# **QUESTION BANK**

### **EXERCISE - 1**

- Q.1 A polynomial function of the 2nd degree has what form?
- **Q.2** A quadratic equation has what form?
- Q.3 What do we mean by a root of a quadratic?
- **Q.4** A quadratic always has how many roots?
- **Q.5** The graph of a quadratic is always the form called?
- **Q.6** What are the three methods for solving a quadratic equation, that is, for finding the roots?
- Q.7 If a product of factors is 0 if ab = 0 then what can you conclude about the factors a, b?
- Q.8 If  $\alpha \& \beta$  ( $\alpha > \beta$ ) are the roots of equation  $3x^2 2x 1 = 0$ , find the value of  $3\alpha + 2\beta$
- Q.9 Show that the roots of  $(a-b)x^2-3(a+b)x-2(a-b)=0$  ( $a \ne b$ ) are always real and unequal
- Q.10 If the root of the equation  $(b-c)x^2 + (c-a)x + (a-b) = 0$  are equal, prove that 2b = a + c
- Q.11 If  $x^2 + 4x p = 0$  has equal roots and x = -2 is a root of  $px^2 + kx + 2 = 0$ , find the value of k.
- Q.12 If one root of the equation  $ax^2 + bx + c = 0$  is three times the other root, show that  $3b^2 = 16a$
- Q.13 Form a quadratic equation whose roots  $\alpha$  &  $\beta$  satisfy the system of equations  $2\alpha 3\beta = 7$  &  $3\alpha 2\beta = 8$
- **Q.14** If one root of the equation  $x^2 bx + a = 0$  is the square of the other, show that  $b(b^2 2a) = a(1 + a + b)$
- Q.15 If  $\alpha$  &  $\beta$  are the roots of the equation  $x^2 3x + p = 0$ , find p such that  $\alpha = 2\beta$
- Q.16 If the sum of the roots of the equation is 2 & sum of their cubes is 98, then the equation is
- Q.17 Of 56 days a certain number were dull, square of four more than that number were wet and four were fine. How many wet days were there.
- Q.18 A teacher on attempting to arrange the student for mass drill in the form of a solid square found that 24 students were left over. When he increased the size of the square by one student he found that he was short of 25 students. Find the number of students.
- Q.19 A businessman bought some items for Rs. 600, keeping 10 items for himself, he sold the remaining item at a profit of Rs.5 per item. From the amount received in this deal he could buy 15 more items. Find the original price of each item.
- **Q.20** If the root of the equation  $\ell x^2 + nx + n = 0$ , be in the ratio p: q, then  $\sqrt{(p/q)} + \sqrt{(q/p)} + \sqrt{(n/l)} = ?$
- **Q.21** Solve for x:  $\sqrt{(3^{x+1}+6)} \sqrt{(3^x+3)} = 1$
- Q.22 An express train makes a run of 240 km at a certain speed. Another train whose speed is 12 km/h less takes an hour longer to cover the same distance. Find the speed of the express train in km/h?
- Q.23 The angry Arjun carried some arrows for fighting with Bheeshem. With half the arrows, he cut down the arrow thrown by Bheeshem on him and with six other arrows he killed the rath driver of Bheeshem. With one arrow each he knocked down respectively the rath, flag and the bow of Bheesehem. Finally, with one more than four times the square root of arrows he laid Bheeshem unconscious on an arrow bed. Find the total number of arrows Arjun had.
- Q.24 If I had walked 1 km/h faster, I would have taken 10 min less to walk 2 km. Find the rate of my walking.
- **O.25** Solve:  $9^{x+2} 6 \cdot 3^{x+1} + 1 = 0$
- **O.26** Solve:  $x^4 + 2x^3 13x^2 + 2x + 1 = 0$
- Q.27 If  $\alpha$ ,  $\beta$  are the roots of the equation  $2x^2 3x 5 = 0$ , form an equation whose roots are  $\alpha/(\alpha^2 + \beta^2)$ ,  $\beta/(\alpha^2 + \beta^2)$
- Q.28 A fox and an eagle lived at the top of a cliff of height 'h' whose base was at a distance 'mh' from the neighboring farm. The fox descends the cliff and went straight to the farm, the eagle flew up to a height x, and then flew in a straight line to the farm. The distance traversed by each being the same, find x.

