triangle GHJ, we have $\Delta t = 24 - 4 = 20$ s

$$
\Delta x = 0 - 15 = -15m
$$

Hence slope at F is
$$
v_F = \frac{\Delta x}{\Delta t} = \frac{-15m}{20 s} = -0.75
$$
 m/s

The negative sign tells us that the object is moving in the –x direction.

(32) (C). The tangle GHJ, we have
acceleration.
 $\Delta t = 24 - 4 = 20$ s
 $\Delta x = 0 - 15 = -15m$
 $\Delta t = 20 - 15 = -15m$

Hence slope at F is $v_F =$
 $= 2 \text{ m/s}$

The negative sign tells v

in the --x direction.

Mence slope at F is v_F (32) (C). The tangent at F

triangle GHJ, we
 $\Delta t = 24-4=20$
 $\Delta x = 0-15=-1$.

Hence slope at F

tend
 $\frac{10}{\pi} = 2 \text{ m/s}$

The negative sign

of the expected

text

of the return trip in

(34) (D). The displacement

Afte At $1.00 = 4.0$
 $-\frac{\Delta x}{\Delta t} = 41.0 \text{ m/s}$

cange velocity = $\frac{2R}{t} = 2 \times 40 = 2 \text{ m/s}$

cange velocity = $\frac{3R}{t} = 2 \times 40 = 2 \text{ m/s}$

dererges in the distance between A and B. Let t₁ (33) (D). The displacement dime grap **(33) (D).** The displacement-time graph is a straight line inclined to time axis upto time t_0 indicates a uniform velocity. After time t_0 , the displacement-time graph is a straight line parallel to time axis indicates particle at rest. The velocity is zero when x is a minimum.

This is at $t \approx 4$ s. (4)

A particle moving with uniform velocity has zero

acceleration.

The tangent at F is the dashed line GH. Taking
 $\frac{dx}{dt} = 24 - 4 = 20$ s
 $\Delta x = 0 - 15 = -1$ dt . At t = 3 ; v = 18 m/s

(34) (C). At any time, t, the position is given by
\n
$$
x = (3.00 \text{ m/s}^2) t^2
$$
. Thus, at t_i = 3.00 s
\n $x_i = (3.00 \text{ m/s}^2) (3.00 \text{ s})^2 = 27.0 \text{ m}$

(35) **(D).**
$$
v = \frac{dx}{dt} = 6t
$$
. At $t = 3$; $v = 18$ m/s

2d is negative at point e. **(36) (B).** The slope of the tangent at any point on the displacement-time graph gives instantaneous velocity at that instant. In the given graph, the slope

(37) (D).

- (a) The given x-t graph, shown in (a), does not represent one-dimensional motion of the particle. This is because a particle cannot have two positions at the same instant of time.
- (b) The given v-t graph, shown in (b), does not represent one-dimensional motion of the particle. This is because a particle can never have two values of velocity at the same instant of time.

- (c) The given v-t graph, shown in (c), does not represent one-dimensional motion of the particle. This is because speed being a scalar quantity cannot be negative.
- (d) The given v-t graph, shown in (d), does not represent one-dimensional motion of the particle. This is because the total path length travelled by the particle cannot decrease with time. **(O.B.- SOLUTIONS**

given v-t graph, shown in (c), does not represent

dimensional motion of the particle. This is

use speed being a scalar quantity cannot be

time. The displacement

tive.

tive.

tive.

tives.

tives t **Q.B.- SOLUTIC**

given v-t graph, shown in (c), does not represent

dimensional motion of the particle. This is

use speed being a scalar quantity cannot be

tive.

tiven v-t graph, shown in (d), does not represent

dimen **EXECUTIONS**

Solutions and the particle at this point

dimensional motion of the particle. This is

to absolute value) of the particle at this point

tive.

tive, the control of the particle and the particle interval is **CO.B.- SOLUTIC**
viven v-t graph, shown in (c), does not represent
dimensional motion of the particle. This is
use speed being a scalar quantity cannot be
ive.
iven v-t graph, shown in (d), does not represent
dimensional **EXERCUTE SOLUTIONS**

THE SURVERSING SURFAINING

The given v-t graph, shown in (c), does not represent

the particle at this point

core absolute value) or

degative.

The given v-t graph, shown in (d), does not represent **(Q.B.- SOLUTIO**
given v-t graph, shown in (c), does not represent
dimensional motion of the particle. This is
use speed being a scalar quantity cannot be
tive.
given v-t graph, shown in (d), does not represent
dimensiona **CO.B.- SOLUTIO**

The given v-t graph, shown in (c), does not represent

one-dimensional motion of the particle. This is

because speed being a scalar quantity cannot be

negative.

The given v-t graph, shown in (d), does

(38) (A).
$$
v = \frac{(5-0) m}{(1-0) s} = 5 m/s
$$

(39) (C).
$$
v = \frac{(5-10) m}{(4-2) s} = -2.5 m/s
$$

(40) (C).
$$
v = \frac{(5-5) \text{ m}}{(5-4) \text{ s}} = 0
$$
 (46)

(41) (A).
$$
v = \frac{0 - (-5m)}{(8-7)s} = +5m/s
$$

- **(42) (C).**
	- (C). (A) It is clear from the graph that $OO > OP$. So, A lives (47) closer to the school than B.

- (B) The position-time graph of A starts from the origin $(t=0)$ while the position-time graph of B starts from C which indicates that B started later than A after a time interval OC. So, A started earlier than B.
- (C) The speed is represented by the steepness (or slope) of the position-time graph. Since the position-time graph of B is steeper than the position-time of graph A, therefore, we conclude that B is faster than A.
- (D) Corresponding to both P and Q, the time interval is the same, i.e., OD. This indicates that both A and B reach their homes at the same time.
- **(43) (C).** The average acceleration is the change in velocity **(51)** (final velocity minus initial velocity) divided by the elapsed time. The change in velocity has a magnitude of 15.0 km/h. Since the change in velocity points due east, the direction of the average acceleration is also (52) due east.
- **(44) (C).** The object has an initial positive (northward) velocity and a negative (southward) acceleration; so, a graph (54) of velocity versus time slopes down steadily from an original positive velocity. Eventually, the graph cuts through zero and goes through increasing-The object has an initial positive (n
and a negative (southward) accele
of velocity versus time slopes dow
original positive velocity. Eventua
through zero and goes throu
magnitude- negative values.
In a position vs. time
- **(45) (B).** In a position vs. time graph, the velocity of the object at any point in time is the slope of the line tangent to the graph at that instant in time. The speed of the

EXERCISE THEORY (O.B.- SOLUTIONS FITD**Y MATERIAL: PT**

EXERCISE THEORY OR EXECUTIONS TRIS IS (or absolute value) of the particle at this point in time is simply the magnetic.

Cata cause speed being a scalar quantity ca **EXECUTE:**

SUBSEDUTIONS

SUBSERVIATERIAL

EXECUTIONS

International motion of the particle. This is

timensional motion of the particle. This is

the numerical at this point in time is simply the

timensional motion of t **EXERCISE SOLUTIONS**

Example given v-t graph, shown in (c), does not represent

e-dimensional motion of the particle. This is for absolute value) of the velocity at this instance

e-dimensional motion of the particle. Th particle at this point in time is simply the magnitude (or absolute value) of the velocity at this instant in time. The displacement occurring during a time interval is equal to the difference in x coordinates at the final and initial times of the interval, $\Delta x = x_f - x_i$. The average velocity during a time interval is the slope of the straight line connecting the points on the curve corresponding to the initial and final times

of the interval,
$$
\overline{v} = \frac{\Delta x}{\Delta t}
$$

Thus, we see how the quantities in choices (A), (C), and (D) can all be obtained from the graph. Only the acceleration, choice (B), cannot be obtained from the position vs. time graph.

- **(46) (D).** (i) (b) shows equal spacing, meaning constant nonzero velocity and constant zero acceleration. (ii) (c) shows positive acceleration throughout. (iii) (a) shows negative (leftward) acceleration in the first four images.
- **(47) (C).** For zero acceleration, the position-time graph is a straight line.
- **(48) (B).** Here, Initial velocity $u = 0$,

slope of the straight line connecting the points on
the curve corresponding to the initial and final times
of the interval,
$$
\overline{v} = \frac{\Delta x}{\Delta t}
$$

Thus, we see how the quantities in choices (A), (C),
and (D) can all be obtained from the graph. Only the
acceleration, choice (B), cannot be obtained from the
position vs. time graph,
.) (i) (b) shows equal spacing, meaning constant
nonzero velocity and constant zero acceleration. (ii)
(c) shows positive acceleration throughout. (iii) (a)
shows negative (leftward) acceleration in the first
four images.
3. For zero acceleration, the position-time graph is a
straight line.
3. Here, Initial velocity u = 0,
v = (v_{max}) = 18 km/h = 18 × $\frac{5}{18}$ = 5 m/s; t₁ = 0 sec,
t₂ = 2 sec.
 $a_{av} = \frac{v - u}{t_2 - t_1} = \frac{\Delta v}{\Delta t}$, so $a_{av} = \frac{5.0}{2} = 2.5$ m/s²
3. Here, u = 0 and v = 10 m/s, t = 5 sec
Using, a = $\frac{v - u}{t}$, we have a = $\frac{(10 - 0)m/s}{5s} = 2$ m/s²
3. $v = \frac{dx}{dt} = \frac{d}{dt}$ (at² - bt³) = 2at - 3bt²
2. $= \frac{dv}{dt} = \frac{d}{dt}$ (2at - 3bt²) = 2a - 6bt
cording to question acc. = 0
2a - 6bt = 0 hence t = $\frac{a}{3b}$
3. Choose the positive direction to be the outward
direction, perpendicular to the wall.
a = $\frac{\Delta v}{\Delta t} = \frac{22.0 \text{ m/s} - (-25.0 \text{m/s})}{3.50 \times 10^{-3} \text{ s}} = 1.34 \times 10^4$ m/s²
a). The slope of the tangent drawn on velocity-time
graph at any instant of time is equal to the
instance in velocity.
3. There, the area under acceleration-time graph represents
the change in velocity.
3. There are an other acceleration, the equation is
isobed velocity-time graph at any constant of time is equal to the
is close of velocity-time graph shows acceleration.

(49) **(D).** Here,
$$
u = 0
$$
 and $v = 10$ m/s, $t = 5$ sec

Using,
$$
a = \frac{v - u}{t}
$$
, we have $a = \frac{(10 - 0)m/s}{5 s} = 2 m/s^2$

(50) (A).
$$
v = \frac{dx}{dt} = \frac{d}{dt} (at^2 - bt^3) = 2at - 3bt^2
$$

$$
acc. = \frac{dv}{dt} = \frac{d}{dt} (2at - 3bt^2) = 2a - 6bt
$$

According to question
$$
acc = 0
$$

$$
\therefore \quad 2a - 6bt = 0 \quad \text{hence} \quad t = \frac{a}{3b}
$$

(51) (D). Choose the positive direction to be the outward direction, perpendicular to the wall.

$$
= \frac{\Delta v}{\Delta t} = \frac{22.0 \text{ m/s} - (-25.0 \text{ m/s})}{3.50 \times 10^{-3} \text{s}} = 1.34 \times 10^{4} \text{ m/s}^{2}
$$

- **(52) (C).** The area under acceleration-time graph represents the change in velocity.
- **(53) (D).**
- **(54) (A).** The slope of the tangent drawn on velocity-time graph at any instant of time is equal to the instantaneous acceleration.
- **(55) (C).** Slope of velocity-time graph shows acceleration.
- **(56) (C).** The equations of kinematics can be used only when the acceleration remains constant and cannot be used when it changes from moment to moment.

(57) (D). According to one of the equation of kinematics $x = v_0 t + \frac{1}{2}$ at², with $v_0 = 0$ m/s, the displacement is $\frac{1}{2}$ at², with v₀ = 0 m/s, the displacement is

proportional to the acceleration.

- **(58) (C).** With original velocity zero, displacement is proportional to the square of time in $(1/2)$ at². Making the time one-third as large makes the displacement one-ninth as large. **ENSION** (**Q.B.- SOLUTION**

ne of the equation of kinematics (64) (

with $v_0 = 0$ m/s, the displacement is

the acceleration.

velocity zero, displacement is

the square of time in (1/2) at². Making

right as large mak **ONE DIMENSION** (**O.B. SOLUTIONS**

ording to one of the equation of kinematics (64) (**A**). Let $v_0t + \frac{1}{2}$ at², with $v_0 = 0$ m/s, the displacement is it in the acceleration.

h original velocity zero, displacement i **EVALUATE CONSTRANT (O.B.- SOLUTIONS**

ling to one of the equation of kinematics (64) (A). Let $\frac{1}{2}$ at², with $v_0 = 0$ m/s, the displacement is it is trivial to the scaeteration. Us

original velocity zero, displac According to one of the equation of kinematics
 $x = v_0t + \frac{1}{2}at^2$, with $v_0 = 0$ m/s, the displacement is

proportional to the acceleration.

With original velocity zero, displacement is
 v_0 with original velocity ze
- **(59) (B).** The initial velocity of the car is $v_0 = 0$ and the velocity **(65)** at time t is v. The constant acceleration is therefore

given by $a = \frac{\Delta v}{\Delta t} = \frac{v - v_0}{t - 0} = \frac{v - 0}{t} = \frac{v}{t}$

and the average velocity of the car is

$$
\bar{v} = \frac{v + v_0}{2} = \frac{v + 0}{2} = \frac{v}{2}
$$

The distance traveled in time t is
$$
\Delta x = \overline{v} t = \frac{vt}{2}
$$

In the special case where $a= 0$ (and hence $v = v_0 = 0$), we see that statements (a), (b), (c), and (d) are all correct. However, in the general case ($a \ne 0$) and hence $(v \neq 0)$. Only statement (b) and (c) are true.

(60) (A). Here,
$$
u = 10
$$
 m/s, $t = 3$ s, $v = 16$ m/s

Now velocity at 2s, before the given instant $10 = u + 2 \times 2$ (: $v = u + at$) \therefore u = 6 m/s

(61) (A). As acc. is constant so from $s = ut + \frac{1}{2}$ at² we have **On** subtraction

$$
x = \frac{1}{2}
$$
 at² $[u = 0]$ (1)

Now if it travels a distance y in next t sec. in 2t sec total distance travelled

$$
x + y = \frac{1}{2} a(2t)^2
$$
(2) $(t + t = 2t)$
Dividing eqn. (2) by eqn (1)

$$
\frac{x+y}{x} = 4 \qquad \text{or} \qquad y = 3x
$$

- v ≠ 0). Only statements (a), (b), (c), and (d) are a
ororect. However, in the general case (a ≠ 0) and hence
orect. However, in the general case (a ≠ 0) and hence
 $v \ne 0$). Only statement (b) and (c) are true.
 $1 = \frac{v u}{$ **(62) (C).** The sign of acceleration does not tell us whether the particle's speed is increasing or decreasing. The sign of acceleration depends on the choice of the positive
direction of the axis. For example, if the vertically direction of the axis. For example, if the vertically upward direction is chosen to be positive direction of the axis, the acceleration due to gravity is negative. If a particle is falling under gravity, this acceleration though negative results in increase in speed.
- **(63) (A).** The velocity time graph is not a straight line, the acceleration is not uniform. Hence relation (a), (b) and (e) are not correct, but relation, (c), (d) and (f) are correct.

EXECUTE DIMENSION

According to one of the equation of kinematics (64) (A). Let d_s is the distant $x = v_0t + \frac{1}{2}at^2$, with $v_0 = 0$ m/s, the displacement is it stops. Here, fina initial velocity $y = u$ using equation **MENSION (Q.B.- SOLUTIONS (S.B. C.D.UTIONS (S.B. C.D.UTIONS (S.B. C.D.UTIONS (S.B. C.D.UTIONS (S.B. C.D.UTIONS (S.B. C.D.UTIONS Exception Exception Exception Exception Exception Excep OIMENSION** (**Q.B.- SOLUTIONS** to one of the equation of kinematics (64) (A). Let d_s is the distance travelled by the vehicle before at², with $v_0 = 0$ m/s, the displacement is theys. Here, final velocity $v = 0$, lot **IN ONE DIMENSION**
 IO.B.- SOLUTIONS
 IO.B.- SOLUTIONS
 $= v_0t + \frac{1}{2}$ are, with $v_0 = 0$ m/s, the displacement is
 $= v_0t + \frac{1}{2}$ are, with $v_0 = 0$ m/s, the displacement is

to stop s. Here, final velocity $v = 0$, **(Q.B.- SOLUTIONS**

f kinematics (64) (A). La

e displacement is in U

is placement is v²

is placement is v²

is (1/2) at². Making

the displacement

0 and the velocity (65) (B). H

is a A

(0

is a A

is a A

is a **IN ONE DIMENSION**

According to one of the equation of kinematics (64) (A). Let d, is the distance travelled by the vehicle before
 $x = v_0t + \frac{1}{2}at^2$, with $v_0 = 0$ m/s, the displacement is intinsi belocity = u, S = d, ding to one of the equation of kinematics (64) (A). Let d₄ is the distance travelled by the vehicle
 $x + \frac{1}{2}$ an², with $v_0 = 0$ m/s, the displacement is intersection.

trivial u cohic ity =u, S = d,

trivial u cho conding to one of the equation of kinematics
 $v_0t + \frac{1}{2}at^2$, with $v_0 = 0$ m/s, the displacement is
 $v_0t + \frac{1}{2}at^2$, with $v_0 = 0$ m/s, the displacement is

this victochy $v = 0$,

operiorional to the secretization. **(64) (A).** Let d_s is the distance travelled by the vehicle before it stops. Here, final velocity $v = 0$, initial velocity = $u, S = d$, Using equation of motion $v^2 = u^2 + 2aS$: $(0)^2 = u^2 + 2ad_s$ $d_s = -\frac{u^2}{2g}$; $d_s \propto u^2$ CONSIDERABANCE DIFABRING

2 d_s is the distance travelled by the vehicle before

tops. Here, final velocity $v = 0$,

and velocity = u, S = d,

ing equation of motion
 $= u^2 + 2aS$ $\therefore (0)^2 = u^2 + 2ad_s$
 $= -\frac{u^2}{2a}$; d_s **SOM ADVANCED LEARNING**
distance travelled by the vehicle before
extends to the vehicle before
is the set of motion
 $y = u$, $S = d$,
on of motion
 $\therefore (0)^2 = u^2 + 2ad_s$
 $d_s \propto u^2$
 $k \text{m/h} = 144 \times \frac{5}{18} \text{m/s} = 40 \text{m/s}$
 $2 \text{ aS$ Let d_s is the distance travelled by the vehicle before

Let d_s is the distance travelled by the vehicle before

it stops. Here, final velocity = u, S = d,

Using equation of motion
 $v^2 = u^2 + 2aS$:. $(0)^2 = u^2 + 2a d_s$
 EDIMADVANCED LEARNING

EDIMADVANCED LEARNING

EDIMADVANCED LEARNING

EDIMADVANCED LEARNING

EDIMADVANCED LEARNING

EINCREDITY = u, S = d,

sing equation of motion

= u² + 2aS :. (0)² = u² + 2ad_s

= - $\frac{u^2}{2a}$ Let d_s is the distance travelled by the vehicle before

test ds is the distance travelled by the vehicle before

it stops. Here, final velocity $v = 0$,

Using equation of motion
 $v^2 = u^2 + 2aS$... $(0)^2 = u^2 + 2aI_S$
 d_s EDIMENDANTIES

EXECUTE As its the distance travelled by the vehicle before

stops. Here, final velocity v = 0,

sing equation of motion
 $= u^2 + 2aS$:. (0)² = $u^2 + 2ad_s$
 $= -\frac{u^2}{2a}$; $d_s \propto u^2$
 $= -\frac{u^2}{2a}$; d_s

(65) **(B).** Here,
$$
u = 144 \text{ km/h} = 144 \times \frac{5}{18} \text{ m/s} = 40 \text{ m/s}
$$

\n $v = 0, S = 200 \text{ m}$
\nAs $v^2 - u^2 = 2$ aS

(0)² – (40)² = 2 × a × (200)
\na =
$$
-\frac{(40)^2}{2 \times 200}
$$
 = -4 m/s²
\nAs v = u + at
\n∴ 0 = 40 – (4)(t) ⇒ t = 40/4 = 10s

$$
2 \text{ }^{2} \text{ } (66) \quad \text{(66)} \quad \text{(C). } \text{S} = \text{vt} + \frac{1}{2} \text{at}^{2}
$$

It is not a kinematic equation of motion. All others are three kinematic equations of motion.

(67) (C). Here,
$$
u = 0
$$
 $\therefore v^2 = 2as$
It is a parabola of the type $y^2 = 4ax$.
Hence, option (C) represents the correct graph.