- Q.29 If q, r > 0 then find the sign of the roots of the equation  $x^2 + qx r = 0$ .
- Q.30 One root of  $x^2 + kx 8 = 0$  is square of the other. Then, find the value of k.
- Q.31 If  $(\cos 30^{\circ} + \sin 30^{\circ})$  is a root of the quadratic equation then, find the quadratic equation.
- **Q.32** Solve the following equations for factorisation.

(a) 
$$-2x^2 + 3x + 2 = 0$$
, p, q  $\in \mathbb{R}$  (b)  $8x^2 - 22x - 21 = 0$ 

- **Q.33** Find the discriminants of the equation: (x-1)(2x-1) = 0
- **Q.34** Check if the equations have real roots (x-1)(2x-5) = 0
- Q.35 For what value of p will the equations have real roots?  $px^2 + 3x - 4 = 0$
- Q.36 Find the real roots of the equation, if possible (by using quadriatic formula)

$$2x^2 - 5\sqrt{3}x + 6 = 0$$

- Q.37 Without solving, find the sum and the product of the roots of the equations:  $4x^2 3x + 5 = 0$
- **Q.38** Evaluate  $\sqrt{6 + \sqrt{6 + \sqrt{6 + \dots \infty}}}$
- **Q.39** Form the quadratic equations for the roots given  $\frac{3+\sqrt{5}}{4}$ ,  $\frac{3-\sqrt{5}}{4}$
- **Q.40** Construct the quadratic equations for roots having sum (S) and product (P)
- **Q.41** Find the roots of the equation by the method of completing the square:  $25x^2 30x 10 = 0$
- **Q.42** Construct the quadratic whose roots are 2 and 3.
- **Q.43** Construct the quadratic whose roots are  $2 + \sqrt{3}$ ,  $2 \sqrt{3}$
- **Q.44** Construct the quadratic whose roots are  $3 + \sqrt{3}, 3 \sqrt{3}$
- **Q.45** Determine p if the equations have equal roots:  $2px^2 8x + p = 0$
- **Q.46** Solve  $x + \frac{5}{x} 6 = 0$
- **Q.47** Solve  $\sqrt{2x-9} + x = 13$
- **Q.48** Solve:  $\frac{1}{x+5} + \frac{1}{x+4} = \frac{1}{x+2} + \frac{1}{x+7}$
- **Q.49** Solve:  $3^{x+2} + 3^{-x} = 10$
- **Q.50** The sides of a right-angled triangle (in cm) are x 1, x and x + 1. Find the sides.
- Q.51 Determine the condition for the roots of the equation  $ax^2 + bx + c = 0$  to be in the ratio p: q.
- Q.52 Determine three successive odd numbers whose squares have the sum 83.
- Q.53 A group of girls planned a picnic. The budget for food was Rs. 2400. Due to illness, 10 girls could not go to the picnic and cost of food for each girl increased by Rs. 8. How many girls had planned the picnic?
- Q.54 A plane left 40 minutes late due to bad weather and in order to reach the destination 1600 km. away in time, it had to increase its speed by 400 km/hour from its usual speed.
- Q.55 The sum of S of n successive odd natural numbers starting from 3 is given by S = n(n+2). Determine n if the sum is 168.
- **Q.56** The sum of the ages of a father and his son is 45 years. Fiver years ago, the product of their age (in years) was 124. Dtermine their present ages.
- Q.57 Determine the value of k for which the quadratic equation  $4x^2 3kx + 1 = 0$  has equal roots.
- Q.58 Find the value of c for which the quadratic equation  $4x^2 2(c+1)x + (c+4) = 0$  has equal roots.

- Q.59 Find the value of  $\alpha$  such that the quadratic equation  $(\alpha 12) x^2 + 2 (\alpha 12) x + 2 = 0$  has equal roots.
- **Q.60** A shopkeeper buys a number of books for Rs. 80. If he had bought 4 more books for the same amount, each book would have cost him Re. 1 less. How many books did he buy?
- **Q.61** If  $\alpha$  and  $\beta$  are the roots of the quadratic equation  $2x^2 + 5x + k = 0$ , find the value of k for which  $\alpha^2 + \beta^2 + \alpha\beta = \frac{21}{4}$
- Q.62 Some students planned to go for a picnic. The budget for food was Rs. 240. As four students failed to go, the cost of food for each student increased by Rs. 10. How many students had gone for the picnic?
- **Q.63** A takes 12 days less than B to finish a piece of work. If A and B together can finish the work in 8 days, find the time taken by B to finish the work.
- Q.64 Two trains leave New Delhi station at the same time. The first train travels due west and the second, due north. The speed of the second train is 5 km/hr. greater than that of the first train. If, after two hours, they are 50 km apart, find the average speed of each train.

### **EXERCISE - 2**

#### Fill in the Blanks:

- Q.1 A quadratic equation in the variable x is of the form  $ax^2 + bx + c = 0$ , where a, b, c are real numbers and a .....
- Q.2 A quadratic equation  $ax^2 + bx + c = 0$  has two distinct real roots, if  $b^2 4ac$  ......
- **Q.3**  $x^2 2x = (-2)(3 x)$  is a ..... equation.
- **Q.4** Roots of the quadratic equation  $3x^2 2\sqrt{6}x + 2 = 0$  are ..........
- Q.5 Two numbers whose sum is 27 and product is 182 are ........
- **Q.6** Two consecutive positive integers, sum of whose squares is 365 are ......

- Q.9 The vertex of the quadratic polynomial  $y = 4x^2 12x + C$  will be a point on the x-axis, if the value of C is equal to .........
- **Q.10** The number of real roots of the equation  $e^{\sin x} e^{-\sin x} 4 = 0$  are ......

### True-False statements -

- Q.11 A real number a is said to be a root of the quadratic equation  $ax^2 + bx + c = 0$ , if  $a\alpha^2 + b\alpha + c = 0$ . The zeroes of the quadratic polynomial  $ax^2 + bx + c$  and the roots of the quadratic equation  $ax^2 + bx + c = 0$  are the same.
- **Q.12** A quadratic equation cannot be solved by the method of completing the square.
- Q.13 If we can factorise  $ax^2 + bx + c$ ,  $a \ne 0$ , into a product of two linear factors, then the roots of the quadratic equation  $ax^2 + bx + c = 0$  can be found by equating each factor to zero.
- **Q.14** (x-2)(x+1) = (x-1)(x+3) is a quadratic equation.
- Q.15  $(x^2+3x+1)=(x-2)^2$  is not a quadratic equation.
- Q.16  $x^2 + x 306 = 0$  represent quadratic equation for product of two consecutive positive integer is 306.
- Q.17 If  $\alpha$ ,  $\beta$  are the roots of  $x^2 ax + b = 0$  and if  $\alpha^n + \beta^n = V_n$ , then  $V_{n+1} = aV_n + bV_{n-1}$ ?