(68) (A). From first eqn of motion-
$$
v = u + at
$$

$$
\Rightarrow 100 = 0 + at \text{ or } 100 = at \dots (1)
$$

velocity after one second

$$
v' = 0 + a(t+1)
$$

$$
\Rightarrow 150 = a(t+1) \qquad \dots (2)
$$

$$
\frac{1}{2} \text{ at}^2 \text{ we have}
$$
\nOn subtracting eqn.(1) from eqn.(2)\n
$$
a = 50 \text{ m/s}^2
$$

11 is a parabola of the type
$$
y^2 = 4ax
$$
.
\nHence, option (C) represents the correct graph.
\n**(68)** (A). From first eqⁿ of motion-
\n⇒ 100 = 0 + at or 100 = at(1)
\nvelocity after one second
\n $v' = 0 + a(t + 1)$ (2)
\n⇒ 150 = a(t + 1)(2)
\nOn subtracting eqⁿ. (1) from eqⁿ. (2)
\na = 50 m/s²
\n**(69)** (A). u = 43.2 km/h = 43.2 × $\frac{5}{18}$ m/s = 12 m/s
\nDeceleration; a = 6 m/s² v = 0, s = ?
\n0 = (12)² - 2 × 6s [using v² = u² - 2as]
\nor 144 = 2 × 6s or s = $\frac{144}{12}$ = 12 m
\n**(70)** (C). We have, x = ut + $\frac{1}{2}$ at²
\n= (2.5 m/s) (2s) + $\frac{1}{2}$ (0.50 m/s²) (2s)²
\n= 5.0 m + 1.0 m = 6.0 m
\n**(71)** (D). We have, v = u + at
\nor 7.5 m/s = 2.5 m/s + (0.50 m/s²) t
\nor t = $\frac{7.5m/s - 2.5m/s}{0.50m/s^2}$ = 10s
\n**(72)** (B). We have, v² = u² + 2ax
\nor (7.5 m/s)² = (2.5 m/s)² + 2 (0.50 m/s²) x
\nor x = $\frac{(7.5m/s)^2 - (2.5m/s)^2}{2 \times 0.50m/s}$ = 50m

(70) (C). We have,
$$
x = ut + \frac{1}{2}at^2
$$

$$
= (2.5 \text{ m/s}) (2\text{s}) + \frac{1}{2} (0.50 \text{ m/s}^2) (2\text{s})^2
$$

= 5.0 \text{ m} + 1.0 \text{ m} = 6.0 \text{ m}

(71) **(D).** We have,
$$
v = u + at
$$

or 7.5 m/s = 2.5 m/s + (0.50 m/s²) t

or
$$
t = \frac{7.5 \text{m/s} - 2.5 \text{m/s}}{0.50 \text{m/s}^2} = 10 \text{s}
$$

(72) **(B).** We have,
$$
y^2 = u^2 + 2ax
$$

or $(7.5 \text{ m/s})^2 = (2.5 \text{ m/s})^2 + 2 (0.50 \text{ m/s}^2) x$
or $x = \frac{(7.5 \text{ m/s})^2 - (2.5 \text{ m/s})^2}{2 \times 0.50 \text{ m/s}} = 50 \text{ m}$

(73) (A). Using
$$
S_{nth} = u + \frac{2}{2} (2n-1) = 0 + \frac{2}{2} (2 \times 5 - 1) = 9m
$$

is found

(In S_n th formula, u is speed at $t = 0$)

- **(74) (D).** The bowling pin has a constant downward acceleration while in flight. The velocity of the pin is directed upward on the ascending part of its flight and is directed downward on the descending part of its flight. Thus, only (D) is a true statement.
- **(75) (B).** Free-fall is the motion that occurs while the acceleration is solely the acceleration due to gravity. While the rocket is picking up speed in the upward direction, the acceleration is not just due to gravity, but is due to the combined effect of gravity and the engines. In fact, the effect of the engines is greater than the effect of gravity. Only when the engines shut down does the free-fall motion begin.
- **(76) (D).** The acceleration due to gravity points downward, in the same direction as the initial velocity of the stone thrown from the top of the cliff. Therefore, this stone picks up speed as it approaches the nest. In contrast, the acceleration due to gravity points opposite to the initial velocity of the stone thrown from the ground, so that this stone loses speed as it approaches the nest. The result is that, on average, the stone thrown from the top of the cliff travels faster than the stone thrown from the ground and hits the nest first. Only when the engines

in motion begin.

inting the stone intervals of the stone

inting ventices the new through the stone

wity points downward, in

tial velocity of the stone

with points downward, in

the stone thrown the same direction as the imital velocity of the
thrown from the top of the diff. Therefore, this
picks up speed as it approaches the nest. In co
the acceleration due to gravity points oppos
the initial velocity of the st becomminate the orientation and the entity of the method of the acceleration due to gravity points operation due to gravity b the minal velocity of the site from the time of the same through the same through the same three means the same three same that the matrice of the converse of the same of th

approaches the nest. The result is that, on average,
the stone thrown from the top of the cliff travels faster
than the stone thrown from the ground and hits the
nest first.
(77) **(B).** Using
$$
v_f^2 = v_i^2 + 2a\Delta y
$$
, with $v_i = -12m/s$ and
 $\Delta y = -40$ m:
 $v_f^2 = v_i^2 + 2a\Delta y$,
 $v^2 = (-12 \text{ m/s})^2 + 2(-9.80 \text{ m/s}^2) (-40 \text{ m})$
 $v = -30$ m/s
(78) **(C).** We take downward as the positive direction with
 $y = 0$ and $t = 0$ at the top of the cliff. The freely falling
marble then has $v_0 = 0$ and its displacement at
 $t = 1.00$ s is $\Delta y = 4.00$ m. To find its acceleration, we
use $y = y_0 + v_0t + at^2$
 $y - y_0 = \Delta y = \frac{1}{2} at^2$; $a = \frac{2\Delta y}{t^2}$
($a = \frac{2(4.00 \text{ m})}{(1.00 \text{ s})^2} = 8.00 \text{ m/s}^2$
The displacement of the marble (from its initial
position) at $t = 2.00$ s is found from
 $\Delta y = \frac{1}{2} at^2 = \frac{1}{2}$ (8.00 m/s² {(2.00 s)² = 16.0 m.
The distance the marble has fallen in the 1.00 s interval
from $t = 1.00$ s to $t = 2.00$ s is then
 $\Delta y = 16.0$ m – 4.0 m = 12.0 m.
(79) **(C).** We take downward as the positive direction with
 $y = 0$ and $t = 0$ at the top of the cliff. The freely falling
pebble then has $v_0 = 0$ and $a = g = +9.8$ m/s².

(78) (C). We take downward as the positive direction with $y = 0$ and $t = 0$ at the top of the cliff. The freely falling marble then has $v_0 = 0$ and its displacement at $t = 1.00$ s is $\Delta y = 4.00$ m. To find its acceleration, we
we want with Δt^2 (81) use $y = y_0 + v_0 t + at^2$

$$
y - y_0 = \Delta y = \frac{1}{2} \text{ at}^2
$$
; $a = \frac{2\Delta y}{t^2}$
 $a = \frac{2 (4.00 \text{ m})}{(1.00 \text{ s})^2} = 8.00 \text{ m/s}^2$ (82) (A).

The displacement of the marble (from its initial (83) position) at $t = 2.00$ s is found from

$$
\Delta y = \frac{1}{2}at^2 = \frac{1}{2}(8.00 \text{ m/s}^2)(2.00 \text{ s})^2 = 16.0 \text{ m}.
$$

The distance the marble has fallen in the 1.00 s interval from $t = 1.00$ s to $t = 2.00$ s is then $\Delta y = 16.0$ m $- 4.0$ m $= 12.0$ m.

(79) (C). We take downward as the positive direction with $y = 0$ and $t = 0$ at the top of the cliff. The freely falling pebble then has $v_0 = 0$ and $a = g = +9.8$ m/s².

 $\frac{2}{\sin \theta}$ is found from The displacement of the pebble at $t = 1.0$ s is given: $y_1 = 4.9$ m. The displacement of the pebble at t = 3.0 s **STUDY MATERIAL: PHYSICS**

he displacement of the pebble at $t = 1.0$ s is given:
 $= 4.9m$. The displacement of the pebble at $t = 3.0$ s

found from
 $s = v_0 t + \frac{1}{2} a t^2 = 0 + \frac{1}{2} (9.8 \text{ m/s}^2) (3.0 \text{ s})^2 = 44 \text{ m}$

he di **STUDY MATERIAL: PHYSICS**

The displacement of the pebble at $t = 1.0$ s is given:
 $y_1 = 4.9$ m. The displacement of the pebble at $t = 3.0$ s

is found from
 $y_3 = v_0t + \frac{1}{2}$ at $t^2 = 0 + \frac{1}{2}(9.8 \text{ m/s}^2)(3.0 \text{ s})^2 = 44 \$

$$
y_3 = v_0 t + \frac{1}{2}at^2 = 0 + \frac{1}{2}(9.8 \text{ m/s}^2)(3.0 \text{ s})^2 = 44 \text{ m}
$$

The distance fallen in the 2.0-s interval from $t = 1.0$ s to $t = 3.0$ s is then

$$
\Delta y = y_3 - y_1 = 44 \text{ m} - 4.9 \text{ m} = 39 \text{ m}.
$$

(80) (D). The maximum height (where $v = 0$) reached by a freely falling object shot upward with an initial velocity $v_0 = +225$ m/s is found from

$$
f_{\rm f}^2 = v_{\rm i}^2 + 2a(y_{\rm f} - y_{\rm i}) = v_{\rm i}^2 + 2a\Delta y,
$$

acceleration due to gravity.

Solving for Δy then gives

$$
\Delta y = \frac{v_f^2 - v_i^2}{2a} = \frac{-v_0^2}{2(-g)} = \frac{-(225 \text{ m/s})^2}{2(-9.80 \text{ m/s}^2)} = 2.58 \times 10^3 \text{ m}
$$

STUDY MATERIAL: PHYSICS
placement of the pebble at $t = 1.0$ s is given:
m. The displacement of the pebble at $t = 3.0$ s
d from
 $t + \frac{1}{2}$ at² = 0 + $\frac{1}{2}$ (9.8 m/s²) (3.0 s)² = 44 m
tance fallen in the 2.0-s i **STUDY MATERIAL: PHYSICS**

isplacement of the pebble at $t = 1.0$ s is given:

9.9. The displacement of the pebble at $t = 3.0$ s

old from
 $0t + \frac{1}{2}at^2 = 0 + \frac{1}{2}(9.8 \text{ m/s}^2)(3.0 \text{ s})^2 = 44 \text{ m}$

istance fallen in the 2 **STUDY MATERIAL: PHYSICS**

The displacement of the pebble at $t = 1.0$ s is given:
 $Pr_1 = 4.9m$. The displacement of the pebble at $t = 3.0$ s

is found from
 $y_3 = v_0t + \frac{1}{2}at^2 = 0 + \frac{1}{2}(9.8 \text{ m/s}^2)(3.0 \text{ s})^2 = 44 \text{ m}$
 MATERIAL: PHYSICS

bble at $t = 1.0$ s is given:

to f the pebble at $t = 3.0$ s
 $m/s²$) $(3.0 s)² = 44 m$
 $- s$ interval from $t = 1.0 s$
 $= 39 m$.
 $v = 0$) reached by a freely

with an initial velocity
 $+ 2a\Delta y$, **EXECTAL: PHYSICS**

See ble at $t = 1.0$ s is given:

ent of the pebble at $t = 3.0$ s
 $(9.8 \text{ m/s}^2)(3.0 \text{ s})^2 = 44 \text{ m}$
 $2.0 \text{-} \text{s}$ interval from $t = 1.0 \text{ s}$
 $m = 39 \text{ m}$.
 $m = 39 \text{ m}$.
 $m = 39 \text{ m}$.
 $m = 39 \text{ m}$ Thus, the projectile will be at the $\Delta y = 6.20 \times 10^2$ m level twice, once on the way upward and once coming back down.

The elapsed time when it passes this level coming downward can be found by using

 $v_f^2 = v_i^2 + 2a \Delta y$ again by substituting

 $a = -g$ and solving for the velocity of the object at height (displacement from original position)

fulling object shot upward with an initial velocity
\n
$$
v_0 = +225 \text{m/s}
$$
 is found from
\n $v_f^2 = v_i^2 + 2a (y_f - y_i) = v_i^2 + 2a\Delta y$,
\nacceleration due to gravity.
\nSolving for Δy then gives
\n $\Delta y = \frac{v_f^2 - v_i^2}{2a} = \frac{-v_0^2}{2(-g)} = \frac{-(225 \text{ m/s})^2}{2(-9.80 \text{ m/s}^2)} = 2.58 \times 10^3 \text{ m}$
\nThus, the projectile will be at the $\Delta y = 6.20 \times 10^2 \text{ m}$
\nle level twice, once on the way upward and once coming
\nback down.
\nThe elapsed time when it passes this level coming
\ndownward can be found by using
\n $v_f^2 = v_i^2 + 2a \Delta y$ again by substituting
\n $a = -g$ and solving for the velocity of the object at
\nheight (displacement from original position)
\n $\Delta y = +6.20 \times 10^2 \text{ m}$
\n $v_f^2 = v_i^2 + 2a \Delta y$
\n $v^2 = (225 \text{ m/s})^2 + 2(-9.80 \text{ m/s}^2)(6.20 \times 10^2 \text{ m})$
\n $v = \pm 196 \text{ m/s}$
\nThe velocity coming down is -196m/s. Using $v_f = v_i$
\n+at, we can solve for the time the velocity takes to
\nchange from + 225 m/s to -196 m/s:
\n $t = \frac{v_f - v_i}{a} = \frac{(-196 - 225) \text{ m/s}}{-9.80 \text{ m/s}^2} = 43.0 \text{s}$
\nAt the highest point velocity of the ball becomes
\nzero, but its acceleration is equal to g.
\n
$$
\frac{v_f}{f} = \frac{v_i}{g} = \frac{2 \times 50}{g} = 10 \text{s}
$$

\nSuppose the body passes the upper point at t second
\nand lower point at $(t + 1)$ s, then
\n $S_2 - S_1 = \frac{1}{2}g(t + 1)^2 - \frac{1}{2}gt^2 = \frac{1}{2}g(2t + 1)$
\n $30 \text{m} = \frac{1}{$

The velocity coming down is -196 m/s. Using $v_f = v_i$ +at, we can solve for the time the velocity takes to change from $+ 225$ m/s to -196 m/s:

$$
t = \frac{v_f - v_i}{a} = \frac{(-196 - 225) \text{ m/s}}{-9.80 \text{ m/s}^2} = 43.0 \text{s}
$$

(81) (C). At the highest point velocity of the ball becomes zero, but its acceleration is equal to g.

$$
=\frac{2\Delta y}{t^2}
$$
\n(82) (A).\n
$$
\sum_{t=2}^{V} t
$$
\n(83) (A)

(D). $t = \frac{2u}{g} = \frac{2 \times 50}{g} = 10s$

(84) (A). Suppose the body passes the upper point at t second and lower point at $(t + 1)$ s, then

back down.
\nThe elapsed time when it passes this level coming
\ndownward can be found by using
\n
$$
v_f^2 = v_i^2 + 2a
$$
 Ay again by substituting
\na = -g and solving for the velocity of the object at
\nheight (displacement from original position)
\n $\Delta y = +6.20 \times 10^{22}$ m
\n $v_f^2 = v_i^2 + 2a \Delta y$
\n $v^2 = (225 \text{ m/s})^2 + 2(-9.80 \text{ m/s}^2)(6.20 \times 10^{2} \text{m})$
\n $v = \pm 196 \text{ m/s}$
\nThe velocity coming down is -196m/s. Using $v_f = v_i$
\n+ at, we can solve for the time the velocity takes to
\nchange from + 225 m/s to -196 m/s:
\nt = $\frac{v_f - v_i}{a} = \frac{(-196 - 225) \text{ m/s}}{-9.80 \text{ m/s}^2} = 43.0 \text{s}$
\n(C). At the highest point velocity of the ball becomes
\nzero, but its acceleration is equal to g.
\n(A).
\n(A).
\n t
\n(D). $t = \frac{2u}{g} = \frac{2 \times 50}{g} = 10 \text{s}$
\n(A). Suppose the body passes the upper point at t second
\nand lower point at (t + 1) s, then
\n $S_2 - S_1 = \frac{1}{2}g(t+1)^2 - \frac{1}{2}gt^2 = \frac{1}{2}g(2t+1)$
\nor $30 \text{m} = \frac{1}{2} \times 9.8 (2t+1) \therefore t = 2.56 \text{ s}$
\n $S_1 = \frac{1}{2}gt^2 = \frac{1}{2} \times 9.8 \times (2.56)^2 = 32.1 \text{ m}$
\n(B). Free fall of an object in vacuum is a case of motion
\nwith uniform acceleration.

(85) (B). Free fall of an object in vacuum is a case of motion with uniform acceleration.

MOTION IN ONE DIMENSION Q.B.- SOLUTIONS

(86) (A). The given law is known as Galileo's law of odd numbers. This law was established by Galileo Galilei who was the first to make quantitative studies of free fall. **I IN ONE DIMENSION**

The given law is known as Galileo's law of odd (95)

numbers. This law was established by Galileo Galilei

who was the first to make quantitative studies of free

fall.
 $t = \frac{2u}{g} = \frac{2 \times 30}{10} = 6$ **ONE DIMENSION (Q.B.- SOLUTION**
given law is known as Galileo's law of odd **(95) (B**
bers. This law was established by Galileo Galilei
was the first to make quantitative studies of free
 $\frac{2u}{g} = \frac{2 \times 30}{10} = 6$ sec.
 IN ONE DIMENSION

The given law is known as Galileo's law of odd (95) (B). Speed of combustion products w.r.t.

Imbers. This law was established by Galileo Galilei

II.
 $\frac{2u}{g} = \frac{2 \times 30}{10} = 6 \text{ sec.}$

E is say ball **Example 11 In the UK of Solution**

The given law is known as Galileo's law or

numbers. This law was established by Galileo C

who was the first to make quantitative studies c

fall.
 $t = \frac{2u}{g} = \frac{2 \times 30}{10} = 6$ sec.
 (MOTION IN ONE DIMENSION) (Q.B.- SOLUT
 (86) (A). The given law is known as Galileo's law of odd (95)

numbers. This law was established by Galileo Galilei

who was the first to make quantitative studies of free

fa

(87) **(B).**
$$
t = \frac{2u}{g} = \frac{2 \times 30}{10} = 6 \text{ sec.}
$$

(88) (A). Let us say ball take 't' sec to fall height h as it falls (9h/25) in last sec., it travel

matrices. This law was established by finite of the fall.

\nthe following two ways the first to make quantitative studies of free fall.

\nLet us say ball take 't' sec to fall height h as it falls:

\n(9h/25) in last sec., it travel

\n
$$
h - \frac{9h}{25} = \frac{16h}{25}
$$
 in $(t-1)$ sec \therefore

\n
$$
h = \frac{1}{2}gt^2
$$
 at t^2 (1)

\nDivide (2) by (1),

\n
$$
\frac{16}{25} = \frac{(t-1)^2}{t^2} \Rightarrow h = \frac{1}{2}gt(5)^2 = \frac{25g}{2}
$$
 m

\n
$$
\frac{1}{2}gt(3)^2 = \frac{g}{2}(2n-1) \Rightarrow n = 5s
$$
 (96)

\nTime taken by first drop to reach the ground

\n
$$
t = \sqrt{\frac{2h}{g}} \Rightarrow t = \sqrt{\frac{2 \times 5}{10}} = 1
$$
 sec.

\nAs the water drops fall at regular intervals from a tap therefore time difference between any two drops

\n
$$
= 1/2
$$
 sec

\nIn this given time, distance of second drop from the

$$
25 \t 2^{5^{(t-1)}}
$$
 ... (2)

Divide (2) by (1) ,

$$
\frac{16}{25} = \frac{(t-1)^2}{t^2} \implies h = \frac{1}{2} g(5)^2 = \frac{25g}{2} m \qquad \qquad = v_c - v_c
$$

(89) (B).
$$
\frac{1}{2}g(3)^2 = \frac{g}{2}(2n-1) \Rightarrow n = 5s
$$

(90) (B). Time taken by first drop to reach the ground

$$
t = \sqrt{\frac{2h}{g}}
$$
 \implies $t = \sqrt{\frac{2 \times 5}{10}} = 1$ sec.

As the water drops fall at regular intervals from a tap therefore time difference between any two drops $= 1/2$ sec

In this given time, distance of second drop from the

$$
\tan = \frac{1}{2}g\left(\frac{1}{2}\right)^2 = \frac{5}{5} = 1.25 \,\text{m}
$$

Its distance from the ground = $5 - 1.25 = 3.75$ m (97)

 $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{2}{3}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{2}{3}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ **(91) (B).** Speed of stone in a vertically upward direction is 20m/s. So for vertical downward motion we will consider $u = -20m/s$ (89) (B). $\frac{1}{2}g(3)^2 = \frac{g}{2}(2n-1) \Rightarrow n = 5s$ (96)

(90) (B). Time taken by first drop to reach the ground
 $t = \sqrt{\frac{2h}{g}} \Rightarrow t = \sqrt{\frac{2 \times 5}{10}} = 1$ sec.

As the water drops fall at regular intervals from a tap

therefore time

$$
v^{2} = u^{2} + 2gh = (-20)^{2} + 2 \times 9.8 \times 200 = 4320 \text{ m/s}
$$

$$
v \approx 65 \text{ m/s}
$$

- velocity is zero.
	- \therefore Displacement-time graphs of A and B must have same slope (other than zero)

$$
(93) \quad (A). \overset{W}{\xrightarrow{\hspace{0.5cm}}} F
$$

Velocity of car A w.r.t. ground, $v_{AG} = 60 \text{ km/h}$ Velocity of car B w.r.t. ground, $v_{BG} = 45$ km/h Relative velocity of car A w.r.t. B $v_{AB} = v_{AG} + v_{GB} = v_{AG} - v_{BG}$ ($\because v_{GB} = -v_{BG}$) $= 60$ km/h – 45 km/h = 15 km/h

$$
(94) \quad (D). \quad W \longrightarrow F
$$

Velocity of car A w.r.t. ground, $v_{AG} = 60$ km/h Velocity of car B w.r.t. ground, $v_{BG} = -45$ km/h Relative velocity of car A w.r.t. B

$$
v_{AB} = v_{AG} + v_{GB} = v_{AG} - v_{BG}
$$
 (:: v_{GB} = - v_{BG})
= 60 km/h - (-45 km/h) = 105 km/h

(95) (B). Speed of combustion products w.r.t. observer on the ground $= ?$ Velocity of jet air plane w.r.t. observer on ground **SPON ADVANCED LEARNING**
ts w.r.t.
observer on ground
= 500 kmh⁻¹
elocities of jet and
 $v_j - v_0 = 500$ kmh⁻¹
he velocity of the com-
nne, then
s that the combustion

 $= 500$ kmh⁻¹

If \vec{v}_j and \vec{v}_0 represent the velocities of jet and

$$
observer respectively, then v_i - v_0 = 500 \text{ kmh}^{-1}
$$

1 ² bustion products w.r.t. jet plane, then Similarly, if \vec{v}_c represents the velocity of the com-

 $v_c - v_i = -1500 \text{ km h}^{-1}$ 1

Speed of combustion products w.r.t.

Speed of combustion products w.r.t.

bbserver on the ground = ?