# **EXERCISE - 3**

| Q.1         | The roots of the equation $(x-3)^2 = 3$ are:                                                                          |                                          |                               |                                           |  |  |
|-------------|-----------------------------------------------------------------------------------------------------------------------|------------------------------------------|-------------------------------|-------------------------------------------|--|--|
|             | (A) $3 \pm \sqrt{3}$                                                                                                  | (B) $-3 \pm \sqrt{3}$                    | (C) 0                         | (D) 6                                     |  |  |
| <b>Q.2</b>  | Solutions of the equation $(x+4)(x-4)=9$ are:                                                                         |                                          |                               |                                           |  |  |
|             | (A) 4, -4                                                                                                             | $(B) \pm 5$                              | $(C) \pm \sqrt{7}$            | (D) $\pm 1/5$                             |  |  |
| Q.3         | Zero of the polynomia                                                                                                 | al $P(x) = x^2 - 5x + 6$ is:             |                               |                                           |  |  |
|             | (A) 1                                                                                                                 | (B)-1                                    | (C) 3                         | (D) 4                                     |  |  |
| <b>Q.4</b>  |                                                                                                                       | $x + c = 0$ , $a \ne 0$ has no re        |                               | (D) 1 4                                   |  |  |
| Q.5         | (A) $b^2 < 4ac$                                                                                                       | (B) $b^2 > 4ac$ and product is 5 then th | ` '                           | (D) b = 4ac                               |  |  |
| Q.S         | (A) $x^2 + 5x - 2 = 0$                                                                                                | (B) $x^2 + 2x + 5x = 0$                  | (C) $x^2 + 2x - 5 = 0$        | (D) $x^2 - 2x + 5 = 0$                    |  |  |
| Q.6         |                                                                                                                       | Sequation $x^2 + 2x\sqrt{3} + 3$         |                               |                                           |  |  |
| <b>C</b>    |                                                                                                                       | -                                        |                               | ual (D) Irrational and unequal            |  |  |
| <b>Q.</b> 7 |                                                                                                                       | $\cos of x^2 - 7x - 9 = 0 \text{ is eq}$ |                               | 1                                         |  |  |
|             | _                                                                                                                     | . /85                                    | _                             | 85                                        |  |  |
|             | (A) $\sqrt{85}$                                                                                                       | (B) $\frac{\sqrt{85}}{2}$                | (C) $2\sqrt{85}$              | (D) $\sqrt{\frac{85}{2}}$                 |  |  |
| Q.8         | The roots of the equat                                                                                                | ion $ax^2 + bx + c = 0$ will             | be reciprocal of each or      | ther if                                   |  |  |
| <b>Q.</b> 0 | (A) $a = b$                                                                                                           |                                          | (C) c = a                     | (D) none of the above                     |  |  |
| Q.9         |                                                                                                                       |                                          | xx + x + 8 = 0 will have      |                                           |  |  |
|             | (A) 7 and $-9$                                                                                                        | · ,                                      |                               | (D) $-7$ and $-9$                         |  |  |
| Q.10        | The value of x satisfyi                                                                                               | ng the equation $x^2 + p^2$              | $=(q-x)^2$ is                 |                                           |  |  |
|             | $(\Delta) \frac{q^2 - p^2}{}$                                                                                         | (B) $\frac{p^2 - q^2}{}$                 | (C) $\frac{q^2 - p^2}{2q}$    | (D) $\frac{p^2 - q^2}{q^2}$               |  |  |
|             | 2                                                                                                                     | -r                                       | -1                            | 2                                         |  |  |
| Q.11        | Two roots of the equa                                                                                                 | ation $b(c-a)x^2 + a(b-a)$               | c)x + c(a - b) = 0 are 1      | and                                       |  |  |
|             | c(a-b)                                                                                                                | -c(a-b)                                  | c(a-b)                        | -c(a-b)                                   |  |  |
|             | $(A) \overline{b(c-a)}$                                                                                               | $(B) \overline{b(c-a)}$                  | $(C) \frac{c (a-b)}{a (b-c)}$ | $(D) \frac{a(b-c)}{a(b-c)}$               |  |  |
| Q.12        |                                                                                                                       |                                          |                               | nce is 10 are roots of the equation       |  |  |
|             |                                                                                                                       |                                          | (C) $x^2 + 8x - 9 = 0$        | (D) $x^2 + 8x + 9 = 0$                    |  |  |
| Q.13        | Sum of the reciprocals of the roots of the equation $x^2 + px + q = 0$ is<br>(A) $1/p$ (B) $p/q$ (C) $-p/q$ (D) $q/p$ |                                          |                               |                                           |  |  |
| Q.14        |                                                                                                                       |                                          |                               | quation whose roots are $a\alpha + b$ and |  |  |
| Ų.17        | $a\beta + b$ is                                                                                                       | equation ax + bx + c                     | o, men me quadrane e          | quation whose roots are acc + b and       |  |  |
|             | $(A) x^2 - bx - ac = 0$                                                                                               | (B) $bx^2 - ax + ca = 0$                 | $(C) abx^2 - bx + c = 0$      | (D) $x^2 - bx + ca = 0$                   |  |  |
| Q.15        | If r s are roots of av2                                                                                               | $+ bx + c = 0$ , then $\frac{1}{r^2} +$  | $\frac{1}{2}$ is              |                                           |  |  |
| Q.13        | 111, 3 are 100ts 01 ax                                                                                                | r <sup>2</sup>                           | $s^2$                         |                                           |  |  |
|             | 2                                                                                                                     | $b^2-4ac$                                | $b^2 - 2ac$                   | $b^2 - 4ac$                               |  |  |
|             | $(A) b^2 - 4ac$                                                                                                       | (B) $\frac{a}{2a}$                       | (C) $\frac{b^2 - 2ac}{c^2}$   | (D) $\frac{c^2}{c^2}$                     |  |  |
| Q.16        |                                                                                                                       |                                          |                               |                                           |  |  |
| <b>~</b>    | (A) $ax^2 + 2bx + 2c = 0$ (B) $ax^2 + 4bx + 4c = 0$                                                                   |                                          |                               |                                           |  |  |
|             | (C) $ax^2 + 4bx + 2c =$                                                                                               | 0                                        | (D) $ax^2 + 2bx + 4c =$       | 0                                         |  |  |