Velocity of jet air plane w.r.t. observer on ground

= 500 kmh⁻¹

If \vec{v}_j and \vec{v}_0 represent the velocities o The negative sign indicates that the combustion products move in a direction opposite to that of jet. Speed of combustion products w.r.t. observer

N IN ONE DMEPISION)
\nThe given law is known as Galileo's law of odd (95) (B). Speed of combustion products in
\nnumbers. This law was established by Galileo Galilei
\nfull.
\n
$$
t = \frac{2u}{g} = \frac{2 \times 30}{10} = 6 \text{ sec.}
$$

\n $t = \frac{2u}{g} = \frac{2 \times 30}{10} = 6 \text{ sec.}$
\nLet us say ball take Y see to fall height h as it falls
\n($\theta h/25$) in last sec., it travel
\n($\theta h/25$) in last sec, it travel
\n($\theta h/25$) in last sec, it travel
\n($\theta h/25$) in last sec, it travel
\n $25\frac{6}{12} = \frac{1}{2}g(1-1)^2$
\n $28\left(\frac{1}{12}\right)^2 \Rightarrow h = \frac{1}{2}g(5)^2 = \frac{25g}{2}$ m
\n $25\left(\frac{1}{12}\right)^2 \Rightarrow h = \frac{1}{2}g(5)^2 = \frac{25g}{2}$ m
\n $25\left(\frac{1}{12}\right)^2 \Rightarrow h = \frac{1}{2}g(5)^2 = \frac{25g}{2}$ m
\n $25\left(\frac{1}{12}\right)^2 \Rightarrow h = \frac{1}{2}g(5)^2 = \frac{25g}{2}$ m
\n $25\left(\frac{1}{12}\right)^2 \Rightarrow h = \frac{1}{2}g(5)^2 = \frac{25g}{2}$ m
\n $25\left(\frac{1}{12}\right)^2 \Rightarrow h = \frac{1}{2}g(5)^2 = \frac{25g}{2}$ m
\n $25\left(\frac{1}{12}\right)^2 \Rightarrow h = \frac{1}{2}g(5)^2 = \frac{25g}{2}$ m
\n $25\left(\frac{1}{12}\right)^2 \Rightarrow h = \frac{1}{2}g(5)^2 = \frac{25g}{2}$ m
\n $25\left(\frac{1}{12}\right)^2 \Rightarrow h = \frac{1}{2}g(5)^2 = \frac{25g}{2}$ m
\n $25\left(\frac{1}{12}\right)^2 \Rightarrow h = \frac{1}{2}g(5)^2 = \frac{25g}{2}$

$$
v_{\text{AG}} = +54 \text{ km/h} = +54 \times \frac{3}{18} \text{ m/s} = +15 \text{ m/s}
$$

Velocity of train B with respect to ground

$$
v_{BG} = -90 \text{ km/h} = -90 \times \frac{5}{18} \text{ m/s} = -25 \text{ m/s}
$$

Relative velocity of train A with respect to train B is $v_{AB} = v_{AG} + v_{GB} = v_{AG} - v_{BG}$ (: $v_{GB} = -v_{BG}$) $= +15$ m/s $- (-25$ m/s $) = 40$ m/s

(B). Let the velocity of the monkey with respect ground be v_{MG} .
Relative velocity of the monkey with respect to train

Velocity of train A with respect to ground
\n
$$
v_{AG} = +54 \text{ km/h} = +54 \times \frac{5}{18} \text{ m/s} = +15 \text{ m/s}
$$

\nVelocity of train B with respect to ground
\n $v_{BG} = -90 \text{ km/h} = -90 \times \frac{5}{18} \text{ m/s} = -25 \text{ m/s}$
\nRelative velocity of train A with respect to train B is
\n $v_{AB} = v_{AG} + v_{GB} = v_{AG} - v_{BG}$ ($\because v_{GB} = -v_{BG}$)
\n= +15 m/s - (-25 m/s) = 40 m/s
\n(B). Let the velocity of the monkey with respect ground
\nbe v_{MG}.
\nRelative velocity of the monkey with respect to train
\nA, $v_{MA} = -18 \text{ km/h} = -18 \times \frac{5}{18} \text{ m/s} = -5 \text{ m/s}$
\n $v_{MG} = v_{MA} + v_{AG} = -5 \text{ m/s} + 15 \text{ m/s} = 10 \text{ m/s}$
\n(A). $v_A = 36 \text{ km h}^{-1} = 36 \times \frac{5}{18} \text{ m s}^{-1} = 10 \text{ m s}^{-1}$
\n $v_B = 54 \text{ km h}^{-1} = 54 \times \frac{5}{18} \text{ m s}^{-1} = 15 \text{ m s}^{-1}$
\n $v_C = -15 \text{ m/s}$

(98) (A).
$$
v_A = 36 \text{ km h}^{-1} = 36 \times \frac{3}{18} \text{ ms}^{-1} = 10 \text{ ms}^{-1}
$$

Velocity of train A with respect to ground
\n
$$
v_{AG} = +54 \text{ km/h} = +54 \times \frac{5}{18} \text{ m/s} = +15 \text{ m/s}
$$

\nVelocity of train B with respect to ground
\n $v_{BG} = -90 \text{ km/h} = -90 \times \frac{5}{18} \text{ m/s} = -25 \text{ m/s}$
\nRelative velocity of train A with respect to train B is
\n $v_{AB} = v_{AG} + v_{GB} = v_{AG} - v_{BG}$ (:: $v_{GB} = -v_{BG}$)
\n= +15 m/s – (-25 m/s) = 40 m/s
\n**).** Let the velocity of the monkey with respect ground
\nbe v_{MG} .
\nRelative velocity of the monkey with respect to train
\nA, $v_{MA} = -18 \text{ km/h} = -18 \times \frac{5}{18} \text{ m/s} = -5 \text{ m/s}$
\n $v_{MG} = v_{MA} + v_{AG} = -5 \text{ m/s} + 15 \text{ m/s} = 10 \text{ m/s}$
\n**).** $v_A = 36 \text{ km h}^{-1} = 36 \times \frac{5}{18} \text{ ms}^{-1} = 10 \text{ ms}^{-1}$
\n $v_B = 54 \text{ km h}^{-1} = 54 \times \frac{5}{18} \text{ ms}^{-1} = 15 \text{ ms}^{-1}$
\n $v_C = -15 \text{ m/s}$

B C v_B v_C $-1km \longrightarrow 1km -$ Relative velocity of B w.r.t. A,

 $v_{BA} = v_B - v_A = 15 - 10 = 5$ ms⁻¹ Relative velocity of C w.r.t. A, $v_{CA} = v_C - v_A = -15 - 10 = -25$ ms⁻¹

Time taken by C to cover distance $AC = \frac{1000m}{25ms^{-1}} = 40s$

In order to avoid an accident, the car B accelerates such that it overtakes car A in less than 40sec. Let the minimum required acceleration be a. Now, for B, **Q.B.- SOL**

accident, the car B accelerates

s car A in less than 40sec. Let

d acceleration be a. Now, for B,
 \times 40 \times 40

= 1 ms⁻².
 CISE-2
 v_x , $v_{av} = \frac{\text{Total displacement}}{\text{Total time}}$
 $s = ut + \frac{1}{2}at^2$
 $\therefore v_{av} = \frac{ut + \frac{1}{2}$ **Q.B.- SOLUTIC**
the car B accelerates
less than 40sec. Let
tion be a. Now, for B,
otal displacement
Total time
 at^2
 $\frac{ut + \frac{1}{2}at^2}{t} = u + \frac{1}{2}at$ (7)
 $=(x^2 - 1)$
0

$$
1000 = 5 \times 40 + \frac{1}{2} a \times 40 \times 40
$$

On simplification, $a = 1$ ms⁻².

EXERCISE-2

(1) (A). The average velocity, $v_{av} = \frac{\text{Total displacement}}{\text{Total time}}$

Total displacement, $s = ut + \frac{1}{2}at^2$ 12

and total time = t
$$
\therefore
$$
 $v_{av} = \frac{ut + \frac{1}{2}at^2}{t} = u + \frac{1}{2}at$ (7) (A).

1000-3 x 40 + 2 a x 40 x 40
\nOn simplification, a = 1 ms⁻².
\n**EXERCISE-2**
\n(1) (A). The average velocity,
$$
v_{av} = \frac{\text{Total displacement}}{\text{Total time}}
$$

\nTotal displacement, s = ut + $\frac{1}{2}$ at²
\nand total time = t $\therefore v_{av} = \frac{ut + \frac{1}{2}at^2}{t} = u + \frac{1}{2}at$
\n(2) (B). $x = \sqrt{v+1}$; $x^2 = v+1$; $v = (x^2 - 1)$
\n $a = \frac{dv}{dt} = \frac{d}{dt}(x^2 - 1) = 2x\frac{dx}{dt} - 0$
\n $= 2x v = 2x (x^2 - 1)$
\nAt $x = 5$ m, a = 2 × 5 (25 – 1) = 240 m/s²
\n(3) (A). As $x \propto t^3$
\nVelocity, $v \propto 3t^2$
\nAcceleration, a $\propto 6t$
\n(4) (D). Given: $v = 2t (3 - t)$ or $v = 6t - 2t^2$
\n $\frac{dv}{dt} = 6 - 4t$. At maximum velocity,
\n $\frac{dv}{dt} = 0 \therefore 6 - 4t = 0$ or $t = (3/2)$ s
\n(5) (D). For uniform motion with zero acceleration,
\n v -t graph is a straight line parallel to the time axis.
\n(6) (B). Let B are seen to an bus B leaves town B;

Velocity, $v \propto 3t^2$

Acceleration, $a \propto 6t$

(4) **(D).** Given:
$$
v = 2t (3 - t)
$$
 or $v = 6t - 2t^2$

$$
\frac{dv}{dt} = 6 - 4t
$$
 At maximum velocity,

$$
\frac{dv}{dt} = 0 \therefore 6 - 4t = 0 \text{ or } t = (3/2) \text{ s}
$$

- **(5) (D).** For uniform motion with zero acceleration, v-t graph is a straight line parallel to the time axis.
- **(6) (B).** Let Bus A leaves town A and bus B leaves town B at regular intervals. Let C represents the cyclist and V_A , V_B and V_C are velocities of bus A, bus B and the cyclist respectively.

$$
V_{AC} = \text{Relative velocity of A w.r.t. } C = V_A - V_C
$$
 (

$$
\begin{array}{ccc}\n & \longrightarrow & V_c \\
 & \searrow & & \searrow \\
 & A & \longrightarrow & V_A & V_B \longleftarrow & B\n\end{array}
$$

Similarly, $V_{BC} = V_B - V_C$

Let $T =$ Time interval at which buses are leaving from town A and B.

The distance between two buses plying in the same direction at the same constant speed will remain the same whether measured by an observer moving at some constant speed or by a standing observer. The distance between two consecutive buses A for an observer standing on ground = $V_A T$ (1) This distance as measured by the cyclist

 $= V_{AC}$ T', where, T' = Time interval between two consecutive buses for the cyclist $= 18$ minutes

Distance between two consecutive

 2^{\ldots} Pu **COB. SOLUTIONS**

Correction, the car B accelerates

car A in less than 40sec. Let

acceleration be a. Now, for B,
 10×40
 $10 \times$ **(O.B.- SOLUTIONS**

dent, the car B accelerates

c A in less than 40sec. Let

deleration be a. Now, for B,

similarly

s-2.
 $v = \frac{\text{Total displacement}}{\text{Total time}}$
 $v_{av} = \frac{vt + \frac{1}{2}at^2}{t} = u + \frac{1}{2}at$
 $v_{av} = \frac{ut + \frac{1}{2}at^2}{t} = u + \frac{1}{2}at$
 (O.B. SOLUTIONS

car B accelerates

than 40sec. Let

be a. Now, for B,
 $\therefore V_A T = 18 (V_A + V_B)T = 6 (V_B + V_C)T = 6 (V_C + 20)T = 6 (V + 20)T = 6 (V + 12V)T = 6 (V + 20)T = 6 (V + 12V)T = 480 \Rightarrow V = 4 \text{ Putting$ **(O.B.- SOLUTIONS**

1, the car B accelerates

the in less than 40sec. Let

ation be a. Now, for B,
 $V_{\text{AT}} = 18 \text{ V}_{\text{AC}} =$ **EXERCISE-2**

(a) **(B)** $x = \sqrt{v+1}$; $x^2 = v + 1$; $y = (x^2 - 1)$
 $x = \frac{dv}{dx} = \frac{dv}{dx}(x^2 - 1) = 240 \text{ m/s}^2$

(A) A) A $x = x^2$, $x = 2x$

(b) $x = 2x$, $x^2 = 36$

(c) $x = 2x$, $x^2 = 36$

(d) A $x = 2x$, $x^2 = 36$

(d) A $x = 2x$, **ERCISE-2**

2 x 40 x 40

2 **EXERCISE-2**

In order to avoid an accident, the car B accelerates

A-buses for the cylinder is $V_{\text{A}}T = 18 V_{A}$

the minimum required acceleration be a. Now, for B,
 $2000 \text{ m/s} = 18 V_{A}$
 $1000 = 5 \times 40 + \frac{1}{2}$ a $\times 4$ cident, the car B accelerates

car A in less than 40sec. Let

cceleration be a. Now, for B,
 0×40
 1 ms^{-2} .
 0×40
 1 ms^{-2} .
 $\text{Given } \frac{1}{2}$
 $\text{use } \frac{1}{2}$
 $\text{Given } \frac{1}{2}$
 $\text{Given } \frac{1}{2}$
 $\text{Given } \frac{1}{2}$
 acceleration be a. Now, for B.

scar A in less than 40sec. Let
 40×40
 40×40
 1 mas^{-2} .
 40×40
 1 mas^{-2} .
 40×40
 1 mas^{-2} .
 1 mas^{-2} .
 000 = 5 × 40 + $\frac{1}{2}$ a × 40 × 40

Dn simplification, a = 1 ms⁻².

Dn simplification, a = 1 ms⁻².
 EXERCISE-2

The average velocity, $v_{av} = \frac{\text{Total displacement}}{\text{Total time}}$

Total displacement

Total displacement

Total displacem A-buses for the cyclist = $18 V_{AC} = 18 (V_A - V_C)$ (2) $V_A T = 18 (V_A - V_C)$) (3) Similarly, $V_B T = 6 (V_B + V_C)$) (4) $[V_{BC} = |V_B| + |V_C|$, because B and C are moving in opposite directions] Given, $|V_A| = |V_B| = V$, say and $|V_C| = 20$ km/hr \therefore Equation (3) and (4) become V.T = 18 (V – 20) (5) V.T = 6 (V + 20) (6) \therefore 18 (V – 20) = 6 (V + 20) $18V - 360 = 6V + 120$ $12V = 480 \Rightarrow V = 40$ km/hr Putting it in eq. (5) we get, $T = 9$ mins. ∇ 36 km 0.8 h **STUDYMATERIAL: PHYSICS**

A-buses for the cyclist = 18 V_{AC} = 18 (V_A-V_C)
 $V_A T = 18(V_A - V_C)$ (3)

larly, $V_B T = 6(V_B + V_C)$ (4)

[V_{BC} = | V_B|+|V_C|, because B and C are moving in

Dyposite directio UNCE IV $|V_C| = V_{C}$, because is and C are moving in

opposite directions]

Given, $|V_A| = |V_B| = V$, say and $|V_C| = 20$ km/hr
 \therefore Equation (3) and (4) become

V.T = 18 (V-20)

V.T = 6 (V+20)
 \therefore W.T = 6 (V+20)
 \therefore BV 18 100 2 km / h ⁵ 1 – 1 o (V – 20)

T = 6(V + 20) (3) (V- 480 = V = 40 km/hr

titing it in eq. (5) we get, T = 9 mins.
 $\frac{1}{2}$ 36km/h
 $\frac{$

$$
\frac{2}{t}^{\text{at}} = u + \frac{1}{2} \text{at}
$$
 (7) (A).
$$
\underbrace{2 \text{b} + 27 \text{ km/h}}_{\text{velocity of car A, VA = +27 \text{ km/h}}
$$

Velocity of car B, $v_B = -18$ km/h Relative velocity of car A with respect to car B $= v_A - v_B = + 27$ km/h – (-18 km/h) = 45 km/h Time taken by the two cars to meet

$$
=\frac{36 \text{ km}}{45 \text{ km/h}}=0.8 \text{ h}
$$

Thus, distance covered by the bird $= 36$ km/h \times 0.8 h = 28.8 km

(8) **(A).** Here,
$$
u = 0
$$
, $g = 10$ m/s², $h=1$ km=1000 m
As $v^2 - u^2 = 2gh$ \therefore $v^2 = 2gh$

or
$$
v = \sqrt{2gh} = \sqrt{2 \times 10 \times 1000} = 100\sqrt{2} m/s
$$

= $100\sqrt{2} \times \frac{18}{5} km/h$

$$
=360\sqrt{2} \text{ km/h} = 510 \text{ km/h}
$$

(B). The maximum distance covered in time $T = v_0T$. Therefore, for the object having one dimensional motion the displacement x in time T satisfies $-v_0T < x < v_0T$. Evant victoriny of van A wint respect of our 25
 $\approx x_0 - 9$ is ≈ 27 km/h $-(-18$ km/h) = 45 km/h

Time taken by the two cars to meet
 $= \frac{36 \text{ km}}{45 \text{ km/h}} = 0.8 \text{ h}$

Thus, distance covered by the bird
 $\approx 16 \text{ km/h} \$ $\frac{1}{6}$ km/h

s, distance covered by the bird

km/h × 0.8 h = 28.8 km

e, u = 0, g = 10 m/s², h=1 km=1000 m
 $2 - u^2 = 2gh$ $\therefore v^2 = 2gh$
 $\sqrt{2gh} = \sqrt{2 \times 10 \times 1000} = 100\sqrt{2m/s}$
 $100\sqrt{2} \times \frac{18}{5}$ km/h
 $100\sqrt{2} \times \frac{1$ tance covered by the bird
 \times 0.8 h = 28.8 km

0, g = 10 m/s², h = 1km=1000 m

² = 2gh \therefore $v^2 = 2gh$
 $= \sqrt{2 \times 10 \times 1000} = 100\sqrt{2m/s}$
 $\frac{18}{2} \times \frac{18}{5}$ km/h
 $\frac{18}{2}$ km/h = 510 km/h
 $\frac{18}{2}$ km /h = 510 0 km/h

e covered in time T = v₀T.

ject having one dimensional

int x in time T satisfies

'_p = 30 km h⁻¹

ns⁻¹

¹ = ¹ = ¹⁶⁰ ms⁻¹

speed of police van + speed

tually fired

¹ = $\frac{475}{3}$ ms⁻¹

llet As $v^2 - u^2 = 2gh$ $\therefore v^2 = 2gh$
 $v = \sqrt{2gh} = \sqrt{2 \times 10 \times 1000} = 100\sqrt{2}m/s$
 $= 100\sqrt{2} \times \frac{18}{5}km/h$
 $= 360\sqrt{2} km/h = 510 km/h$

The maximum distance covered in time $T = v_0T$.

Therefore, for the object having one dimensional

m $n = \sqrt{2 \times 10 \times 1000} = 100\sqrt{2m/s}$
 $\sqrt{2} \times \frac{18}{5}$ km / h
 $\sqrt{2}$ km / h = 510 km / h

strimum distance covered in time T = v_0 T.

re, for the object having one dimensional

he displacement x in time T satisfies
 $k <$ e, $u = 0$, $g = 10$ m/s², h=1km=1000 m
 $v^2 - u^2 = 2gh$ $\therefore v^2 = 2gh$
 $\sqrt{2gh} = \sqrt{2 \times 10 \times 1000} = 100\sqrt{2m/s}$
 $100\sqrt{2} \times \frac{18}{5}$ km/h
 $360\sqrt{2}$ km/h = 510 km/h

maximum distance covered in time T = v_0 T.

ion the dis 5

= 360/2 km/h = 510 km/h

The maximum distance covered in time T = v₀T.

Therefore, for the object having one dimensional

motion the displacement x in time T satisfies
 $-v_0T < x < v_0T$.

Speed of police van, v_p = 30 510 km/h

nnce covered in time T = v₀T.

object having one dimensional

ment x in time T satisfies

n, v_p = 30 km h⁻¹

3

7

7

7

1 s⁻¹ = $\frac{160}{3}$ ms⁻¹

1 = speed of police van + speed

actually fired

ns⁻¹ $100\sqrt{2} \times \frac{18}{5}$ km / h
 $860\sqrt{2}$ km / h = 510 km / h

maximum distance covered in time T = v₀T.

cefore, for the object having one dimensional

on the displacement x in time T satisfies
 $\sqrt{2} \times 2\sqrt{6}$.

Extert

(10) (D). Speed of police van,
$$
v_p = 30 \text{ km h}^{-1}
$$

$$
= \frac{30 \times 1000}{3600} \text{ms}^{-1} = \frac{25}{3} \text{ms}^{-1}
$$

Speed of thief's car, $v_t = 192$ km h⁻¹

$$
= \frac{192 \times 1000}{3600} \text{ms}^{-1} = \frac{160}{3} \text{ms}^{-1}
$$

Speed of bullet, v_b = speed of police van + speed with which bullet is actually fired T satisfies
 h^{-1}
 h^{-1}

-1

olice van + speed
 -1

ef's car,
 $h = 105 \text{ ms}^{-1}$

$$
\therefore \quad v_{\text{b}} = \left(\frac{25}{3} + 150\right) \text{ ms}^{-1} = \frac{475}{3} \text{ ms}^{-1}
$$

Relative velocity of bullet w.r.t. thief's car,

$$
-v_0 T < x < v_0 T
$$
.
\nSpeed of police van, $v_p = 30 \text{ km h}^{-1}$
\n $= \frac{30 \times 1000}{3600} \text{ ms}^{-1} = \frac{25}{3} \text{ ms}^{-1}$
\nSpeed of their's car, $v_t = 192 \text{ km h}^{-1}$
\n $= \frac{192 \times 1000}{3600} \text{ ms}^{-1} = \frac{160}{3} \text{ ms}^{-1}$
\nSpeed of bullet, $v_b = \text{speed of police van} + s$
\nwith which bullet is actually fired
\n $v_b = \left(\frac{25}{3} + 150\right) \text{ ms}^{-1} = \frac{475}{3} \text{ ms}^{-1}$
\nRelative velocity of bullet w.r.t. their's car,
\n $v_{bt} = v_b - v_t = \left(\frac{475}{3} - \frac{160}{3}\right) \text{ ms}^{-1} = 105 \text{ ms}^{-1}$

(11) (B). Time taken by the boy to go from his home to the

market,
$$
t_1 = \frac{2.5 \text{ km}}{5 \text{ km h}^{-1}} = \frac{1}{2} \text{ h}
$$

Time taken by the boy to return back from the market

IN ONE DIMENSION	Q.B.- SOLUTIONS
Time taken by the boy to go from his home to the market, $t_1 = \frac{2.5 \text{ km}}{5 \text{ km h}^{-1}} = \frac{1}{2} \text{ h}$	$180 = 30$
Time taken by the boy to return back from the market to his home, $t_2 = \frac{2.5 \text{ km}}{7.5 \text{ km h}^{-1}} = \frac{1}{3} \text{ h}$	$\frac{2}{9}t^2 + 3t$
Total time taken = $t_1 + t_2$	Solving

IMENSION

by the boy to go from his home to the
 $\frac{2.5 \text{ km}}{5 \text{ km h}^{-1}} = \frac{1}{2} \text{ h}$

180 = 3

9 the boy to return back from the market
 $t_2 = \frac{2.5 \text{ km}}{7.5 \text{ km h}^{-1}} = \frac{1}{3} \text{ h}$
 $\text{km} = t_1 + t_2$
 $h = 50 \text{ min}$
 $\text{$ **IMENSION**
 2.5 km
 180 = 30 × **t** + $\frac{1}{2}$
 180 = 30 × **t** + $\frac{1}{2}$
 180 = 30 **t** + $\frac{2}{9}$
 180 = 30 **t** + $\frac{2}{9}$
 180 = 30 **t** + $\frac{2}{$ **NSION**

e boy to go from his home to the
 $\frac{\text{cm}}{\text{h}^{-1}} = \frac{1}{2} \text{h}$

boy to return back from the market
 $\frac{2.5 \text{ km}}{7.5 \text{ km h}^{-1}} = \frac{1}{3} \text{h}$
 $\frac{2}{9}t^2 + 3t - 18 = 30t + \frac{20}{9}t^2 + 3t - 18 = 30t + \frac{20}{9}t^2 + 3t - 18$ \therefore Total time taken = t₁ + t₂ 1 IN ONE DIMENSION

Time taken by the boy to go from his home to the

market, $t_1 = \frac{2.5 \text{ km}}{5 \text{ km h}^{-1}} = \frac{1}{2} \text{ h}$

Time taken by the boy to return back from the market

co his home, $t_2 = \frac{2.5 \text{ km}}{7.5 \text{ km h}^{-1}} = \frac{$ (**Q.B.- SOLUT**

Fime taken by the boy to go from his home to the

narket, $t_1 = \frac{2.5 \text{ km}}{5 \text{ km h}^{-1}} = \frac{1}{2} \text{ h}$

Fime taken by the boy to return back from the market

o his home, $t_2 = \frac{2.5 \text{ km}}{7.5 \text{ km h}^{-1}} = \frac{1}{3} \$ FONE DIMENSION

is taken by the boy to go from his home to the

let, $t_1 = \frac{2.5 \text{ km}}{5 \text{ km/h}^{-1}} = \frac{1}{2} \text{ h}$

is home, $t_2 = \frac{2.5 \text{ km}}{7.5 \text{ km/h}^{-1}} = \frac{1}{3} \text{ h}$

is home, $t_2 = \frac{2.5 \text{ km}}{7.5 \text{ km/h}^{-1}} = \frac{1}{3} \text{ h}$

i In $t = 0$ to 50 min, Total distance travelled $= 2.5$ km $+ 2.5$ km $= 5$ km Displacement $= 0$ (As the boy returns back home) : Average speed (**Q.B.- SOLUTIONS**)

1 his home to the

k from the market

(**S** / 6) h = 6 km/h

(**5** / 6) h = 6 km/h

(**15**) (**D**)

0

form acceleration.