| Q.17         | If $\alpha$ is one of the roots              | of a quadratic equation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $x^2 - 2px + p = 0$ , then the          | he other root is                           |
|--------------|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--------------------------------------------|
|              | $(\Lambda) = \frac{\alpha}{\alpha}$          | (B) $\frac{2\alpha-1}{\alpha}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $(C) \frac{\alpha}{\alpha}$             | $(D)$ $\frac{2\alpha+1}{\alpha}$           |
|              |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                         |                                            |
| Q.18         | 1                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                         | the equation $2x^2 - 5x + 2 = 0$ are       |
|              | (A) $2x^2 - \frac{1}{5}x + 2 = 0$            | (B) $2x^2 + 5x + 2 = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (C) $2x^2 - 5x + 2 = 0$                 | (D) $2x^2 - 5x - 2 = 0$                    |
| Q.19         | The quadratic equation $x^2 - 3x + 2 = 0$ is | n whose roots are the sui                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | m and difference of the s               | squares of roots of the equation           |
|              |                                              | (B) $x^2 + 8x + 15 = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (C) $x^2 - 8x - 15 = 0$                 | (D) $x^2 + 8x - 15 = 0$                    |
| Q.20         |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                         | ke in the constant term of the equation    |
|              | _                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                         | he coefficient of first degree term and    |
|              |                                              | e roots. The correct equa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         | (D) 2 0 112 0                              |
|              |                                              | (B) $x^2 + 7x + 12 = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | • •                                     | (D) $x^2 - 8x + 12 = 0$                    |
| Q.21         | $If \sqrt{1-x} + \sqrt{1+x} = \sqrt{1+x}$    | $\sqrt{1+x}$ , then x is equal to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | )                                       |                                            |
|              | $\sqrt{17}$                                  | (B) $\pm \frac{\sqrt{15}}{8}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $1 \pm \sqrt{17}$                       | $1\pm\sqrt{15}$                            |
|              | $(A) \pm \frac{}{8}$                         | $(B) \pm \frac{8}{8}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $(C)$ $\frac{8}{}$                      | $(D) \frac{}{8}$                           |
| Q.22         | The length of a rectang                      | ular plot is 8m more than                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | its width. If the length is             | reduced by 4m and width increased by       |
|              | 3m, the area remains the                     | he same. The dimension                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                       |                                            |
|              | (A) 16, 8                                    | (B) 20, 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (C) 24, 16                              |                                            |
| Q.23         | If a, b, $c \in R$ , roots of if—            | the equation $(x-a)(x-a)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -b) + (x - b) (x - c) + (x - c)         | (x-c)(x-a) = 0 are equal if and only       |
|              | (A) a = b = c                                | (B) $a = 0$ , $b = 1$ , $c = 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (C) $a = 1$ , $b = 0$ , $c = 1$         | (D) $a \ne 1$ , $b = 1$ , $c = 0$          |
| Q.24         | If $\alpha$ , $\beta$ be the roots of        | $x^2 + 3ax + 2a^2 = 0$ and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\alpha^2 + \beta^2 = 5$ , the value of |                                            |
| 0.25         | (A) 2                                        | (B) 3<br>$ax^2 + bx + c = 0, \alpha^2 - \beta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $(C) \pm 1$                             | (D) $\pm 1/2$                              |
| Q.25         | If $\alpha$ , $\beta$ be the roots of        | $ax^{2} + bx + c = 0, \alpha^{2} - b$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 32 is equal to                          |                                            |
|              | $(A) \pm \frac{b^2}{a^2} \sqrt{b^2 - 4ac}$   | $(B) \pm \frac{b}{a^2} \sqrt{b^2 - 4ac}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $(C) \pm \frac{a}{b} \sqrt{b^2 - 4ac}$  | (D) $\pm \frac{a^2}{b^2} \sqrt{b^2 - 4ac}$ |
| Q.26         | The condition for equa                       | $ation x^2 - bx + c = 0 to h$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ave two consecutive int                 | egers as its roots is                      |
| <b>C</b>     | (A) $b^2 - c^2 = 1$                          | (B) $b^2 - 4c = 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (C) $c^2 - 4b^2 = 1$                    | (D) b = c                                  |
| <b>Q.2</b> 7 |                                              | $3x^2 - 4x + 1 = 0$ , the eq                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                         |                                            |
|              |                                              | (B) $2x^2 + 5x + 2 = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         | (D) $x^2 + 3x - 1 = 0$                     |
| Q.28         |                                              | $x^2 - 6kx + 5 = 0 \text{ is } 3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                            |
| 0.20         | (A) 2                                        | (B) 1 $\frac{1}{12} + \frac{1}{12} + 1$ | (C)-1                                   | (D) $-1/2$                                 |
| Q.29         |                                              | ne equation $x^2 - 12x + 3$ (B) 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | K = 0 is the square of the $(C)$ 9      |                                            |
| Q.30         | (A) 3 The condition for the t                | roots of equation $x^2 - \ell x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                         | (D) 12                                     |
| <b>Q.5</b> 0 | (A) $\ell^2 + m^2 = 1$                       | (B) $m^2 = 4\ell + 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         | (D) $\ell = m + 1$                         |
| Q.31         |                                              | $a = 0$ of $ax^2 + 2bx + c = 0$ are                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         |                                            |
|              |                                              | $= (b^2 - ac)(x^2 + 1)$ are                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         |                                            |
|              | (A) real and distinct                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (B) real and equal                      |                                            |
|              | (C) not real                                 | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (D) not related to $ax^2$               |                                            |
| Q.32         | •                                            | $5x^2 + qx + r = 0 \text{ is equal}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                       |                                            |
|              | (A) p + q = 0                                | (B) q + r = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (C) p + r = 0                           | (D) p + q + r = 0                          |
|              |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                         |                                            |