C

u+a(t₁+t₂+t₃) (**16**) (**A**) -h+ $\frac{1}{3}$ h = $\frac{5}{6}$ h = 50 min

1 t = 0 to 50 min, Total distance travelled

2.5 km + 2.5 km = 5 km

isplacement = 0 (14) (

14) (

signacement = 0 (14) (

signacement = 0 (14) (

signacement = 0 (14) (

signacement taken by the boy to return back from the market

taken by the boy to return back from the market

home, $t_2 = \frac{2.5 \text{ km}}{7.5 \text{ km h}^{-1}} = \frac{1}{3} \text{ h}$

time taken = $t_1 + t_2$
 $\frac{1}{3} \text{h} = \frac{5}{6} \text{h} = 50 \text{ min}$

(14) (A

k Time taken by the boy to return back from the marks

to his home, $t_2 = \frac{2.5 \text{ km}}{7.5 \text{ km h}^{-1}} = \frac{1}{3} \text{ h}$

Total time taken = $t_1 + t_2$
 $\frac{1}{2} \text{h} + \frac{1}{3} \text{h} = \frac{5}{6} \text{h} = 50 \text{ min}$

In t = 0 to 50 min, Total dis and by differential the matrix of $t_2 = \frac{2.5 \text{ km}}{7.5 \text{ km}} = \frac{1}{3}h$
 $t_1 = t_2$
 $t_2 = \frac{5.5 \text{ km}}{6} = 50 \text{ min}$ we assumed to the the state $t_1 + t_2$
 $t_2 = 2.5 \text{ km}} = 5 \text{ km}$ we assume that the state of the state $t_1 = t_2$ F₁ = $\frac{2.3 \times m}{3 \times m}$

also Solv get tells and the market

ome, $t_2 = \frac{2.3 \times 3 \times 3}{7.5 \times m}$

also Solving this quadratic equation by quadratic

ome taken = f₁ + t₂

h = $\frac{5}{6}$ h = 50 min

mc taken = f₁ + t Net, $y = 5$ km h⁻¹ 2²

is home, $t_2 = 2.5$ km h⁻¹ 2²

is home, $t_2 = 2.5$ km h⁻¹ $\frac{1}{3}$ hs bow or eur back from the market

is home, $t_2 = 2.5$ km n⁻¹ $\frac{1}{3}$ hs $\frac{2}{9}t^2 + 3t - 18 = 0$; $2t^2 + 27t - 162 =$ 10 min, Total distance travelled

2.5 km = 5 km

ent = 0

y returns back home)

= $\frac{\text{Distance travelled}}{\text{Time taken}} = \frac{5 \text{ km}}{(5/6) \text{ h}} = 6 \text{ km/h}$

(15) (I

elocity = $\frac{\text{Displacement}}{\text{Time taken}} = 0$

tial velocity and a be uniform acceleration.

A B C
 2.5 km + 2.5 km = 5 km

isplacement = 0

overage speed

werage velocity = $\frac{\text{Distance}}{\text{Time taken}} = \frac{5 \text{ km}}{(5/6) \text{ h}} = 6 \text{ km/h}$

(14) (A). The distance
 $= \frac{20 \times 2}{2} + 20$
 $= 20 + 40 + 20$
 $= \frac{20 \times 2}{1} + 20$

werage velocity = home, $t_2 = \frac{m_1m_1}{7.5 \text{ km h}^{-1}} = \frac{1}{3}h$

time taken = $t_1 + t_2$
 $\frac{1}{3}h = \frac{5}{6}h = 50 \text{ min}$

o 1 o 50 min, Total distance travelled

ne boy returns back home)
 $\frac{1}{2} \text{The taken} = \frac{20 \times 2}{1} + 20 \times 2$
 $\frac{20 \times 2 + 20 \times$ Total time taken = $t_1 + t_2$
 $\frac{1}{2}h + \frac{1}{3}h = \frac{5}{6}h = 50 \text{ min}$ v

Inter taken = $t_1 + t_2$
 $\frac{1}{2}h + \frac{1}{3}h = \frac{5}{6}h = 50 \text{ min}$ v

(n t = 0 to 50 min, Total distance travelled

Displacement = 0

(As the boy returns Solving this quadratic

2.50 min

1. Total distance travelled

1. = $t_1 + t_2$
 $= 0$

1. Total distance travelled

1. The taken
 $t = \frac{-27 \pm \sqrt{(27 + 2)} \pm 20 \pm 2 + 20 \pm 2$ is home, $t_2 = \frac{7.5 \text{ km}}{7.5 \text{ km}} = \frac{1}{5} \text{ h}$

all time taken = $t_1 + t_2$
 $-\frac{1}{2} \text{ km} = \frac{2}{5} \text{ h}$
 $-\frac{1}{2} \text{ h} = \frac{2}{6} \text{ h} = 50 \text{ min}$

all time taken = $t_1 + t_2$
 $-\frac{1}{2} \text{ h} = \frac{2}{6} \text{ h} = 50 \text{ min}$
 $-\frac{1}{2} \text$ $\frac{1}{3}h = \frac{5}{6}h = 50 \text{ min}$ we

o to 50 min, Total distance travelled
 $\tan + 2.5 \text{ km} = 5 \text{ km}$ (14) (A). The comparison back home)
 $\sinh 2.5 \text{ km} = 5 \text{ km}$ (14) (A). Av

accement = 0
 $\sinh 2.5 \text{ km} = 5 \text{ km}$ (14) (A). Av

a or $u > 0$ min, rotat ustance travelled

is km + 2.5 km = 5 km

dacement = 0 (14)

dacement = 0 (15)

age speed

= $\frac{\text{Distance travelled}}{\text{Time taken}} = \frac{5 \text{ km}}{(5/6) \text{ h}} = 6 \text{ km/h}$ (15)

age velocity = $\frac{\text{Displacement}}{\text{Time taken}} = 0$

be initial velocity

$$
= \frac{\text{Distance travelled}}{\text{Time taken}} = \frac{5 \text{ km}}{(5/6) \text{ h}} = 6 \text{ km/h}
$$
 (15) (D). Average vel

Average velocity =
$$
\frac{\text{Displacement}}{\text{Time taken}} = 0
$$

(12) (D). Let u be initial velocity and a be uniform acceleration.

As the boy returns back home)
\nAverage speed
\n
$$
= \frac{20 \times 2}{2}
$$
\n
$$
= 20 + 40
$$
\n
$$
= \frac{3 \times 2}{2}
$$
\n
$$
= 20 + 40
$$
\n<math display="block</p>

Average velocities in the intervals from 0 to t_1 , t_1 to t_2 and t_2 to t_3 are

$$
v_1 = \frac{u + u + at_1}{2} = u + \frac{a}{2}t_1
$$
 (1)

$$
v_2 = \frac{u + at_1 + u + a(t_1 + t_2)}{2} = u + at_1 + \frac{a}{2}t_2 \quad \dots (2)
$$

$$
v_3 = \frac{u + a(t_1 + t_2) + u + a(t_1 + t_2 + t_3)}{2}
$$
Acc
Dis-
dis

$$
= u + at_1 + at_2 + \frac{u}{2}t_3 \qquad \qquad \dots (3)
$$

Subtract (1) from (2), we get

$$
v_2 - v_1 = \frac{a}{2} (t_1 + t_2) \qquad \qquad \dots (4)
$$

Subtract (2) from (3), we get

$$
v_3 - v_2 = \frac{a}{2} (t_2 + t_3) \qquad \qquad \dots (5)
$$

Divide (4) by (5) , we get

$$
\frac{v_2 - v_1}{v_3 - v_2} = \frac{t_1 + t_2}{t_2 + t_3} \text{ or } \frac{v_1 - v_2}{v_2 - v_3} = \frac{t_1 + t_2}{t_2 + t_3} \tag{18}
$$

and t_2 to t_3 are
 $t = \frac{u + u + at_1}{2} = u + \frac{a}{2}t_1$ (1)
 $2 = \frac{u + at_1 + u + a(t_1 + t_2)}{2} = u + at_1 + \frac{a}{2}t_2$ (2)
 $3 = \frac{u + a(t_1 + t_2) + u + a(t_1 + t_2 + t_3)}{2}$
 $= u + at_1 + at_2 + \frac{a}{2}t_3$ (3)

Subtract (1) from (2), $1 = \frac{u + u + at_1}{2} = u + \frac{a}{2}t_1$ (1)
 $2 = \frac{u + at_1 + u + a(t_1 + t_2)}{2} = u + at_1 + \frac{a}{2}t_2$ (2)
 $3 = \frac{u + a(t_1 + t_2) + u + a(t_1 + t_2 + t_3)}{2}$
 $= u + at_1 + at_2 + \frac{a}{2}t_3$ (3)

Subtract (1) from (2), we get
 $v_2 - v_1 = \frac{a}{2$ 2. The the minal velocity and a oc difficult to
 $\frac{0}{u}$ A B
 $\frac{1}{u}$
 \frac V_1
 $V_2 = \frac{u + at_1}{2}$
 $V_1 = \frac{u + at_1}{2}$
 $V_2 = \frac{u + at_1 + u + at_1 + t_2}{2} = u + \frac{a}{2}t_1$
 $V_3 = \frac{u + at_1 + u + a(t_1 + t_2)}{2} = u + at_1 + \frac{a}{2}t_2$
 $V_4 = \frac{u + at_1 + u + a(t_1 + t_2)}{2} = u + at_1 + \frac{a}{2}t_2$
 $V_5 = \frac{u + a(t_1 + t_2) + u + a(t_1 + t_2 + t_3)}{2}$ B
 $u+a(t_1+t_2)$ $u+a(t_1+t_2+t_3)$ (16) (*k*

the intervals from 0 to t₁, t₁ to
 $\frac{1}{2}t_1$ (1)
 $\frac{1}{2}t_2$ (1)
 $\frac{1}{2}t_1$ (1)
 $\frac{1}{2}t_2$ (2)
 $\frac{1}{2}a(t_1+t_2+t_3)$
 $\frac{1}{2}u_1 + \frac{a}{2}t_$ **(13) (B).** Let a be constant acceleration of auto. Here, $u = 30$ m/s, $v = 50$ m/s, $S = 180$ m As $v^2 - u^2 = 2aS$ $(50)^2 - (30)^2 = 2 \times a \times 180$ $(2500) - (900) = 2 \times a \times 180$ $v_2 = \frac{u + at_1 + u + a(t_1 + t_2)}{2} = u + at_1 + \frac{a}{2}t_2$ (2)
 $v_3 = \frac{u + a(t_1 + t_2) + u + a(t_1 + t_2 + t_3)}{2}$
 $= u + at_1 + at_2 + \frac{a}{2}t_3$ (3)

Subtract (1) from (2), we get
 $v_2 - v_1 = \frac{a}{2}(t_1 + t_2)$ (4)

Subtract (2) from (3),

$$
a = \frac{1600}{2 \times 180} = \frac{40}{9} \text{ m/s}^2. \quad \text{As } S = \text{ut} + \frac{1}{2} \text{at}^2
$$
 (19)

DIMENSION	Q.B. SOLUTIONS	Q.B. SOLUTIONS	EODALUTIONS
n by the boy to go from his home to the	$180 = 30 \times t + \frac{1}{2} \times \frac{40}{9} \times t^2$		
$= \frac{2.5 \text{ km}}{5 \text{ km h}^{-1}} = \frac{1}{2} \text{ h}$	$180 = 30t + \frac{20}{9}t^2$; $18 = 3t + \frac{2}{9}t^2$		
b) the boy to return back from the market	$180 = 30t + \frac{20}{9}t^2$; $18 = 3t + \frac{2}{9}t^2$		
c, $t_2 = \frac{2.5 \text{ km}}{7} = \frac{1}{3} \text{ h}$	$\frac{2}{9}t^2 + 3t - 18 = 0$; $2t^2 + 27t - 162 = 0$		
12.5 m = 5 km	$\text{we get } t = \frac{-27 \pm \sqrt{(27)^2 - 4 (2)(-162)}}{4} = 4.5, -18$		
2.5 km = 5 km	to the negative	$\therefore t = 4.5 \text{ s}$	
2.5 km = 5 km	to the negative	$\therefore t = 4.5 \text{ s}$	
2.5 km = 5 km	to the negative	$\therefore t = 4.5 \text{ s}$	
2.5 km = 5 km	to the negative	$\therefore t = 4.5 \text{ s}$	
2.5 km = 5 km	to the negative	$\therefore t = 4.5 \text{ s}$	

Solving this quadratic equation by quadratic formula,

we get
$$
t = \frac{-27 \pm \sqrt{(27)^2 - 4(2)(-162)}}{4} = 4.5, -18
$$

t can't be negative \therefore t = 4.5 s **(14) (A).** The distance is equal to total area under v-t graph

$$
= \frac{20 \times 2}{2} + 20 \times 2 + 20 \times 1 + \frac{20 \times 1}{2} + \frac{20 \times 1}{2}
$$

= 20 + 40 + 20 + 10 + 10 = 100 m

$$
= \frac{3 \text{ km}}{(5/6) \text{ h}} = 6 \text{ km/h}
$$
 (15) (D). Average velocity = $\frac{\text{Displacement}}{\text{Time interval}}$

A particle moving in a given direction with non-zero velocity cannot have zero speed.

In general, average speed is not equal to magnitude of average velocity. However it can be so if the motion is along a straight line without change in direction. $x t^2$
 $2t^2 + 27t - 162 = 0$

c equation by quadratic formula,
 $\frac{7t^2 - 4(2)(-162)}{4} = 4.5, -18$
 $\therefore t = 4.5 \text{ s}$

and to total area under v-t graph
 $0 \times 1 + \frac{20 \times 1}{2} + \frac{20 \times 1}{2}$
 $10 = 100 \text{ m}$

Displacement

a give

(16) (A).
$$
x = t - \sin t
$$

$$
v = \frac{dx}{dt} = 1 - \cos t
$$
; $a = \frac{dv}{dt} = \sin t$

 \therefore x (t) > 0 for all values of t > 0 and v (t) can be zero for one value of t. a (t) can zero for one value of t.

(17) (A). Time taken by body A,
$$
t_1 = 5
$$
 s

solving this quadratic equation by quadratic formula,

one, $t_2 = \frac{2.5 \text{ km h}^{-1}}{7.5 \text{ km}} = \frac{1}{3} \text{h}$

and the an-1 t_2 solving this quadratic equation by quadratic formula,
 $\ln = \frac{5}{6} \text{h} = 50 \text{ min}$
 $\ln = 5 \text{ km}^{-1}$ me taken = t₁ + t₂
 $\frac{1}{6}$ = 50 min
 $\frac{1}{6}$ to 50 min, Total distance travelled

to 50 min, Total distance travelled

to 50 min, Total distance travelled

to 70 min, Total distance travelled
 $\frac{20 \times 2}{4} + 20 \times$ 36
 $\frac{1}{2}$ Sum + 2 Sum = 5 km
 $\frac{1}{2}$ Sum + 2 Sum = 5 km
 $\frac{1}{2}$ Sum + 2 Sum = 5 km

splacement = 0

splacement = 0

Exame travelled
 $\frac{20 \times 2}{1} + 20 \times 2 + 20 \times 1 + \frac{20 \times 1}{1} + \frac{20 \times 1}{1}$
 $\frac{1}{2}$ = $\frac{20 +$ boy returns back home)
 $\frac{20 \times 2}{1} + 20 \times 2 + 20 \times 1 + \frac{20 \times 1}{2} + \frac{20 \times 1}{2}$
 $= 20 + 40 + 20 + 10 + 10 = 100$ m
 $= \frac{9 \text{ right independent
\nvelocity} = \frac{10 \text{ right element}}{1} = \frac{6 \text{ km}}{(5/6) \text{ h}} = 6 \text{ km/h}$
 $= \frac{10 \text{ right element}}{1} = \frac{6 \text{ km}}{5/6 \text{ h}} = 6 \text{ km/h}$ $\frac{1}{2} \arctan \frac{1}{2} \arctan$ 29
 $28 = 30t + \frac{20}{9}t^2$; $18 = 3t + \frac{2}{9}t^2$
 $\frac{2}{9}t^2 + 3t - 18 = 0$; $2t^2 + 27t - 162 = 0$

Solving this quadratic equation by quadratic formula,

we get $t = \frac{-27 \pm \sqrt{(27)^2 - 4 (2)(-162)}}{4}$; $t = 4.5$, -18
 $t = 4.5$ and t $18 = 3t + \frac{2}{9}t^2$
 $2t^2 + 27t - 162 = 0$

titic equation by quadratic formula,
 $\frac{(27)^2 - 4(2)(-162)}{4} = 4.5, -18$
 $\therefore t = 4.5$ s

times to total area under v-t graph
 $20 \times 1 + \frac{20 \times 1}{2} + \frac{20 \times 1}{2}$
 $+ 10 = 100$ m
 $\frac{$ Acceleration of body $A = a_1$ Time taken by body B, $t_2 = 5 - 2 = 3$ s Acceleration of body $B = a_2$ Distance covered by first body in 5th second after its start,

$$
S_5 = u + \frac{a_1}{2}(2t_1 - 1) = 0 + \frac{a_1}{2}(2 \times 5 - 1) = \frac{9}{2}a_1
$$

Distance covered by the second body in the 3rd second after its start,

$$
S_3 = u + \frac{a_2}{2} (2t_2 - 1) = 0 + \frac{a_2}{2} (2 \times 3 - 1) = \frac{5}{2} a_2
$$

Since $S_5 = S_3$ $\therefore \frac{9}{2} a_1 = \frac{5}{2} a_2$ or $a_1 : a_2 = 5 : 9$

whe initial velocity and a be uniform acceleration.

Underline the solution and be uniform acceleration.

In general, average speed is not equal to m
 $\frac{A}{1 + i4t_1}$ $\frac{B}{1 + i4(t_1 + t_2)}$
 $\frac{B}{1 + i4t_1}$ $\frac{C}{1 + i4(t_1 + t_2$ The initial veces vector of the interval are the interval of t₁
 $\frac{1}{2}$ $\frac{1$ t₁ (1) \therefore x(t) > 0 for one value
 $\frac{1 + t_2}{2} = u + at_1 + \frac{a}{2}t_2$ (2) (A). Time take
 $\frac{1 - t_2}{2} = u + at_1 + \frac{a}{2}t_2$ (2) (A). Time take
 $\frac{1 - x_2}{2} = \frac{t_1 + t_2}{x_1 + x_2}$ (18) (D). Let v_s between the m/s, eration

and a be uniform acceleration.

In general, average speed is not equal to magnitude
 $\frac{B}{1+at(t_1+t_2)}$
 $\frac{C}{1+at(t_1+t_2+t_3)}$
 $\frac{C}{1+at(t_1+t_2+t_3)}$
 $\frac{C}{1+at(t_1+t_2+t_3)}$
 $\frac{C}{1+at(t_1+t_2+t_3)}$
 $\frac{C}{1+at(t_1+t_2+t_3)}$ $=\frac{t_1+t_2}{t_1+t_2}$ (18) (D). Let v_s be the velocity of scooter. The distance are determined and to magnitude the speed is not equal to magnitude
 $\frac{P}{140}(1+1+2)$
 $\frac{P}{140}(1+1+2+15)$
 $\frac{P}{140}(1+1+2+15)$

(ID) (A) $\frac{P}{140}(1+1+2+15)$
 $\frac{P}{140}(1+1+2+15)$
 $\frac{P}{140}(1+1+2+15)$
 $\frac{P}{140}(1+1+$ 2 180 9 (17) (A). Time taken by body
 $+ t_2 + t_3$
 $+ t_2 + t_3$
 $+ t_2 + t_3$
 $+ t_2 + t_3$

(17) Acceleration of body

Time taken by body

Acceleration of body

Instance covered

its start,
 \ldots (3)

Sistance covered

S₅ = u + $\frac{$ between the scooter and the bus $= 1 \text{ km} = 1000 \text{ m}$. The velocity of bus, $v_b = 10$ m/s Time taken to overtake the bus, $t = 100$ s. Relative velocity of the scooter w.r.t. the bus $= (v_s - 10)$ ime taken by body A, $t_1 = 5 s$

cceleration of body A, $t_1 = 5 s$

cceleration of body B, $t_2 = 5 - 2 = 3 s$

cceleration of body B = a_2

sixtance covered by first body in 5th second after

s start,
 $s = u + \frac{a_1}{2}(2t_1 - 1)$

$$
\therefore t = \frac{1000}{v_s - 10} = 100 \text{ or } v = 20 \text{ m/s}
$$

2¹ **(19) (A).** Taking upwards motion of ball A for time t, velocity is $v_A = u - gt$.

Taking downwards motion of ball B for time t, its velocity is $v_B = gt$.

- \therefore Relative velocity of A w.r.t. B
	- $= v_{AB} = v_A (-v_B) = (u gt) (-gt) = u$
- **(20) (B).** In the graph (B), for one value of displacemet, there are two timings. As a result of it, for one time, the average velocity is positive and for other time is equal but negative. Due to it the average velocity for timings (equal to time period) can vanish. **Q.B.- SOLUTION:**

motion of ball B for time t, its

(26) (

A w.r.t. B

= (u – gt) – (– gt) = u

r one value of displacemet, there

s a result of it, for one time, the

ositive and for other time is equal

it the average **Q.B.-** S

s motion of ball B for time t, i

f A w.r.t. B
 $y = (u - gt) - (-gt) = u$

or one value of displacemet, the

s a result of it, for one time, the

positive and for other time is equ

oi t the average velocity for timing

- **(21) (C).** Let L be the length of escalator. Velocity of girl w.r.t. escalator, $v_{ge} = L/t_1$ Velocity of escalator, $v_e = L/t_2$ Velocity of girl w.r.t. ground would be

$$
g = v_{ge} + v_e = L\left(\frac{1}{t_1} + \frac{1}{t_2}\right)
$$

The desired time is
$$
t = \frac{L}{v_g} = \frac{L}{L\left(\frac{1}{t_1} + \frac{1}{t_2}\right)} = \frac{t_1 t_2}{t_1 + t_2}
$$

- **(22) (C).** Taking vertical upward motion of the ball upto highest point. Here, $u = 20 \text{ m s}^{-1}$ +ve $v = 0$ (At highest point velocity is zero) $a = -g = -10$ ms⁻² As $v^2 = u^2 + 2aS$; $0 = (20)^2 + 2(-10)$ (S) $S = \frac{20 \times 20}{20} = 20$ m
- **(23) (C).** Let t_1 be the time taken by the ball to reach the highest point.
- $v = 0$, $u = 20$ m/s, $a = -g = -10$ m/s², $t = t_1$ As $v = u + at$ $0 = 20 + (-10) t_1$ or $t_1 = 2s$ Taking vertical downward motion of the ball from the (29) highest point to ground. Here, $u = 0$, $a = +g = 10$ m s⁻², $S = 20 m + 25 m = 45 m$, $t = t₂$ As $S = ut + \frac{1}{2}at^2$: $45 = 0 + \frac{1}{2}(10)t_2^2$ (30) $v_{ge} + v_e = L(\frac{1}{t_1} + \frac{1}{t_2})$

desired time is $t = \frac{L}{v_g} = \frac{L}{L(\frac{1}{t_1} + \frac{1}{t_2})} = \frac{t_1t_2}{t_1 + t_2}$

ing vertical upward motion of the ball upto

e. u = 20 m s⁻¹

(0.4 th ighest point velocity is zero)
 $-\frac{9}{2$ $\frac{1}{20}$

six $\frac{1}{20}$ a $\frac{1}{20}$

six $\frac{1}{20}$ a $\frac{1}{20}$

six $\frac{1}{20}$ a $\frac{1}{20}$

six $\frac{1}{20}$ and $\frac{1}{20}$ 2 $X = 3(2)$ 2 (30) (6) 2 100 $1_{(10), 2}$ $x = 3(2)^2 -$ The desired time is $t = \frac{L}{v_g} = \frac{L}{L\left(\frac{1}{t_1} + \frac{1}{t_2}\right)} = \frac{t_1t_2}{t_1+t_2}$... $\frac{L}{t}$

Taking vertical upward motion of the ball upto

trighest point.

Here, u = 20 m s⁻¹
 $v = 0$ (At highest point velocity is z sheet the is $x = \frac{1}{v_g} - \frac{1}{L\left(\frac{1}{t_1} + \frac{1}{t_2}\right)} - \frac{1}{t_1 + t_2}$

g vertical upward motion of the ball upto
 $1 = 20 \text{ m s}^{-1}$
 $-1 = 20 \text{ m s}^{-2}$

At highest point velocity is zero)
 $x = 10 \text{ m s}^{-2}$
 $x = 10 \text{ m s}^{-2}$ e desired time is $t = \frac{1}{v_g} = \frac{1}{1} \left(\frac{1}{t_1} + \frac{1}{12} \right) = \frac{t_1 t_2}{t_1 + t_2}$
 $\frac{v_{BA} - u_{BA}}{A \sin \theta} = \frac{v_{BA} - v_{BA}}{A \sin \$ where
 $20 \text{ m/s} = 2$
 $0 = 20 \text{ m}$
 10 m/s^2
 10 ical upward motion of the ball topic of contains the contained of the exponent of the number of the temperature of $\cos \theta$ (C). Initial relations contained ($\sin \theta$) and $\sin \theta$ ($\cos \theta$) and $\sin \theta$ ($\cos \theta$) and $\cos \theta$ ($\cos \theta$ vertical upward motion of the ball upto

point.
 $\frac{1}{20 \text{ m s}^{-1}}$
 $\frac{1}{240 \text{ k}}$ (28) (C). Initial relative velocity $y - y - 2y$
 $\frac{1}{4}$ were $\frac{1}{240 \text{ k}}$ (28) (C). Initial relative velocity $y - y - y$
 $\frac{1}{4}$ wer s, $a = -g = -10 \text{ m/s}^2$,
 $a = -g = -10 \text{ m/s}^2$,
 $a + at$
 $a + at$
 $a + at$
 $b + at$
 $c + at$
 $c + 2$
 $d + g = 10 \text{ m s}^{-2}$,
 $a + g = 10 \text{ m s}^{-2}$,
 $a + 45 = 0 + \frac{1}{2}(10) + \frac{2}{2}$
 $a + 5 = 0 + \frac{1}{2}(10) + \frac{2}{2}$
 $a + 5 = 0 + \frac{1}{2}(10) + \frac{2}{2$ oint.
 $= 0, u = 20$ m/s, $a = -g = -10$ m/s²,
 $= t_1$ As $v = u + at$
 $= 20 + (-10) t_1$ or $t_1 = 2s$

akking vertical downward motion of the ball from

ighest point to ground.
 $[ere, u = 0, a = +g = 10 \text{ m s}^{-2},$
 $= 20 \text{ m} + 25 \text{ m} = 45 \text$ v 3 0.1 a $\frac{x^2 - y^2}{2} - 2x \times x \times 3 = \frac{(x_1 - x_2)^2}{20}$

As $\frac{x^2 - y^2}{20} - 2x \times 2x \times 3 = \frac{(x_1 - x_2)^2}{20}$
 $\frac{3 - 2x^2}{20} - 20 \times 20$
 $\frac{3 - 2x}{20} - 20 \times 20$
 $\frac{3 - 2x}{20} - 20 \times 20$
 $\frac{3 - 2x}{20} - 20 \times 20$
 $\frac{3 - 2x}{20}$ So $= 20 \times 20 = 20$ mm

So $= 20 \times 20 = 20$

So $= 20 \text{ m/s}$, $v = 10 \text{ m/s}^2$, $v = 20 \text{ m/s}^2$

So $= 20 \text{ m/s}^2$

So $= 24 \text{ m/s} = \frac{v}{10} = 9$ or $t_2 = 3s$

So $t_1 + t_2 = 2s + 3s - 5s$

So $t_1 + t_2 = 2s + 3s - 5s$

So $t_1 + t_2 = 2$

$$
t_2^2 = \frac{45 \times 2}{10} = \frac{90}{10} = 9
$$
 or $t_2 = 3s$

Total time taken by the ball to reach the ground $= t_1 + t_2 = 2s + 3s = 5s$

(24) **(A).** Here,
$$
a = \frac{v-u}{t} = \frac{v-0}{n} = \frac{v}{n}
$$

Displacement in last 2 sec.

$$
S_n - S_{n-2} = \frac{1}{2}an^2 - \frac{1}{2}a(n-2)^2
$$

= 2a (n-1) = 2 $\frac{v}{n}$ (n-1) = $\frac{2v(n-1)}{n}$

(25) (A). Here, $a = g - bv$ When an object falls with constant speed v_c , in acceleration becomes zero.

1 1 The desired time is 1 2 g 1 2 1 2 L L t t v t t 1 1 L t t 20 20 S 20 m **(26) (D).** 3 a S u (2 3 1) 4 2 or 5 u a 4 2 5 a S u (2 5 1) 12 2 or 9 u a 12 2 On solving, u = –6 m/s, a = 4 m/s² Distance travelled in next 3 seconds = S⁸ – S⁵ = [– 6 × 8 + 1 2 × 4 × (8)²] – [– 6 × 5 + 1 2 × 4 × (5)²]= 80 – 20 = 60m **(27) (D).** Here, u^A = 0, u^B = +50 m/s a^A = – g, a^B = – g uBA = u^B – u^A = 50 m/s – 0 m/s = 50 m/s aBA = a^B – a^A = – g – (– g) = 0 vBA = uBA + aBAt (As aBA = 0) vBA = uBA From 2 2 v u 2as 1 2 0 (v v) 2 a s 1 2 (v v) 1 2 (v v) d

to ball A, therefore the relative speed of ball B w.r.t ball A at any instant of time remains constant $(= 50 \text{ m/s}).$

(28) (C). Initial relative velocity = $v_1 - v_2$, Final relative velocity $= 0$

From
$$
v^2 = u^2 - 2as
$$

$$
\Rightarrow 0 = (v_1 - v_2)^2 - 2 \times a \times s \Rightarrow s = \frac{(v_1 - v_2)^2}{2a}
$$

If the distance between two cars is 's' then collision will take place. To avoid collision $d > s$

$$
\therefore d > \frac{(v_1 - v_2)^2}{2a}
$$
, where d = actual initial distance

between two cars.

$$
\frac{1}{t_2}
$$
\n
$$
\frac{1}{t_2}
$$
\n
$$
\frac{1}{t_2}
$$
\n
$$
\frac{1}{t_2} = \frac{1}{t_2} - \frac{1}{t_1 + t_2} = \frac{1}{t_1 + t_2}
$$
\n
$$
\frac{1}{t_2} = \frac{1}{t_1 + t_2} = \frac{1}{t_1 + t_2}
$$
\n
$$
\frac{1}{t_2} = \frac{1}{t_2 + t_1 + t_2} = \frac{1}{t_2 + t_2}
$$
\n
$$
\frac{1}{t_2} = \frac{1}{t_2 + t_2} = \frac{1}{t_2 + t_2}
$$
\n
$$
\frac{1}{t_2} = \frac{1}{t_2 + t_2} = \frac{1}{t_2 + t_2}
$$
\n
$$
\frac{1}{t_2} = \frac{1}{t_2 + t_2} = \frac{1}{t_2 + t_2}
$$
\n
$$
\frac{1}{t_2} = -10 \text{ m/s}^2,
$$
\n
$$
\frac{1}{t_2} = -10 \text{ m/s}^2,
$$
\n
$$
\frac{1}{t_2} = -10 \text{ m/s}^2,
$$
\n
$$
\frac{1}{t_2} = \frac{1}{t_2 + t_2}
$$
\n
$$
\frac{1}{t_2} = -10 \text{ m/s}^2,
$$
\n

$$
(31) (D). Average speed = \frac{Total distance travelled}{Total time taken}
$$

$$
=\frac{x}{\frac{2x/5}{w} + \frac{3x/5}{w}} = \frac{5v_1v_2}{3v_1 + 2v_2}
$$

(32) (C). Since direction of v is opposite to the direction of g and h so from equation of motion

$$
h = -vt + \frac{1}{2}gt^2 \implies gt^2 - 2vt - 2h = 0
$$

$$
\implies t = \frac{2v \pm \sqrt{4v^2 + 8gh}}{2g} \implies t = \frac{v}{g} \left[1 + \sqrt{1 + \frac{2gh}{v^2}} \right]
$$

 \therefore g – bv_c = 0 or v_c = g/b

MOTION IN ONE DIMENSION Q.B.- SOLUTIONS

(33) (A). In this case time of flight of a ball $\geq 2 \times 2 = 4$ sec.

$$
\therefore \text{ Time of flight} = \frac{2u}{g} \ge 4
$$

$$
\Rightarrow u \ge 2g
$$

$$
\Rightarrow u \geq 2g
$$

 \Rightarrow u \geq 19.6 m/s (\because g = 9.8 m/s²) **(34) (B).** \because Average velocity \times time = distance

ITION IN ONE DIMENSION		
(A). In this case, time of flight of a ball $\ge 2 \times 2 = 4$ sec.	(42)	(D). Maximum acceleration velocity in minimum time
\therefore Time of flight $= \frac{2u}{g} \ge 4$	1	
\Rightarrow $u \ge 2g$	22g	
\Rightarrow $u \ge 19.6$ m/s ($\because g = 9.8$ m/s ²)		
(B). \therefore Average velocity \times time = distance	EXERC	
\therefore $\left(\frac{10+20}{2}\right)(t) = 135 \Rightarrow t = 9s$	4. $\frac{80-20}{40-30} = \frac{60}{10}$	
\therefore $\left(\frac{10+20}{2}\right)(t) = 135 \Rightarrow t = 9s$	5. $\frac{5}{100}$	
(C). $\left(\frac{A}{A}\right)$ $\frac{B}{B}$	6. $\frac{2}{100}$	
$\frac{1}{100}$ m/s. $\frac{5}{100}$ m/s. $\frac{5}{100}$ m/s. $\frac{5}{100}$		
$\frac{1}{100}$ m/s. $\frac{5}{100}$ m/s. $\frac{5}{100}$		
$\frac{1}{100}$ m/s. $\frac{5}{100}$ m/s. $\frac{5}{100}$		
$\frac{1}{100}$ m/s. $\frac{5}{100}$ m/s. $\frac{5}{100}$		

(35) (C). $\left(\begin{array}{c} A \end{array}\right) \left(\begin{array}{c} B \end{array}\right)$

Relative acceleration,

EXERCISE 1.4 IN ONE DIMENSION

In this case time of flight

of a ball ≥ 2 × 2 = 4 sec.

Time of flight = $\frac{2u}{g}$ ≥ 4
 $u \ge 2g$
 $u \ge 29$
 $u \ge 19.6$ m/s ($\because g = 9.8$ m/s²)
 \therefore Average velocity \times time = dist **(a)**

In this case time of flight

of a ball ≥ 2 × 2 = 4 sec.

Time of flight
 $\frac{2}{2}$
 $\frac{2}{2}$
 $\frac{2}{2}$
 \therefore Average velocity x time = distance
 $\left(\frac{10+20}{2}\right)(1) = 135 \Rightarrow t = 98$

Also $\frac{3}{4}$

Also $\frac{5}{4}$
 N IN ONE DIMENSION

In this case time of flight

of a ball ≥ 2 × 2 = 4 sec.

The of flight $u \ge 2g$

The of flight $u \ge 2g$
 $u \ge$

As relative acceleration is zero we can use

- \vec{s}_{BA} (in 1 sec) = $\vec{v}_{BA} \times t = 5 \times 1 = 5m$
- \therefore Distance between A & B after 1 sec = 5m

(33) (A). In this case time of flight
\nof a ball ≥ 2 × 2 = 4 sec.
\n
$$
\therefore
$$
 Time of flight = $\frac{2u}{g} \ge 4$
\n $\Rightarrow u \ge 2g$
\n $\Rightarrow u \ge 19.6 \text{ m/s } (\because g = 9.8 \text{ m/s}^2)$
\n(34) (B). \therefore Average velocity × time = distance
\n $\therefore \left(\frac{10+20}{2}\right)(t) = 135 \Rightarrow t = 9s$
\n(35) (C). (A)
\n $\frac{5}{n}$
\n $\frac{5}{n}$
\n(36) $\overrightarrow{v}_{BA} = \overrightarrow{v}_B - \overrightarrow{v}_A = 10 - 5 = 5 \text{ m/s}$
\nAs relative acceleration, \overrightarrow{a}_{BA} (in 1 sec) = $\overrightarrow{v}_{BA} \times t = 5 \times 1 = 5 \text{ m}$
\n(36) (A). $S = \int_0^3 v dt = \int_0^3 kt dt = \left[\frac{1}{2}kt^2\right]_0^3 = \frac{1}{2} \times 2 \times 9 = 9 \text{ m}$
\n(37) (A). $S_n = u + \frac{a}{2}[2n-1]$
\n \therefore Distance between A & B after 1 sec = 5m
\n(38)

2.1.
$$
x_1 = 3x + 2
$$

\n3.3 **(c)** (A)
\n $\vec{a} = \frac{A}{2} \times \frac{B}{2} = 0$
\n \Rightarrow u ≥ 19.6 m/s (∴ g = 9.8 m/s²)
\n \therefore $\left(\frac{10+20}{2}\right)(1) = 135 \Rightarrow t = 9s$
\n \therefore $\left(\frac{10+20}{2}\right)(1) = 135 \Rightarrow t = 9s$
\n3.2 **(d)** (b) 3. Relative to the cart of 50 km/h = 13.9 m/s
\n $\vec{a}_{BA} = \vec{a}_{B} = \vec{a}_{A} = (-10) - (-10) = 0$
\n $\vec{a}_{BA} = \vec{a}_{B} = \vec{a}_{A} = (-10) - (-10) = 0$
\n $\vec{a}_{BA} = \vec{a}_{B} = \vec{a}_{A} = (-10) - (-10) = 0$
\n $\vec{a}_{BA} = \vec{a}_{B} = \vec{a}_{A} = (-10) - (-10) = 0$
\n $\vec{a}_{BA} = \vec{a}_{B} = \vec{a}_{A} = (-10) - (-10) = 0$
\n $\vec{a}_{BA} = \vec{a}_{B} = \vec{a}_{A} = (-10) - (-10) = 0$
\n $\vec{a}_{BA} = \vec{a}_{B} = \vec{a}_{A} = (-10) - 5 = 5$ m/s
\n $\vec{a}_{BA} = \vec{a}_{B} = \vec{a}_{A} = (-10) - 5 = 5$ m/s
\n $\vec{a}_{BA} = \vec{a}_{B} = \vec{a}_{B}$

38) (C).
$$
S_n = u + \frac{a}{2}(2n-1) \Rightarrow 1.2 = 0 + \frac{a}{2}(2 \times 6 - 1)
$$

$$
\Rightarrow a = \frac{1.2 \times 2}{11} = 0.218 \text{ m/s}^2
$$

(39) (A). Velocity acquired by body in 10sec

and distance travelled by it in 10 sec

$$
S_1 = \frac{1}{2} \times 2 \times (10)^2 = 100
$$
 m then

it moves with constant velocity (20 m/s) for 30 sec $S_2 = 20 \times 30 = 600$ m After that due to retardation $(4m/s^2)$ it stops $7 + \frac{1}{2}[2 \times 5 - 1] = 7 + 18 = 25m$.
 $+\frac{a}{2}(2n-1) \Rightarrow 1.2 = 0 + \frac{a}{2}(2 \times 6 - 1)$
 $\frac{2 \times 2}{11} = 0.218$ m/s²

ty acquired by body in 10sec
 $2 \times 10 = 20m/s$

tance travelled by it in 10 sec
 $\times 2 \times (10)^2 = 100$ m then

es with

$$
S_3 = \frac{v^2}{2a} = \frac{(20)^2}{2 \times 4} = 50m
$$
 (7)

Total distance travelled $S_1 + S_2 + S_3 = 750m$ **(40) (A).** The velocity of the particle is

$$
\frac{dx}{dt} = \frac{d}{dt}(2 - 5t + 6t^2) = (0 - 5 + 12t)
$$

For initial velocity $t = 0$, hence $v = -5m/s$.

(38) (C).
$$
S_n = u + \frac{a}{2}(2n-1) \Rightarrow 1.2 = 0 + \frac{a}{2}(2 \times 6 - 1)
$$

\n $\Rightarrow a = \frac{1.2 \times 2}{11} = 0.218 \text{ m/s}^2$ (5)
\n(39) (A). Velocity acquired by body in 10sec
\n $v = 0 + 2 \times 10 = 20 \text{ m/s}$
\nand distance travelled by it in 10 sec
\n $S_1 = \frac{1}{2} \times 2 \times (10)^2 = 100 \text{ m then}$ (6)
\nit moves with constant velocity (20 m/s) for 30 sec
\n $S_2 = 20 \times 30 = 600 \text{ m}$
\nAfter that due to retardation (4m/s²) it stops
\n $S_3 = \frac{v^2}{2a} = \frac{(20)^2}{2 \times 4} = 50 \text{ m}$ (7)
\nTotal distance travelled $S_1 + S_2 + S_3 = 750 \text{ m}$
\n(40) (A). The velocity of the particle is
\n $\frac{dx}{dt} = \frac{d}{dt}(2 - 5t + 6t^2) = (0 - 5 + 12t)$
\nFor initial velocity $t = 0$, hence $v = -5 \text{ m/s}$.
\n(41) (C). For a- t curve, area under give change in velocity at t
\n= 10 sec, v = 40 m/s
\nFor 10-30 sec, $\Delta v = -80$,
\n $v_{30\text{sec}} - 40 = -80$
\nSpeed at 30 sec = -40 m/s

(42) (D). Maximum acceleration means maximum change in velocity in minimum time interval. In time interval $t = 30$ to $t = 40$ sec SOMADVANCED LEARNING

SOMADVANCED LEARNING

EXERCISE -30 to t = 40 sec
 $\frac{\Delta v}{\Delta t} = \frac{80 - 20}{40 - 30} = \frac{60}{10} = 6$ cm / sec²

EXERCISE-3

ve to the car the velocity of the snowflakes has a **EXERCISE-3**

SUBMADVANCED LEARNING

LATER INTERET AND INCREDIBATION CONTAINMENT AND INCREDUCATION CONTAINING

time interval t = 30 to t = 40 sec
 $= \frac{\Delta v}{\Delta t} = \frac{80 - 20}{40 - 30} = \frac{60}{10} = 6$ cm / sec²
 EXERCISE-3

at

$$
a = \frac{\Delta v}{\Delta t} = \frac{80 - 20}{40 - 30} = \frac{60}{10} = 6 \text{ cm} / \text{sec}^2
$$

EXERCISE-3

ecc.
 $\frac{24}{9.8 \text{ m/s}^2}$
 $\frac{1}{\frac{1}{2}}$ man
 $\frac{1}{\frac{1}{2$ Maximum acceleration means maximum change in

velocity in minimum time interval.

In time interval t = 30 to t = 40 sec
 $a = \frac{\Delta v}{\Delta t} = \frac{80 - 20}{40 - 30} = \frac{60}{10} = 6$ cm / sec²
 EXERCISE-3

elative to the car the velo **SPEARING**

THE ABOVE THE ABOVER ANDEN

THE ABOVE THE ABOVER AND THE ABOVER A SUMMON THE ABOVER A SUMMON THE SUMMON THE SUMMON THAN THE $\frac{v}{t} = \frac{80 - 20}{40 - 30} = \frac{60}{10} = 6$ cm / sec²
 EXERCISE-3

to the car the ve **(1) 3.** Relative to the car the velocity of the snowflakes has a vertical component of 8.0 m/s and a horizontal component of 50 km/h = 13.9 m/s. The angle θ from the vertical **EXEMPLE AND MADANA CONTROVANCE DIFFARISHER (DEMADANA CEDIFFARISHER (I)**

in minimum time interval.

nterval t = 30 to t = 40 sec
 $\frac{80-20}{40-30} = \frac{60}{10} = 6$ cm / sec²
 EXERCISE-3

the car the velocity of the snow **SOM ADVANCED LEARNING**

IDDM ADVANCED LEARNING

In means maximum change in

to t = 40 sec
 $\frac{0}{0} = 6$ cm / sec²
 ISE-3

elocity of the snowflakes has a

m/s and a horizontal compo-

The angle θ from the vertical **EXEMPLE 12**
 EXEMPLE 12
 EXEMPLE 130 to t = 40 sec
 $\frac{0-20}{0-30} = \frac{60}{10} = 6$ cm / sec²
 EXERCISE-3

e car the velocity of the snowflakes has a

ent of 8.0 m/s and a horizontal compo-

= 13.9 m/s. The angle $\$ **EDENTIONS**
 (42) (**D).** Maximum acceleration means maximum change in velocity in minimum time interval.

In time interval t = 30 to t = 40 sec
 $a = \frac{\Delta v}{\Delta t} = \frac{80 - 20}{40 - 30} = \frac{60}{10} = 6$ cm/sec²
 EXERCISE-3
 (1 SPON ADVANCED LEARNING

IS maximum change in

Fival.

0 sec
 cm / sec²

5 of the snowflakes has a

d a horizontal compo-

ingle θ from the vertical
 $\frac{7s}{s} = 1.74$. The angle is
 $= \frac{400}{25} = 16 \text{ m/s}$

a 30 to t = 40 sec

= $\frac{60}{10}$ = 6 cm / sec²

RCISE-3

ne velocity of the snowflakes has a

8.0 m/s and a horizontal compo-

m/s. The angle θ from the vertical
 $- = \frac{13.9 \text{ m/s}}{8.0 \text{ m/s}} = 1.74$. The angle is
 $\frac{1$ = 6 cm / sec²

E-3

city of the snowflakes has a

's and a horizontal compo-

he angle 0 from the vertical
 $\frac{9 \text{ m/s}}{\text{m/s}}$ = 1.74. The angle is
 $\frac{3000}{\text{m/s}}$ = $\frac{400}{25}$ = 16 m / s
 $\frac{1200}{\text{m/s}}$ t² b a $=$ 6 cm / sec²

CISE-3

velocity of the snowflakes has a

3.0 m/s and a horizontal compo-

n/s. The angle θ from the vertical
 $=$ $\frac{13.9 \text{ m/s}}{8.0 \text{ m/s}} = 1.74$. The angle is
 $\frac{90+300}{8.0 \text{ m/s}} = \frac{400}{25} = 16 \text$

is given by
$$
\tan \theta = \frac{v_h}{v_0} = \frac{13.9 \text{ m/s}}{8.0 \text{ m/s}} = 1.74
$$
. The angle is

60°.

INEMENTS
\nCase time of flight
\n
$$
11 \ge 2 \times 2 = 4
$$
 sec.
\n $11 \ge 2 \times 2 = 4$ sec.
\n $11 \ge 2 \times 2 = 4$ sec.
\n $11 \ge 2 \times 2 = 4$ sec.
\n $11 \ge 2 \times 2 = 4$ sec.
\n $12 \ge 2 \times 2 = 4$ sec.
\n $13 \ge 2 \times 2 = 4$ sec.
\n $14 \ge 2 \times 2 = 4$ sec.
\n $15 \ge 2 \times 2 = 4$ sec.
\n $16 \text{ m/s } (\because g = 9.8 \text{ m/s}^2)$
\n 17 m and
\n $18 \ge 2 \times 2 = 4$ sec.
\n $19 \ge 2 \times 2 = 4$ sec.
\n $10 \ge 2 \times 2 = 4$ sec.
\n $11 \ge 2 \times 2 = 4$ sec.
\n $12 \ge 2 \times 2 = 4$ sec.
\n $13 \ge 2 \times 2 = 4$ sec.
\n $14 \ge 2 \times 2 = 4$ sec.
\n $15 \ge 2 \times 2 = 4$ sec.
\n $16 \ge 2 \times 2 = 4$ sec.
\n $17 \ge 2 \times 2 = 4$ sec.
\n $18 \ge 2 \times 2 = 4$ sec.
\n $19 \ge 2 \times 2 = 4$ sec.
\n $10 \ge 2 \times 2 = 4$ sec.
\n**EXERCISE-3**
\n $12 \ge 2 \times 2 = 4$ sec.
\n $13 \ge 2 \times 2 = 4$ sec.
\n $14 \ge 2 \times 2 = 4$ sec.
\n $15 \ge 2 \times 2 = 4$ sec.
\n $16 \ge 2 \times 2 = 4$ sec.
\n $17 \ge 2 \times 2 = 4$ sec.
\n $18 \ge 2 \times 2$

(3) 21.
$$
x_A = x_B
$$
; 10.5 + 10t = $\frac{1}{2}$ at² p $a = \tan 45^\circ = 1$

$$
t^2-20t-21=0
$$
 p $t = \frac{20 \pm \sqrt{400+84}}{2}$ p $t = 21$ sec.

(4) 2.
$$
y = bx^2
$$

IN ONE DIMENSIONS
\nIn this case time of flight
\nof a ball
$$
22 \times 2 = 4
$$
 sec.
\n
\nTime of flight = $\frac{2u}{g} \times 4$
\n $u \ge 2g$
\n $u \ge 2g$
\n $u \ge 19.6 \text{ m/s} (v: g = 9.8 \text{ m/s}^2)$
\n $u \ge 19.6 \text{ m/s} (v: g = 0.8 \text{ m/s}^2)$
\n $u \ge 19.6 \text{ m/s} (v: g = 0.8 \text{ m/s}^2)$
\n $u \ge 19.6 \text{ m/s} (v: g = 0.8 \text{ m/s}^2)$
\n $u \ge 19.6 \text{ m/s} (v: g = 0.8 \text{ m/s}^2)$
\n $u \ge 19.6 \text{ m/s} (v: g = 0.8 \text{ m/s}^2)$
\n $u \ge 19.6 \text{ m/s} (v: g = 0.8 \text{ m/s}^2)$
\n $u \ge 19.6 \text{ m/s} (v: g = 0.8 \text{ m/s}^2)$
\n $u \ge 19.6 \text{ m/s} (v: g = 0.8 \text{ m/s}^2)$
\n $u \ge 19.6 \text{ m/s} (v: g = 0.8 \text{ m/s}^2)$
\n $u \ge 19.6 \text{ m/s} (v: g = 0.8 \text{ m/s}^2)$
\n $u \ge 10.6 \text{ Average speed} = \frac{100 + 300}{10 + \frac{300}{20}} = \frac{400}{25} = 1.74$. The angle is
\nRelative acceleration,
\n $u \ge 0$
\n $u \ge 0$
\nAs relative acceleration is zero we can use
\n $s_{BA} = \bar{a}_B - \bar{a}_A = (-10) - (-10) = 0$
\n $s_{BA} = \bar{a}_B - \bar{a}_A = (-10) - (-10) = 0$
\n $s_{BA} = \bar{a}_B - \bar{a}_A = (-10) - (-10)$

$$
\int_{0}^{\frac{\pi}{2}} \int_{\sin}^{\frac{\pi}{2}} \frac{\sinh(\theta) f(t) dt = 13.9 \text{ m/s. The angle θ from the vertical\nis given by $\tan \theta = \frac{v_h}{v_0} = \frac{13.9 \text{ m/s}}{8.0 \text{ m/s}} = 1.74$. The angle is
\nRelative acceleration,
\n θ °.
\n $\sinh(\theta) = \frac{v_h}{\theta} = \frac{13.9 \text{ m/s}}{8.0 \text{ m/s}} = 1.74$. The angle is
\nAs relative acceleration is zero we can use
\nAs relative acceleration is zero we can use
\n $\sinh(\theta) = \frac{v_h}{\theta} \times \theta = 16 - 5 = 5 \text{ m/s}$
\nAs relative acceleration is zero we can use
\n $\sinh(\theta) = \frac{v_h}{\theta} \times \theta = 16 - 5 = 5 \text{ m/s}$
\n $\sinh(\theta) = \frac{v_h}{\theta} \times \theta = 16$
\n $\sinh(\theta) = \frac{v_h}{\theta} = \frac{1}{2} \tan^{-1} \frac{1}{2} \tan$
$$

(6) 4. For downstream relative distance travelled by cork $x_1 = v_r t$ and for upstream relative distance travelled by $\text{cork } x_2 = v_r t$

$$
1 \text{ km} = 2 \text{v}_r \times \frac{7.5}{60} \Rightarrow \text{v}_r = 4 \text{ km/hr}
$$

(7) 2. Acceleration of the particle $a = 2t - 1$

The particle retards when acceleration is opposite to velocity.

$$
\Rightarrow a \cdot v < 0 \Rightarrow (2t - 1) (t^2 - t) < 0 \Rightarrow t (2t - 1) (t - 1) < 0
$$
\nNow, it is always positive: \therefore $(2t - 1) (t - 1) < 0$

\nor $2t - 1 < 0$ and $t - 1 > 0 \Rightarrow t < 1/2$ and $t > 1$.

\nThis is not possible.

or $2t - 1 > 0$ & $t - 1 < 0 \implies 1/2 < t < 1$

//////////////////////////

dx .x dt or ln x = t + C as t = 0, x = 0 C = 0 x = e^t (2) Again diff. eq. (1) with respect to t, we get dv dv 2 t a .1 .v e dt dt (3) If T time taken to travel distnace S, then S = e^t or T = ln s Again, T T T t avg 0 0 1 1 e s v v dt e dt T T T ln s T T ^T 2 t avg 0 0 1 1 e a a dt e dt T T T 2 avg s a ln s ; avg avg v a ; 2 s S 1 ln s ln s u 2 u 2a(3) 4 ; 2 2 3u u 6a a 4 8 0 u 2 s' ; s' = 4cm

(8) Given $u = \alpha x$ (1)

- **(9) (4), (10) (8).** a is maximum when v change its sign. Area of at-graph $= 0$
- (11) **5.** 10 $\cos 60^\circ = 5$ m/s

EXERCISE-4

- **(1) (B).** Both will reach with same speed.
- **(2) (A).** $v^2 = u^2 + 2as$

$$
\frac{ds}{ds} = \frac{a}{\ln s} \Rightarrow \alpha = 1
$$

\n**10 (8).**
\n
$$
10 \cos 60^\circ = 5 \text{ m/s}
$$

\n**EXERCISE-4**
\n**20 (a)**.
\n**31 (b)** $x^2 = u^2 + 2as$; $0 = u^2 + 2$
\n**4**
\n**50** height above ground = h⁻¹
\n10 cos 60° = 5 m/s
\n**EXERCISE-4**
\n**61 (b)**. $v^2 = u^2 + 2as$; $0 = u^2 + 2$
\n**72 (a)**. $t = ax^2 + bx$. So, $\frac{dt}{dx} = 2ax$
\n**82 (a)**. $t = ax^2 + bx$. So, $\frac{dt}{dx} = 2ax$
\n**9**. $u^2 + 2\left(-\frac{u^2}{8}\right)s'$; $s' = 4$ cm
\n $0 = u^2 + 2\left(-\frac{u^2}{8}\right)s'$; $s' = 4$ cm
\n $0 = u^2 + 2\left(-\frac{u^2}{8}\right)s'$; $s' = 4$ cm
\n $0 = u^2 + 2\left(-\frac{u^2}{8}\right)s'$; $s' = 4$ cm
\n $0 = u^2 + 2\left(-\frac{u^2}{8}\right)s'$; $s' = 4$ cm
\n $0 = u^2 + 2\left(-\frac{u^2}{8}\right)s'$; $s' = 4$ cm
\n $0 = u^2 + 2\left(-\frac{u^2}{8}\right)s'$; $s' = 4$ cm
\n $0 = u^2 + 2\left(-\frac{u^2}{8}\right)s'$; $s' = 4$ cm
\n $0 = u^2 + 2\left(-\frac{u^2}{8}\right)s'$; $s' = 4$ cm
\n $0 = u^2 + 2\left(-\frac{u^2}{8}\right)s'$; $s' = 4$ cm
\n $0 = u^2 + 2\$

Distance travelled further = $4 - 3 = 1$ cm.

(3) (C).
$$
\vec{a}_{BL} = \vec{a}_B - \vec{a}_L = g - a
$$

\n(4) (D). $v^2 = u^2 + 2as$; $0 = u^2 + 2(-a)s$
\n $s = \frac{u^2}{2a}$; $s \propto u^2$
\n(5) (A). $v^2 = u^2 + 2as$; $0 = u^2 + 2(-a)s$

 $s = \frac{a}{2}$; $s \propto$

 $\frac{u}{2a}$; s \propto u² So, distance travelled before coming to rest = 24m. **(6) (B).** $x = \alpha t^3$, $y = \beta t^3$

Q.B.- SOLUTIONS
\n
$$
\frac{dx}{dx} = 3\alpha t^2, \frac{dy}{dt} = 3\beta t^2
$$

\n
$$
\frac{dx}{dt} = 3\alpha t^2, \frac{dy}{dt} = 3\beta t^2
$$

\nSo resultant velocity $v = \sqrt{(3\alpha t^2)^2 + (3\beta t^2)^2}$
\n
$$
= 0
$$

\n
$$
\frac{1}{2} \left[\alpha \cos \theta \cos \theta + \sin \theta \cos \theta \cos \theta \right]
$$

\n
$$
= \alpha \cdot v = \alpha^2 e^{\alpha t}
$$

\n
$$
\frac{dv}{dx} = \int k\sqrt{t} dt; \quad \frac{mv^2}{2} = Pt; v \propto \sqrt{t}
$$

\n
$$
\frac{dv}{dx} = \int k\sqrt{t} dt; \quad x \propto t^{3/2}
$$

\n
$$
\frac{dv}{dx} = -kx; \int v dv = -k \int x dx; \quad \frac{v^2}{2} = -k \frac{x^2}{2}
$$

\n
$$
= \frac{1}{T} \int_0^T \alpha e^{\alpha t} dt = \frac{e^{\alpha T}}{T} = \frac{\alpha s}{\ln s}
$$

\n
$$
= \frac{1}{T} \int_0^T \alpha e^{\alpha t} dt = \frac{e^{\alpha T}}{T}
$$

\n
$$
= \frac{1}{T} \int_0^T \alpha^2 e^{\alpha t} dt = \frac{\alpha e^{\alpha T}}{T}
$$

\n
$$
= \frac{1}{T} \int_0^T \alpha^2 e^{\alpha t} dt = \frac{\alpha e^{\alpha T}}{T}
$$

\n
$$
= \frac{1}{T} \int_0^T \alpha e^{\alpha t} dt = \frac{\alpha e^{\alpha T}}{T}
$$

\n
$$
= \frac{1}{T} \int_0^T \alpha e^{\alpha t} dt = \frac{\alpha e^{\alpha T}}{T}
$$

\n
$$
= \frac{1}{T} \int_0^T \alpha e^{\alpha t} dt = \frac{\alpha e^{\alpha T}}{T}
$$

\n
$$
= \frac{1}{T} \int_0^T \alpha e^{\alpha t} dt = \frac{\alpha e^{\alpha T}}{T}
$$

\n
$$

$$

(9) (A). According to problem,
$$
a = -kx
$$

$$
v \frac{dv}{dx} = -kx
$$
; $\int v dv = -k \int x dx$; $\frac{v^2}{2} = -k \frac{x^2}{2}$
So, kinetic energy $\propto x^2$

(10) (C). Initially $s = ut + \frac{1}{2}at^2$; $h = 0 + \frac{1}{2}gt^2$ $\frac{1}{2}$ at²; h = 0 + $\frac{1}{2}$ gT² $\frac{1}{2}$ gT² at time $= T/3$

$$
h' = 0 + \frac{1}{2}g\left(\frac{T}{3}\right)^2 = \frac{1}{9}\left(\frac{1}{2}gT^2\right); h' = \frac{h}{9}
$$

So height above ground = $h - \frac{h}{9} = \frac{8h}{9}$

(11) **(D).**
$$
v^2 = u^2 + 2as
$$
; $0 = u^2 + 2(-a)s$
 $s = \frac{u^2}{2a} \implies s \propto u^2$

(12) **(A).**
$$
t = ax^2 + bx
$$
. So, $\frac{dt}{dx} = 2ax + b$

So velocity
$$
v = \frac{1}{2ax + b}
$$
(1)

So, kinetic energy
$$
\propto x^2
$$

\nSo, kinetic energy $\propto x^2$
\n(C). Initially $s = ut + \frac{1}{2}at^2$; $h = 0 + \frac{1}{2}gT^2$
\nat time = T/3
\n $h' = 0 + \frac{1}{2}g(\frac{T}{3})^2 = \frac{1}{9}(\frac{1}{2}gT^2)$; $h' = \frac{h}{9}$
\nSo height above ground = $h - \frac{h}{9} = \frac{8h}{9}$
\n(D). $v^2 = u^2 + 2as$; $0 = u^2 + 2(-a)s$
\n $s = \frac{u^2}{2a} \Rightarrow s \propto u^2$
\n(A). $t = ax^2 + bx$. So, $\frac{dt}{dx} = 2ax + b$
\nSo velocity $v = \frac{1}{2ax + b}$ (1)
\nand $a = \frac{dv}{dt} = -\frac{(2a)}{(2ax + b)^2} \frac{dx}{dt}$; $a = -\frac{2a}{(2ax + b)^2}v$
\nFrom equation (1), $a = -2av^3$
\n $\frac{v = ft'}{2ax + b} = \frac{a = -f/2}{2ax + b}$

$$
a_{avg} = \frac{1}{T} \int_{0}^{T} a dt = \frac{1}{T} \int_{0}^{T} \alpha^{2} e^{\alpha t} dt = \frac{\alpha c^{aT}}{T}
$$
\n
$$
a_{avg} = \frac{\alpha^{2}s}{\ln s} \qquad ; \quad v_{avg} = a_{avg}
$$
\n
$$
a_{avg} = \frac{\alpha^{2}s}{\ln s} \qquad ; \quad v_{avg} = a_{avg}
$$
\n
$$
a_{avg} = \frac{\alpha^{2}s}{\ln s} \qquad ; \quad v_{avg} = a_{avg}
$$
\n
$$
a_{0} = \frac{\alpha^{2}s}{\ln s} \Rightarrow \alpha = 1
$$
\n
$$
a_{0} = \frac{\alpha^{2}s}{\ln s} \Rightarrow \alpha = 1
$$
\n
$$
a_{0} = \frac{\alpha^{2}s}{\ln s} \Rightarrow \alpha = 1
$$
\n
$$
a_{0} = \frac{\alpha^{2}s}{\ln s} \Rightarrow \alpha = 1
$$
\n
$$
a_{0} = \frac{\alpha^{2}s}{\ln s} \Rightarrow \alpha = 1
$$
\n
$$
a_{0} = \frac{\alpha^{2}s}{\ln s} \Rightarrow \alpha = 1
$$
\n
$$
a_{0} = \frac{1}{\ln s} \Rightarrow \alpha = 1
$$
\n
$$
a_{0} = \frac{1}{\ln s} \Rightarrow \alpha = 1
$$
\n
$$
a_{0} = \frac{1}{\ln s} \Rightarrow \alpha = 1
$$
\n
$$
a_{0} = \frac{1}{\ln s} \Rightarrow \alpha = 1
$$
\n
$$
a_{0} = \frac{1}{\ln s} \Rightarrow \alpha = 1
$$
\n
$$
a_{1} = \frac{\alpha^{2}s}{\ln s} \Rightarrow \alpha = 1
$$
\n
$$
a_{0} = \frac{1}{\ln s} \Rightarrow \alpha = 1
$$
\n
$$
a_{1} = \frac{\alpha^{2}s}{\ln s} \Rightarrow \alpha = 1
$$
\n
$$
a_{0} = \frac{1}{\sqrt{2}} \Rightarrow \alpha = 1
$$
\n
$$
a_{1} = \frac{\alpha^{2}}{2} \Rightarrow \alpha \alpha^{2}
$$
\n
$$
a_{2} = \frac{1}{2} \Rightarrow \alpha \alpha^{2}
$$
\n
$$
a_{3} = \frac{1}{2
$$

If time taken in first part is t', then

$$
S = 0 + \frac{1}{2}ft^2
$$
(i)

then distance traveled in last part would be $= 2S$ So the distance up to which particle move with constant $velocity = 15S - 3S = 12S$

So $12S = (ft')t$

 $12\left(\frac{1}{2} \text{ft}^{2}\right) = \text{ftt}$; 6t' = t **(ONE DIMENSION)**
 $12S = (ft')t$
 ft'^2 = f tt'; 6t' = t

uation (i), $S = \frac{1}{2}f(\frac{t}{6})$

ial velocity $\vec{v}_i = 5\hat{i}$; F 2^{-1} 2^{-1} μ , $\alpha - \iota$ **IN ONE DIMENSION**

12S = (ft') t
 EXECUTIONS
 $\left(\frac{1}{2} \text{ft}^2\right) = \text{ftt}'$; 6t' = t
 $\left(\frac{1}{2} \text{ft}^$ From equation (i), $S = \frac{1}{2}f\left(\frac{t}{6}\right)^2 = \frac{ft^2}{72}$ **(Q.B.- SOLUTION**
 \vec{t}) t
 \vec{t} ; 6t' = t
 $S = \frac{1}{2}f\left(\frac{t}{6}\right)^2 = \frac{ft^2}{72}$
 $\vec{v}_i = 5\hat{i}$; Final velocity $\vec{v}_f = 5\hat{j}$ (21) (B

on $a = \frac{\vec{v}_r - \vec{v}_i}{t}$ (22) (B **(350 8)**
 2 $\frac{1}{2}f\left(\frac{t}{6}\right)^2 = \frac{ft^2}{72}$
 2 = 5 \hat{i} ; Final velocity $\vec{v}_f = 5\hat{j}$
 2 = $\frac{\vec{v}_r - \vec{v}_i}{t}$
 2 = $\frac{\vec{v}_r - \vec{v}_i}{t}$
 22 (21) (B). Till by

(22) (B). Durin **ENSION**

(**Q.B.- SOLUTIONS**

If t_2 be the time taken to hit the ground

only and $\mathbf{F} = \frac{1}{2} \mathbf{f} \left(\frac{t}{6} \right)^2 = \frac{\mathbf{f}t^2}{72}$
 $\mathbf{F}_1 = \mathbf{F}_2 \left(\frac{t}{6} \right)^2 = \frac{\mathbf{f}t^2}{72}$

But $t_2 = \mathbf{h}t_1$ (given) $\Rightarrow -\$ **(MOTION IN ONE DIMENSION)**

So $12S = (ft')t$
 $12(\frac{1}{2}ft'^2) = ftt'; 6t' = t$

From equation (i), $S = \frac{1}{2}f(\frac{t}{6})^2 = \frac{ft^2}{72}$
 (14) (B). Initial velocity $\vec{v}_i = 5\hat{i}$; Final velocity $\vec{v}_f = 5\hat{j}$

Average acceleratio $\vec{r}_i = 5\hat{i} \cdot \text{Final velocity } \vec{r}_i = 5\hat{i}$ $\Rightarrow 2\hat{i}$ **N**
 (Q.B.- SOLUTIONS

If t_2 be the time take
 $-H = ut_2 - \frac{1}{2}gt$
 $\frac{t}{6}$
 $\frac{t}{6}$
 $\frac{t}{6}$
 $\frac{1}{2} = \frac{ft^2}{72}$

But $t_2 = nt_1$ (given):

But $t_2 = nt_1$ (given):

But $t_2 = nt_1$ (given):
 $\frac{2gt}{t_2} = nt_1$ (given) **EXECUTE AVERT DETENSION**

So $12S = (ft')t$ I
 $12(\frac{1}{2}ft'^2) = ft''; 6t' = t$

From equation (i), $S = \frac{1}{2}f(\frac{t}{6})^2 = \frac{ft^2}{72}$ I
 (B). Initial velocity $\vec{v}_i = S\hat{i}$; Final velocity $\vec{v}_f = S\hat{j}$ (21) (B). I

Average acce $a = \frac{v_r - v_i}{\sqrt{2\pi}}$ $-\vec{v}_i$ Ax $\frac{dx}{dt}$ **ON IN ONE DIMENSION**

12S = (ft') t

12($\frac{1}{2}$ ft' 2) = ftt'; 6t' = t

om equation (i), $S = \frac{1}{2}f(\frac{t}{6})^2 = \frac{ft^2}{72}$

1. Initial velocity $\vec{v}_i = 5\hat{i}$; Final velocity $\vec{v}_f = 5\hat{j}$

verage acceleration $a =$ **EXECUTIONS**

12S = (ft) t

13S = (ft) $\vec{a} = \frac{5i-5j}{10} = \frac{1}{2}(\hat{j}-\hat{i}); |\vec{a}| = \frac{1}{\sqrt{2}},$ $\vec{a} \mid = \frac{1}{\sqrt{2}}$, direction = N - W (23) (D). The (ON)
 $\frac{1}{\left(\frac{t}{6}\right)^2} = \frac{ft^2}{72}$
 \vec{i} ; Final velocity $\vec{v}_f = \frac{\vec{v}_r - \vec{v}_i}{t}$
 $|\vec{a}| = \frac{1}{\sqrt{2}}$, direction = N
 $x = \int_{t=0}^{t} \alpha dt$ **(MOTION IN ONE DIMENSION)**

So 12S = (ft') t

From equation (i), $S = \frac{1}{2}f\left(\frac{t}{6}\right)^2 = \frac{ft^2}{72}$

From equation (i), $S = \frac{1}{2}f\left(\frac{t}{6}\right)^2 = \frac{ft^2}{72}$

(14) **(B)**. Initial velocity $\vec{v}_i = 5\hat{i}$; Final velocity $\frac{dx}{dt} = \alpha dt$; $\int_0^x x^{-1/2} dx = \int_0^t \alpha dt$ x $J_{x=0}$ $J_{t=0}$ $J_{t=0}$ **IN ONE DIMENSION**
 $12S = (ft)^t$
 $\left(\frac{1}{2}ft^2\right) = ftt'; 6t' = t$
 $\left(\frac{1}{2}ft^2\right) = \frac{1}{72}$
 $\left(\frac{1}{6}\right)^2 = \frac{ft^2}{72}$
 $\left(\frac{1}{6}\right) = \frac{1}{$ ef tt'; 6t' = t

(i), $S = \frac{1}{2}f\left(\frac{t}{6}\right)^2 = \frac{ft^2}{72}$

city $\overline{v}_i = 5\hat{i}$; Final velocity $\overline{v}_f = 5\hat{j}$

ration $a = \frac{\overline{v}_r - \overline{v}_i}{t}$
 $\frac{1}{2}(\hat{j} - \hat{i})$; $|\overline{a}| = \frac{1}{\sqrt{2}}$, direction = N – W
 $x = 0$
 $x^{-1/$ = f tt'; 6t' = t

(i), $S = \frac{1}{2}f\left(\frac{t}{6}\right)^2 = \frac{ft^2}{72}$

ocity $\vec{v}_i = 5\hat{i}$; Final velocity $\vec{v}_f = 5\hat{j}$

(21)

aration $a = \frac{\vec{v}_r - \vec{v}_i}{t}$

(22)
 $\frac{1}{2}(\hat{j} - \hat{i})$; $|\vec{a}| = \frac{1}{\sqrt{2}}$, direction = N - W (23) **MENSION**

(a) t

(b) t

(c) t

(d) t

(d) t

(d) = ft²

(d) = ft¹

(d) = ft¹

(d) = ft¹

(d) = ft¹

(d) = **EDIMENSION**

SECUTIONS $S = \frac{1}{2}t(\frac{1}{2})^2 = \frac{R^2}{122}$
 $\frac{1}{2}t(\frac{1}{2})^2 = \frac{R^2}{122}$ $\frac{x^{1/2}}{1} = \alpha t$; $x \propto t^2$ 12 $\left(\frac{1}{2} \text{ft}^{2}\right) = \text{ftt}'$; 6t' = t

From equation (i), $S = \frac{1}{2} \text{f} \left(\frac{t}{6}\right)^{2} = \frac{\text{ft}^{2}}{72}$
 B). Initial velocity $\vec{v}_{i} = 5\hat{i}$; Final velocity

Average acceleration $a = \frac{\vec{v}_{r} - \vec{v}_{i}}{t}$
 $\vec{a} = \frac{$ 12S = (ft') t
 \vec{r} = ft'; 6t' = t

equation (i), $S = \frac{1}{2}\Gamma\left(\frac{t}{6}\right)^2 = \frac{ft^2}{72}$

equation (i), $S = \frac{1}{2}\Gamma\left(\frac{t}{6}\right)^2 = \frac{ft^2}{72}$

Equation (i), $S = \frac{1}{2}\Gamma\left(\frac{t}{6}\right)^2 = \frac{ft^2}{72}$

Ext $t_2 = \ln_1$ (give $\Rightarrow 2gH =$ **(16) (A).** $x_1 = 0 + \frac{1}{2}at^2$; $x_2 = ut$ $\frac{1}{2}$ at²; $x_2 = ut$ $\frac{1}{2}$ at $\frac{1}{2}$ ge acceleration $a = \frac{r}{t}$
 $\frac{5\hat{i} - 5\hat{j}}{10} = \frac{1}{2}(\hat{j} - \hat{i})$; $|\vec{a}| = \frac{1}{\sqrt{2}}$, direction
 $\vec{a} = \alpha \sqrt{x}$
 $\vec{a} = \alpha \text{ if } \int_{x=0}^{x} x^{-1/2} dx = \int_{t=0}^{t} \alpha dt$
 $= \alpha \text{ if } x \propto t^2$
 $\begin{aligned} x_1 &= 0 + \frac{1}{2}at^2; & x_2 &= ut \\ 1 - x_2 &=$ From equation (i), $S = \frac{1}{2} \left(\frac{1}{6} \right)^2 = \frac{1}{72}$
 (B). Initial velocity $\vec{v}_i = 5\hat{i}$; Final velocity \vec{v}_f

Average acceleration $a = \frac{\vec{v}_r - \vec{v}_i}{t}$
 $\vec{a} = \frac{5\hat{i} - 5\hat{j}}{10} = \frac{1}{2}(\hat{j} - \hat{i})$; $|\vec{a}| = \frac$ om equation (i), $S = \frac{1}{2}f\left(\frac{t}{6}\right)^2 = \frac{n^2}{72}$

But $t_2 = nt_1$ (given) \Rightarrow $-H = u$

erage acceleration $a = \frac{\bar{v}_t - \bar{v}_t}{t}$

erage acceleration $a = \frac{\bar{v}_t - \bar{v}_t}{t}$
 $\frac{dS = \frac{S_1 - S_1}{10} = \frac{1}{2}(\hat{j} - \hat{i}); |\vec{a}| = \frac{1$ at t = 0, x = 0 and $\frac{1}{2}$ at² - ut = 0 $\frac{1}{2}$ at ² – ut = 0 $x = 0$, $t = \frac{2u}{a}$. Slope $\frac{dx}{dt} = at - u$ So the graph of x and t 1/2

(A). $x_1 = 0 + \frac{1}{2}at^2$; $x_2 = x_1 - x_2 = \frac{1}{2}at^2 - ut$

at $t = 0$, $x = 0$ and $\frac{1}{2}at^2 - ut = 0$
 $x = 0$, $t = \frac{2u}{a}$. Slope $\frac{dx}{dt} = at$

So the graph of x and t

(C). $V_x = 3 + (0.4) (10) = 7$ units
 $V_y = 4 + (0.3) (10) = 7$ u

$$
\underbrace{\qquad \qquad }_{t}
$$

- **(17) (C).** $V_x = 3 + (0.4) (10) = 7$ units $V_y = 4 + (0.3) (10) = 7$ units
- **(18) (D).** mg sin θ = ma \therefore a = g sin θ where a is along the inclined plane \therefore vertical component of acceleration is g sin² θ \therefore relative vertical acceleration of A with respect to B is $V_x = 3 + (0.4) (10) = 7$ units
 $4 + (0.3) (10) = 7$ units
 $1 = 7\sqrt{2}$ units
 $\log \sin \theta = \text{ma } \therefore \text{ a = g} \sin \theta$
 \Rightarrow a is along the inclined plane

ative vertical acceleration is g $\sin^2 \theta$
 $2 \cdot 60 \sin^2 30$] = $\frac{g}{2} = 4.9 \text{ m/s}^2$ $=\frac{2u}{a}$. Slope $\frac{dx}{dt} = at - u$

ph of x and t
 \therefore
 $3 + (0.4) (10) = 7$ units
 $3.3) (10) = 7$ units
 $7\sqrt{2}$ units
 \therefore a = g sin θ

along the inclined plane

i component of acceleration is g sin² θ

vertical ac

g [sin² 60 sin² 30] = $\frac{g}{2}$ = 4.9 m/s² in vertical direction

(19) (B). 0 t 0 6.25 2 6.25 2.5t ; t = 2 sec.

(20) (A). Time to reach the maximum height, $t_1 = \frac{a}{x}$ $=\frac{a}{g}$

If t_2 be the time taken to hit the ground

$$
-H = ut_2 - \frac{1}{2}gt_2^2
$$

If t₂ be the time taken to hit the ground
\n
$$
-H = ut_2 - \frac{1}{2}gt_2^2
$$
\nBut t₂ = nt₁ (given) \Rightarrow $-H = u\frac{nu}{g} - \frac{1}{2}g\frac{n^2u^2}{g^2}$
\n $\Rightarrow 2gH = nu^2 (n-2)$
\nTill both are in air (From t = 0 to t = 8 sec)

 \implies 2gH = nu² (n – 2)

- **SPM ADVANGED LEARNING**

hit the ground
 $H = u \frac{nu}{g} \frac{1}{2} g \frac{n^2 u^2}{g^2}$
 $t = 0$ to $t = 8$ sec)
 $\propto t$. When second stone hits

in air Δx decreases. **SPON ADVANCED LEARNING**

D hit the ground
 $-H = u \frac{nu}{g} - \frac{1}{2} g \frac{n^2 u^2}{g^2}$
 $m t = 0$ to $t = 8$ sec)
 $\propto t$. When second stone hits

s in air Δx decreases.

They acceleration remains **(21) (B).** Till both are in air (From $t = 0$ to $t = 8$ sec) $\Delta x = x_2 - x_1 = 30t \Rightarrow \Delta x \propto t$. When second stone hits ground and first stone is in air Δx decreases.
- **(22) (B).** During the whole journey acceleration remains constant (a = -g) \Rightarrow V = V₀ - gt
- **ON OR. SOLUTIONS**

If t_2 be the time taken to hit the ground
 $-H = ut_2 \frac{1}{2}gt_1^2$
 $\left(\frac{t}{6}\right)^2 = \frac{ft^2}{72}$

But $t_2 = nt_1$ (given) $\Rightarrow H = u\frac{nu}{g} \frac{1}{2}g\frac{n^2}{g}$
 \therefore Final velocity $\vec{v}_f = 5\hat{j}$
 $\Rightarrow 2gH = nu^2 (n$, direction = $N - W$ (23) (D). T **(23) (D).** The (A), (B) and (C) graphs can represent the motion of a ball that is thrown in vertically upward direction. Initially speed decreases, becomes zero and then on the return trip, speed increases. Slope of graph in option (D) does not explain it. **EXERCISE 18 (12)**

If t₂ be the time taken to hit the ground
 $-H = ut_2 - \frac{1}{2}gt_2^2$

But t₂ = nt₁ (given) \Rightarrow $-H = u\frac{nu}{g} - \frac{1}{2}gt_2^2$
 $\Rightarrow 2gH = nu^2 (n-2)$
 (21) (B). Till both are in air (From t = 0 to t = 8 sec) $\frac{1}{2}$
 $\frac{1}{2}$ be the time taken to hit the ground
 $-H = ut_2 - \frac{1}{2}gt_2^2$

BOM $t_2 = nt_1$ (given) $\Rightarrow -H = u \frac{nu}{g} - \frac{1}{2}g\frac{n^2u^2}{g^2}$
 $\Rightarrow 2gH = nu^2 (n-2)$
 $\Rightarrow 2gH = nu^2 (n-2)$
 $\Rightarrow x_2 - x_1 = 30t \Rightarrow \Delta x \propto t$. When second sto $-H = ut_2 - \frac{1}{2}gt_2^2$

But $t_2 = nt_1$ (given) $\Rightarrow -H = u \frac{nu}{g} - \frac{1}{2}g\frac{n^2u^2}{g^2}$
 $\Rightarrow 2gH = nu^2 (n-2)$

Fill both are in air (From $t = 0$ to $t = 8$ sec)
 $dx = x_2 - x_1 = 30t \Rightarrow \Delta x \propto t$. When second stone hits

ground and first s $-H = ut_2 - \frac{1}{2}gt_2^2$

But $t_2 = nt_1$ (given) $\Rightarrow -H = u \frac{nu}{g} - \frac{1}{2}gt_1^2$
 $\Rightarrow 2gt_1 = nu^2 (n-2)$

Fill both are in air (From $t = 0$ to $t = 8$ sec)
 $\Delta x = x_2 - x_1 = 30t \Rightarrow \Delta x \propto t$. When second stone hits

ground and first stone i $-H = ut_2 - \frac{1}{2}gt_2^2$
 $t_2 = nt_1$ (given) $\Rightarrow -H = u \frac{nu}{g} - \frac{1}{2}g\frac{n^2 u^2}{g^2}$
 $2gH = nu^2 (n-2)$

both are in air (From t = 0 to t = 8 sec)
 $x_2 - x_1 = 30t \Rightarrow \Delta x \propto t$. When second stone hits

and and first stone is in air Δx

24) **(B).**
$$
\frac{dx}{dt} = ky
$$
, $\frac{dy}{dt} = kx$;

$$
\frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{x}{y} \Rightarrow y dy = x dx
$$
Integrating both side, $y^2 = x^2 + c$

(25) (D). If we take the position of ship 'A' as origin then positions and velocities of both ships can be given as

$$
-H = ut_2 - \frac{1}{2}gt_2
$$

But t₂ = nt₁ (given) ⇒ -H = u¹⁄₁⁄₂²⁄₂
⇒ 2gH = nu² (n-2)
7 ill both are in air (From t = 0 to t = 8 sec)
Δx = x₂ - x₁ = 30t ⇒ Δx ≈ t. When second stone hits
ground and first stone is in air Δx decreases.
During the whole journey acceleration remains
20 units
1. The (A), (B) and (C) graphs can represent the motion
of a ball that is thrown in vertically upward direction.
Initially speed decreases, becomes zero and then on
the return trip, speed increases. Slope of graph in
option (D) does not explain it.

$$
\frac{dx}{dt} = ky, \frac{dy}{dt} = kx ;
$$

$$
\frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{x}{y} \Rightarrow y dy = x dx
$$
Integrating both side, y² = x² + c
If we take the position of ship 'A' as origin then
positions and velocities of both ships can be given as

$$
\vec{v}_A = (30\hat{i} + 50\hat{j}) km/hr
$$

$$
\vec{v}_B = -10\hat{i} km/hr
$$

$$
\vec{v}_B = (30\hat{i} + 50\hat{j}) km/hr
$$
Time after which
distance between
$$
\frac{1}{(0,0)}\frac{30km/hr}{150km}
$$

$$
t = -\frac{\vec{v}_{BA} \cdot \vec{v}_{BA}}{170m}.
$$
When $\vec{v}_{BA} = -10\hat{i} - (30\hat{i} + 50\hat{j})$
$$
(-40\hat{i} - 50\hat{j}) km/hr
$$

$$
t = -\frac{(80\hat{i} + 150\hat{j}) \cdot (-40\hat{i} - 50\hat{j})}{|-40\hat{i} - 50\hat{j}|^2}
$$

$$
= \frac{3200 + 7500}{4100} hr = \frac{10700}{4100} hr = 2.6 hrsGiven initial velocity u = 0 and acceleration is constantAt time t, v = 0 + a t ⇒ v = atAlso x = 0 (t
$$

$$
t = -\frac{\vec{r}_{BA} \cdot \vec{v}_{BA}}{|\vec{v}_{BA}|^2}
$$
, where, $\vec{r}_{BA} = (80\hat{i} + 150\hat{j})$ km
 $\vec{v}_{BA} = -10\hat{i} - (30\hat{i} + 50\hat{j})$

$$
(-40\hat{i} - 50\hat{j}) \text{ km/hr}
$$

$$
\therefore t = -\frac{(80\hat{i} + 150\hat{j}) \cdot (-40\hat{i} - 50\hat{j})}{1.40\hat{i} - 50\hat{j} + 2.60\hat{k}}
$$

(a) (24) (B)
$$
\frac{dx}{dt} = ky
$$
, $\frac{dy}{dt} = ky$
\n $x = 0 + \frac{1}{2}at^2$; $x_2 = ut$
\n $-x_2 = \frac{1}{2}at^2 - ut$
\n $-x_3 = \frac{1}{2}at^2 - ut$
\n(b) (25) (26) If we take the position of ship 'A' as origin then
\n $x = 0$ and $\frac{1}{2}at^2 - ut = 0$
\n $x = 0$ and $\frac{1}{2}at^2 - ut = 0$
\n $x = 0$ and $\frac{1}{2}at^2 - ut = 0$
\n $x = 0$ and $\frac{1}{2}at^2 - ut = 0$
\n $x = 0$ and $\frac{1}{2}at^2 - ut = 0$
\n $x = 0$ and $\frac{1}{2}at^2 - ut = 0$
\n $x = 0$ and $\frac{1}{2}at^2 - ut = 0$
\n $x = 0$ and $\frac{1}{2}at^2 - ut = 0$
\n $x = 0$ and $\frac{1}{2}at^2 - ut = 0$
\n $x = 0$ and $\frac{1}{2}at^2 - ut = 0$
\n $x = 0$ and $\frac{1}{2}at^2 - ut = 0$
\n $x = 0$ and $\frac{1}{2}at^2 - ut = 0$
\n $x = 0$ and $\frac{1}{2}at^2 - ut = 0$
\n $x = 0$ and $\frac{1}{2}at^2 - ut = 0$
\n $x = 0$ and $\frac{1}{2}at^2 - ut = 0$
\n $x = 0$ and $\frac{1}{2}at^2 - ut = 0$
\n $x = 0$ and $u = 0$

 (27)

Q.B.- SOLUTIONS STUDY MATERIAL : PHYSICS

Graph (a) ; (b) and (d) are correct.

ADVANKED IEARINING	Q.B.- SOLUTIONS
\n $\begin{array}{c}\n \downarrow \\ \downarrow \\ \downarrow \\ \downarrow \\ \downarrow\n \end{array}$ \n	\n Let \vec{v} be\n
\n $\vec{v} = \vec{u} +$ \n $3\hat{i} + 4\hat{j} +$ \n $3\hat{j} + 4\hat{j} +$ \n $3\hat{k} + 4\hat{j} +$ \n $3\hat{k}$	

- **(28) 8.** Time to travel 81 m is t sec.
	- Time to travel 100 m is t + $\frac{1}{2}$ sec.

EXAMPLE 13 (a) 30
\n(b) 40
\n(c) 580.00
\n31.4 1.4 1.4 31 = 71.4 7
\n32 – 0 × t +
$$
\frac{1}{2}
$$
 a, t² : y = u₂t + $\frac{1}{2}$ a, t² : y = u₃t + $\frac{1}{2}$ a, t² : z = $\frac{1}{2}$ = 10, $\frac{1}{8}$ = 10 + 8t = 12t = 4 sec
\n(a) 60.12
\n(b) 100
\n(c) 100
\n(d) 100
\n(e) 100
\n1.5
\n1.6
\n1.6

EXERCISE-5

(1) (A). Let the two balls meet after t s at distance x from the platform. For the first ball, $u = 0$, $t = 18$ s, $g = 10$ m/s²

Using h = ut + $\frac{1}{2}$ gt² : $x = \frac{1}{2}$ gt² = $\frac{1}{2} \times 10 \times (18)^2$ $\frac{1}{2}gt^2$: $x = \frac{1}{2}gt^2 = \frac{1}{2} \times 10 \times (18)^2$ and $h_3 = \frac{1}{2}$(i) For the second ball, $u = u$, $t = 12s$, $g = 10 \text{ m/s}^2$ $x = 12u + (1/2) \times 10 \times 12^2$(ii) From equations (i) and (ii), we get 22 = 0×1+ $\frac{1}{2}$ × 6×4² = 12 + 48 = 60m
 EXERCISE-5

Let the two balls meet after t s at distance x from the

platform. For the first ball, u = 0, t = 18s, g = 10 m/s²

Using h = ut + $\frac{1}{2}$ gt² \therefore x = $\$

$$
\frac{1}{2} \times 10 \times 18^{2} = 12u + \frac{1}{2} \times 10 \times (12)^{2}
$$

or
$$
12u = (1/2) \times 10 \times [(18)^{2} - (12)^{2}]
$$

$$
= (1/2) \times 10 \times [(18 + 12) (18 - 12)]
$$

$$
12u = (1/2) \times 10 \times 30 \times 6
$$

or
$$
u = \frac{1 \times 10 \times 30 \times 6}{2 \times 12} = 75m/s
$$
 (11)

(B). Here, Initial velocity, $\vec{u} = 3\hat{i} + 4\hat{j}$

 $\vec{a} = 0.4\hat{i} + 0.3\hat{j}$, Time, t = 10s

Let \vec{v} be velocity of a particle after 10s.

STUDY MATERIAL: PHYSICS
\nLet
$$
\vec{v}
$$
 be velocity of a particle after 10s.
\n
$$
\vec{v} = \vec{u} + \vec{a}t \quad \therefore \quad \vec{v} = (3\hat{i} + 4\hat{j}) + (0.4\hat{i} + 0.3\hat{j}) (10)
$$
\n
$$
3\hat{i} + 4\hat{j} + 4\hat{i} + 3\hat{j} = 7\hat{i} + 7\hat{j}
$$
\nSpeed of the particle after 10s
\n
$$
= |\vec{v}| = \sqrt{(7)^2 + (7)^2} = 7\sqrt{2} \text{ units}
$$
\n. Distance, $x = (t + 5)^{-1}$...(i)
\n
$$
x = \frac{dx}{dt} = \frac{d}{dt}(t + 5)^{-1} \qquad (t + 5)^{-2} \qquad (i)
$$

(O.B.- SOLUTIONS

Let \vec{v} be velocity of a particle after 10s.
 $\vec{v} = \vec{u} + \vec{a}\vec{t}$ $\therefore \vec{v} = (3\hat{i} + 4\hat{j}) + (0.4\hat{i} + 0.3\hat{j})$ (10)

and (d) are correct.

(v_x)_{t-1} = 2 \hat{i}

(v_y)_{t-1} = 2 \hat{i}

(v_y **12380.000 123 2**
 12380.000 123 2
 124 (**a** *y* = **i** + **i** (**a** *y* i = **i** + **i** (**a** *y* i = 1 Subs $2^{sec.}$ Acceleration, $a = -2v^{3/2}$ **COLE-SOLUTIONS**

COLE-SOLUTIONS

Let \vec{v} be velocity of a particle after 10s,
 $\vec{v} = \vec{u} + \vec{a}\vec{t}$ $\therefore \vec{v} = (3\hat{i} + 4\hat{j}) + (0.4\hat{i} + 0.3\hat{j})$

Craph (a); (b) and (d) are correct.

Sin $\vec{a} + 4\hat{j} + 4\hat{i} + 3\hat{j} -$ **EXERENT (ALSO BENEFITIONS**

Let $\vec{v} = \vec{u} + \vec{a}$, $\vec{v} = (\vec{u} + \vec{a})^2 + (0.4\hat{i} + 0.3\hat{j})$ (10)

(Bureaux (b) and (d) are correct.

(Bureaux (b) and (d) are correct.

(Bureaux (c) and (d) are correct.

(B) $v_y = -24t^2$; Let \sqrt{b} be velocity of a particle after 10s.
 $\vec{v} = \vec{u} + \vec{a}$ $\therefore \vec{v} = (3\hat{i} + 4\hat{j}) + (0.4\hat{i} + 0.3\hat{j})$ (10)
 $\vec{v} = \vec{u} + \vec{a}$ $\therefore \vec{v} = (3\hat{i} + 4\hat{j}) + (0.4\hat{i} + 0.3\hat{j})$ (10)
 $\vec{v} = 10 + 8i - 3i^2$
 $\vec{v} = 8$ $v = u + at$ $\therefore v = (3i + 4j) + (0.4i + 0.3j) (10)$

are correct.

are correct.

Speed of the particle after 10s
 $= -2i$

(3) (A). Distance, $x = (t + 5)^{-1}$
 $= |\overline{v}| = \sqrt{(\overline{r})^2 + (\overline{r})^2} = 7\sqrt{2}$ units
 $= -24i$

(3) (A). Distance, **STUDY MATERIAL : PHYSICS**

of a particle after 10s.
 $=(3\hat{i} + 4\hat{j}) + (0.4\hat{i} + 0.3\hat{j})$ (10)
 $7\hat{i} + 7\hat{j}$

e after 10s
 $= |\vec{v}| = \sqrt{(7)^2 + (7)^2} = 7\sqrt{2}$ units
 y^{-1} ...(i)
 $\frac{d}{dt}(t+5)^{-1} = -(t+5)^{-2}$...(ii)
 $= \frac{d}{dt}[-($ = $|\vec{v}| = \sqrt{(7)^2 + (7)^2} = 7\sqrt{2}$ units **(3) (A).** Distance, $x = (t + 5)^{-1}$ Velocity, $v = \frac{dx}{dt} = \frac{d}{dt}(t+5)^{-1} = -(t+5)^{-2}$...(ii) **STUDY MATERIAL : PHYSICS**

velocity of a particle after 10s.
 $\vec{a}t : \vec{v} = (3\hat{i} + 4\hat{j}) + (0.4\hat{i} + 0.3\hat{j})$ (10)
 $4\hat{i} + 3\hat{j} = 7\hat{i} + 7\hat{j}$

the particle after 10s
 $= |\vec{v}| = \sqrt{(7)^2 + (7)^2} = 7\sqrt{2}$ units
 $x = (t + 5)^{-1}$ Acceleration, $a = \frac{dv}{dt} = \frac{d}{dt} [-(t+5)^{-2}] = 2 (t+5)^{-3} ... (iii)$ **STUDY MATERIAL: PHYSICS**

elocity of a particle after 10s.
 $\therefore \ \nabla = (3\hat{i} + 4\hat{j}) + (0.4\hat{i} + 0.3\hat{j})$ (10)
 $\hat{i} + 3\hat{j} = 7\hat{i} + 7\hat{j}$

e particle after 10s
 $= |\nabla i| = \sqrt{(7)^2 + (7)^2} = 7\sqrt{2}$ units
 $x = (t + 5)^{-1}$...(i)
 From equation (ii), we get $v^{3/2} = -(t+5)^{-3}$...(iv) Substituting this in equation (iii) we get **STODYMATERIAL: PHYSICS**

Let \vec{v} be velocity of a particle after 10s.
 $\vec{v} = \vec{u} + \vec{a}\vec{t}$ $\therefore \vec{v} = (3\hat{i} + 4\hat{j}) + (0.4\hat{i} + 0.3\hat{j})$ (10)
 $3\hat{i} + 4\hat{j} + 4\hat{i} + 3\hat{j} = 7\hat{i} + 7\hat{j}$

Speed of the particle after anter 1 os
 $\vec{v} = |\vec{v}| = \sqrt{(7)^2 + (7)^2} = 7\sqrt{2}$ units

...(i)
 $\frac{d}{dt}(t+5)^{-1} = -(t+5)^{-2}$...(ii)
 $\frac{d}{dt}[-(t+5)^{-2}] = 2(t+5)^{-3}$...(iii)

we get

...(iv)

equation (iii) we get

...(iv)
 $\frac{1}{x \times 20} = 20 \text{ m/s}$
 $\frac{1}{x^2 +$ = $|\vec{v}| = \sqrt{(7)^2 + (7)^2} = 7\sqrt{2}$ units

nce, $x = (t + 5)^{-1}$...(i)

ty, $v = \frac{dx}{dt} = \frac{d}{dt}(t + 5)^{-1} = -(t + 5)^{-2}$...(ii)

ion, $a = \frac{dv}{dt} = \frac{d}{dt}[-(t + 5)^{-2}] = 2(t + 5)^{-3}$...(iii)

equation (ii), we get
 $-(t + 5)^{-3}$...(iv)

tuting $\vec{v} = \vec{u} + \vec{a}\vec{t}$ $\therefore \vec{v} = (3\hat{i} + 4\hat{j}) + (0.4\hat{i} + 0.3\hat{j})$ (10)
 $3\hat{i} + 4\hat{j} + 4\hat{i} + 3\hat{j} = 7\hat{i} + 7\hat{j}$

Speed of the particle after 10s
 $= |\vec{v}| = \sqrt{(7)^2 + (7)^2} = 7\sqrt{2}$ units

Distance, $x = (t + 5)^{-1}$...(i)
 V + 4 \hat{i} + 3 \hat{j} = 7 \hat{i} + 7 \hat{j}

f the particle after 10s

= $|\vec{v}| = \sqrt{(7)^2 + (7)^2} = 7\sqrt{2}$ units

e, x = $(t + 5)^{-1}$...(i)

, v = $\frac{dx}{dt} = \frac{d}{dt}(t + 5)^{-1} = -(t + 5)^{-2}$...(ii)

nn, a = $\frac{dv}{dt} = \frac{d}{dt}[-(t + 5)^{-2}] = 2(t +$ = $\vec{u} + \vec{a}\vec{t}$:. $\vec{v} = (3\hat{i} + 4\hat{j}) + (0.4\hat{i} + 0.3\hat{j})$ (10)
 $\vec{v} + 4\hat{j} + 4\hat{i} + 3\hat{j} = 7\hat{i} + 7\hat{j}$

exed of the particle after 10s

= $|\vec{v}| = \sqrt{(7)^2 + (7)^2} = 7\sqrt{2}$ units

istance, $x = (t + 5)^{-1}$...(i)

elocity 4 $\hat{i} + 4\hat{i} + 3\hat{j} = 7\hat{i} + 7\hat{j}$

d of the particle after 10s
 $= |\vec{v}| = \sqrt{(7)^2 + (7)^2} = 7\sqrt{2}$ units

ance, $x = (t + 5)^{-1}$...(i)

ity, $v = \frac{dx}{dt} = \frac{d}{dt}(t + 5)^{-1} = -(t + 5)^{-2}$...(ii)

ation, $a = \frac{dv}{dt} = \frac{d}{dt}[-(t + 5)^{-2}] = 2$ Velocity, $v = \frac{dx}{dt} = \frac{d}{dt}(t+5)^{-1} = -(t+5)^{-2}$...(ii)

Acceleration, $a = \frac{dv}{dt} = \frac{d}{dt}[-(t+5)^{-2}] = 2(t+5)^{-3}$...(iii)

From equation (ii), we get
 $v^{3/2} = -(t+5)^{-3}$...(iv)

Substituting this in equation (iii) we get

Acce = $\frac{d}{dt}(t+5)^{-1} = -(t+5)^{-2}$...(ii)

= $\frac{d}{dt}[-(t+5)^{-2}] = 2(t+5)^{-3}$...(iii)

, we get ...(iv)

1 equation (iii) we get ...(iv)
 $\frac{d}{dx}(t+5)^{-2} = 2(t+5)^{-3}$...(iii)

1 equation (iii) we get ...(iv)
 $\frac{d}{dx}(t+5)^{-2} = 2(t+5)^$ on, $a = \frac{dv}{dt} = \frac{d}{dt}[-(t+5)^{-2}] = 2(t+5)^{-2}$

(uation (ii), we get
 $(t+5)^{-3}$

ting this in equation (iii) we get

ation, $a = -2v^{3/2}$

ocity)^{3/2}
 $\frac{-\vec{v}_i}{\hbar} = \sqrt{2 \times 10 \times 20} = 20 \text{ m/s}$
 $\frac{-\vec{v}_i}{t} = \$ of the particle after 10s
 $= |\vec{v}| = \sqrt{(7)^2 + (7)^2} = 7\sqrt{2}$ units
 $= |\vec{v}| = \sqrt{(7)^2 + (7)^2} = 7\sqrt{2}$ units
 \therefore $\vec{v} = \frac{dx}{dt} = \frac{d}{dt}(t + 5)^{-1} = -(t + 5)^{-2}$...(ii)

on, $a = \frac{dv}{dt} = \frac{d}{dt}[-(t + 5)^{-2}] = 2(t + 5)^{-3}$...(iii)

uation (i or the particle atter 1 os
 $= |\vec{v}| = \sqrt{(7)^2 + (7)^2} = 7\sqrt{2}$ units

ce, $x = (t + 5)^{-1}$...(i)

y, $v = \frac{dx}{dt} = \frac{d}{dt}(t + 5)^{-1} = -(t + 5)^{-2}$...(ii)

on, $a = \frac{dv}{dt} = \frac{d}{dt} [-(t + 5)^{-2}] = 2(t + 5)^{-3}$...(iii)

quation (ii), we get
 $-(t +$ = $|\vec{v}| = \sqrt{(7)^2 + (7)^2} = 7\sqrt{2}$ units

v.ce, x = (t + 5)⁻¹ ...(i)

y, v = $\frac{dx}{dt} = \frac{d}{dt}(t+5)^{-1} = -(t+5)^{-2}$...(ii)

ion, a = $\frac{dv}{dt} = \frac{d}{dt}[-(t+5)^{-2}] = 2(t+5)^{-3}$...(iii)

quation (ii), we get

-(t + 5)⁻³ ...(iv)

uti 4j + 4i + 3j = 7i + 7j

d of the particle after 10s

= $|\vec{v}| = \sqrt{(7)^2 + (7)^2} = 7\sqrt{2}$ units

tance, x = (t + 5)⁻¹

city, v = $\frac{dx}{dt} = \frac{d}{dt}(t + 5)^{-1} = -(t + 5)^{-2}$...(ii)

ration, a = $\frac{dv}{dt} = \frac{d}{dt}[-(t + 5)^{-2}] = 2(t + 5)^{-3}$. (3) (A). Distance, $x = (t + 5)^{-1}$

Velocity, $v = \frac{dx}{dt} = \frac{d}{dt}(t + 5)^{-1} = -(t + 5)^{-2}$...(ii)

Velocity, $v = \frac{dx}{dt} = \frac{d}{dt}(t + 5)^{-1} = -(t + 5)^{-2}$...(ii)

Acceleration, $a = \frac{dv}{dt} = \frac{d}{dt}[-(t + 5)^{-2}] = 2(t + 5)^{-3}$...(iii)

From equati Velocity, $v = \frac{dx}{dt} = \frac{d}{dt}(t+5)^{-1} = -(t+5)^{-2}$...(ii)

celeration, $a = \frac{dv}{dt} = \frac{d}{dt}[-(t+5)^{-2}] = 2(t+5)^{-3}$...(iii)

From equation (ii), we get ...(iv)

Substituting this in equation (iii) we get
 $Acceleration, a = -2v^{3/2}$...(iv)
 Velocity, $v = \frac{dx}{dt} = \frac{d}{dt}(t+5)^{-1} = -(t+5)^{-2}$...(ii)

celeration, $a = \frac{dv}{dt} = \frac{d}{dt} [-(t+5)^{-2}] = 2(t+5)^{-3}$...(iii)

From equation (ii), we get ...(iv)

substituting this in equation (iii) we get
 $A = 2e^{-3/2}$...(iv)
 $A = 2$ celeration, $a = \frac{dv}{dt} = \frac{d}{dt}[-(t+5)^{-2}] = 2(t+5)^{-3}...(i)$

From equation (ii), we get
 $v^{3/2} = -(t+5)^{-3}$...(iv)

Substituting this in equation (iii) we get

Acceleration, $a = -2v^{3/2}$...(v)
 $v = \sqrt{2gh} = \sqrt{2 \times 10 \times 20} = 20m/s$

or
$$
a \propto (velocity)^{3/2}
$$
 ...(v)

4) (C).
$$
v = \sqrt{2gh} = \sqrt{2 \times 10 \times 20} = 20m/s
$$

(5) (A).
$$
a = \frac{|\vec{v}_f - \vec{v}_i|}{t} = \frac{\sqrt{30^2 + 40^2}}{10} = 5 \text{ m/s}^2
$$

$$
8 \text{ m/s}^2 \qquad \qquad \textbf{(6)} \qquad \textbf{(8). } \text{V}_{\text{av}} = \frac{\text{S} + \text{S}}{\text{S} + \text{S}} = \frac{2 \text{v}_1 \text{v}_2}{\text{v}_1 + \text{v}_2}
$$

(5) (A).
$$
a = \frac{|\vec{v}_f - \vec{v}_i|}{t} = \frac{\sqrt{30^2 + 40^2}}{10} = 5 \text{ m/s}^2
$$

\n(6) (B). $V_{av} = \frac{S + S}{\frac{S}{v_1} + \frac{S}{v_2}} = \frac{2v_1v_2}{v_1 + v_2}$
\n(7) (B). $\vec{v} = \vec{u} + \vec{a}t$
\n $\vec{v} = (2\hat{i} + 3\hat{j}) + (0.3\hat{i} + 0.2\hat{j}) \times 10 = 5\hat{i} + 5\hat{j}$
\n $|\vec{v}| = 5\sqrt{2}$
\n(8) (D). $X = 8 + 12t - t^3$; $V = 0 + 12 - 3t^2 = 0$
\n $3t^2 = 12$; $t = 2\sec$; $a = dv/dt = 0 - 6t$
\n $a[t = 2] = -12 \text{ m/s}^2$; Retardation = 12 m/s²
\n(9) (C). $h_1 = \frac{1}{2}g(5)^2$, $h_2 = \frac{1}{2}g(10)^2$
\nand $h_3 = \frac{1}{2}g(15)^2 \Rightarrow h_1 = \frac{h_2}{3} = \frac{h_3}{5}$

(8) **(D).**
$$
X = 8 + 12t - t^3
$$
; $V = 0 + 12 - 3t^2 = 0$
 $3t^2 = 12$; $t = 2\sec$; $a = dv/dt = 0 - 6t$
 $a [t = 2] = -12 \text{ m/s}^2$; Retardation = 12 m/s²

(9) (C).
$$
h_1 = \frac{1}{2}g(5)^2
$$
, $h_2 = \frac{1}{2}g(10)^2$

100 km

Time to travel 100 m ist +
$$
\frac{1}{2}
$$
 sec.
\n $81 = \frac{1}{2} \times a \times t^2 \Rightarrow t = 9\sqrt{\frac{2}{a}}$
\n $81 = \frac{1}{2} \times a \times t^2 \Rightarrow t = 9\sqrt{\frac{2}{a}}$
\n $100 = \frac{1}{2} \times a \times \left(t + \frac{1}{2}\right)^2 \Rightarrow t + \frac{1}{2} = 10\sqrt{\frac{2}{a}}$
\n $100 = \frac{1}{2} \times a \times \left(t + \frac{1}{2}\right)^2 \Rightarrow t + \frac{1}{2} = 10\sqrt{\frac{2}{a}}$
\n $9\sqrt{\frac{2}{a}} + \frac{1}{2} = 10\sqrt{\frac{1}{a}}$; $\frac{1}{2} = \sqrt{\frac{2}{a}}$; $a = 8 \text{ m/s}^2$
\n(c) $x = u_x t + \frac{1}{2}u_x t^2$; $y = u_y t + \frac{1}{2}u_y t^2$
\n(d) (6) (8). $V_{av} = \frac{S + S}{S + S} = \frac{2v_y v_2}{v_1 + v_2}$
\n(29) (C). $x = u_x t + \frac{1}{2}u_x t^2$; $y = u_y t + \frac{1}{2}u_y t^2$
\n $x = 3 \times 4 + \frac{1}{2} \times 6 \times 4^2 = 12 + 48 = 60\text{m}$
\n $x = 3 \times 4 + \frac{1}{2} \times 6 \times 4^2 = 12 + 48 = 60\text{m}$
\n $100 = \frac{1}{2} \times 6 \times 4^2 = 12 + 48 = 60\text{m}$
\n $101 = 12 \text{ m/s}^2$; $101 = 12 \text{ m/s}^2$
\n $x = 3 \times 4 + \frac{1}{2} \times 6 \times 4^2 = 12 + 48 = 60\text{m}$
\n $101 = 12 \text{ m/s}^2$
\n $102 = 12 \text{ m/s}^2$; $103 = 12 \text{$

 $S \times$

B

(MOTION IN ONE DIMENSION)
\n
$$
V_A = 10(.)
$$
, $V_B = 10.0$; $V_{BA} = 10$ j+10i
\n $V_B = 10.0$; $V_{BA} = 10$ j+10i
\n $V_B = 10.0$; $V_{BA} = 10$ j+10i
\n $V_B = 10.0$; $V_{BA} = 10$ j+10i
\n $V_B = 10.0$
\n $V_B = 10.0$; $V_{BA} = 10$ j+10i
\n $V_B = 10.0$
\n $V_B = 10.0$; $V_{BA} = 10$ k+10*l*
\n $V_B = 10.0$; $V_B = 10.0$
\n $V_B = 1$

(15) (B). $V_1 \rightarrow$ velocity of Preeti ; $V_2 \rightarrow$ velocity of escalator

$$
\ell \to \text{distance} \; ; \quad t = \frac{\ell}{V_1 + V_2} = \frac{\ell}{\frac{\ell}{t_1} + \frac{\ell}{t_2}} = \frac{t_1 t_2}{t_1 + t_2}
$$

\n
$$
t = 0 \qquad \frac{a}{\sqrt{t_1 + t_2}} \qquad \frac{t_1}{\sqrt{t_2}} = \frac{t_1 t_2}{t_1 + t_2}
$$

\n**(6) (B).** A

(16) **(B).** A
$$
\overline{v = 0}
$$

\n $v = 6 \text{ ms}^{-1}$
\nC
\n $t = 3$
\n $v = -6 \text{ ms}^{-1}$
\nB
\n $v = 0$
\n $v = 6 \text{ ms}^{-1}$

Acceleration,
$$
a = \frac{6-0}{1} = 6 \text{ ms}^{-2}
$$

\nFor $t = 0$ to $t = 1$ s, $S_1 = \frac{1}{2} \times 6(1)^2 = 3 \text{ m}$

\n..., (i)

$$
\begin{array}{ll}\n\text{NIS} & \text{ODM ADVANKEDILEARNING} \\
\text{For } t = 1 \text{ s to } t = 2 \text{ s, } S_2 = 6 \times 1 - \frac{1}{2} 6 (1)^2 = 3 \text{m} \quad \dots (ii) \\
\text{For } t = 2 \text{ s to } t = 3 \text{ s, } S_3 = 0 - \frac{1}{2} \times 6 (1)^2 = -3 \text{m} \quad \dots (iii) \\
\text{Total displacement } S = S_1 + S_2 + S_3 = 3 \text{ m} \\
\text{Average velocity} = 3/3 = 1 \text{ m/s,} \\
\end{array}
$$

For
$$
t = 2
$$
 s to $t = 3$ s, $S_3 = 0 - \frac{1}{2} \times 6 (1)^2 = -3m$...(iii)

S₂ = 6×1 - $\frac{1}{2}$ 6 (1)² = 3m ...(ii)

S₃ = 0 - $\frac{1}{2}$ × 6 (1)² = -3m ...(iii)

S₃ = 0 - $\frac{1}{2}$ × 6 (1)² = -3m ...(iii)

= S₁ + S₂ + S₃ = 3 m

3 = 1m/s,

ed =9m

- 3 m/s $S_2 = 6 \times 1 - \frac{1}{2} 6 (1)^2 = 3m$...(ii)
 $S_3 = 0 - \frac{1}{2} \times 6 (1)^2 = -3m$...(iii)
 $S_3 = 0 - \frac{1}{2} \times 6 (1)^2 = -3m$...(iii)
 $= S_1 + S_2 + S_3 = 3 m$
 $S = 1 m/s$,
 $S = 3 m/s$ **EXERUTIVAL SUBDIMADVANCED LEARNING**
 $= 6 \times 1 - \frac{1}{2} 6 (1)^2 = 3 \text{m} \quad \dots (ii)$
 $= 0 - \frac{1}{2} \times 6 (1)^2 = -3 \text{m} \quad \dots (iii)$
 $\frac{1}{1!} + S_2 + S_3 = 3 \text{ m}$
 $\frac{1 \text{ m/s}}{1 \text{ m/s}}$
 $= 9 \text{ m}$
 m/s Total displacement $S = S_1 + S_2 + S_3 = 3$ m Average velocity= $3/3 = 1$ m/s, Total distance travelled =9m Average speed $= 9/3 = 3$ m/s

IENSON
\n
$$
B = 10(\hat{j}) : V_{BA} = 10\hat{j} + 10\hat{i}
$$
\n
$$
B = 10(\hat{j}) : V_{BA} = 10\hat{j} + 10\hat{i}
$$
\n
$$
= 100\sqrt{2} = 5
$$
\n
$$
201\sqrt{2} = 5
$$
\n
$$
201\sqrt{2} = 5
$$
\n
$$
201\sqrt{2} = 3m
$$
\n
$$
201\sqrt{2} = 3
$$