| Q.33              | The roots of the equat                                  | $\sin \sqrt{\frac{x}{1-x}} + \sqrt{\frac{1-x}{x}} = -\frac{1}{x}$ | $\frac{13}{6}$ are                               |                                                                              |  |
|-------------------|---------------------------------------------------------|-------------------------------------------------------------------|--------------------------------------------------|------------------------------------------------------------------------------|--|
| Q.34              |                                                         | (B) 9/13, 4/13<br>and its reciprocal is 125/                      |                                                  | (D) none of these                                                            |  |
|                   | (A) 1/11                                                | (B) $3/11$                                                        | (C) 4/11                                         | (D) none of these                                                            |  |
| Q.35              | If one root of the quad                                 | Iratic equation is $\sqrt{3} + 1$                                 | 1, the equation is                               |                                                                              |  |
|                   | (A) $x^2 - 2\sqrt{3} x + 2 =$                           | $= 0$ (B) $x^2 - 2x - 2 = 0$                                      | (C) $x^2 - 2x - \sqrt{3} = 0$                    | (D) $x^2 + 2\sqrt{3}x + 23 = 0$                                              |  |
| Q.36              | · / -                                                   | ` '                                                               | $+\beta^2 = 35$ , the values o                   | · · ·                                                                        |  |
| Q.50              | $(A) \pm 1$                                             | $(B) \pm 6$                                                       | $(C) \pm 7$                                      | $(D) \pm 8$                                                                  |  |
| Q.37              | A total of 28 handsha                                   | kes was exchanged at the                                          |                                                  | Assuming that each participant was                                           |  |
|                   | (A) 14                                                  | (B) 7                                                             | (C) 56                                           | (D) 8                                                                        |  |
| Q.38              | At the midpoint of line arc is described from           | segment AB which is pure R with a radius equal to                 | units long, a perpendicula 1/2 AB, meeting AB at | ar MR is erected with length q units. Ar<br>T. Then AT & TB are the roots of |  |
| O 20              |                                                         |                                                                   | (C) $x^2 + px - q^2 = 0$                         | (D) $x^2 - px - q^2 = 0$                                                     |  |
| Q.39              | If $x + y = 1$ , then the la                            | (B) 0.5                                                           | (C) 0                                            | (D) 0.25                                                                     |  |
| Q.40              | (A) 1<br>If $(y-a)/(b+c)+(y-a)$                         | (b) 0.3<br>(a - b) / (c + a) + (x - c)                            | · /                                              | (D) 0.25                                                                     |  |
| Q. <del>1</del> 0 | (A) 0                                                   |                                                                   | (C) a + b + c                                    | (D) abc                                                                      |  |
| Q.41              |                                                         | · /                                                               | 3k = 0 is the square of th                       | · /                                                                          |  |
| <b>V</b>          | (A) 3                                                   | (B) 9                                                             | (C) 6                                            | (D) 12                                                                       |  |
| Q.42              |                                                         |                                                                   | x + c = 0 to be in the rati                      |                                                                              |  |
|                   | (A) $a^2c^2(p+q) = p^2c^2$                              |                                                                   | (B) ac $(p+q)^2 = pqb^2$                         |                                                                              |  |
|                   | (C) pq $(a + c)^2 = acb^2$                              | 2                                                                 | (D) $p^2q^2(a+c) = a^2c$                         | $^{2}$ b                                                                     |  |
| Q.43              | If the ratio between th                                 | e roots of the equation,                                          | $\ell x^2 + nx + n = 0$ is p: q1                 | then the value of                                                            |  |
|                   | $\sqrt{(p/q)} + \sqrt{(q/p)} + \sqrt{(n/\ell)}$ is –    |                                                                   |                                                  |                                                                              |  |
|                   | (A) 1                                                   | • .                                                               | (C) 0                                            | (D)-1                                                                        |  |
| Q.44              |                                                         |                                                                   | $\sin x^2 - 2px + p = 0$ , then t                |                                                                              |  |
| דדיע              |                                                         |                                                                   | $(C) \alpha / (2\alpha + 1)$                     |                                                                              |  |
| Q.45              |                                                         | 12x + 40 will intersect to                                        |                                                  | (B) (2\alpha + 1) / \alpha                                                   |  |
| Q. IC             | (A) 1 point                                             | (B) 2 point                                                       | (C) 3 point                                      | (D) does not intersect                                                       |  |
| Q.46              |                                                         |                                                                   | ` / I                                            | e parts if, when this number is increased                                    |  |
|                   | by unity, the length of each part is decreased by 1 mm? |                                                                   |                                                  |                                                                              |  |
|                   | (A) 24                                                  | (B) 25                                                            | (C) 28                                           | (D) None                                                                     |  |
| <b>Q.47</b>       |                                                         |                                                                   | quation $ax^2 + bx + c = 0$                      |                                                                              |  |
|                   | (A) $a^4 = b^2 (b^2 - 4ac)$                             | (B) $b^4 = a^2 (b^2 - 4ac)$                                       | (C) $a^4 = b^2 (b^2 + 4ac)$                      | (D) $b^4 = a^2 (b^2 + 4ac)$                                                  |  |
| Q.48              | If $x_1 & x_2$ are the roots                            |                                                                   | on $ax^2 - 5x + 6 = 0$ such                      | that $x_1/x_2 = 2/3$ then the value of 'a' is                                |  |
|                   | (A)-1                                                   | (B) 6                                                             | (C) 1                                            | (D) 4                                                                        |  |
| Q.49              | If $\alpha$ , $\beta$ are the roots of                  | The equation $ax^2 + bx +$                                        | -c = 0, then the equatior                        | whose roots are $\alpha + (1/\beta) \& \beta + 1/\alpha$                     |  |
|                   | is                                                      |                                                                   | (D) 1 2 . (                                      |                                                                              |  |
|                   | (A) $acx^2 + (a + c) bx$                                | $+(a+c)^2 = 0$                                                    | (B) $abx^2 + (a + c) bx$                         | $+(a+c)^2=0$                                                                 |  |
| 0.50              | (C) $acx^2 + (a + b) cx$                                |                                                                   | (D) None of these                                | ( ) ( ) 0 1                                                                  |  |
| Q.50              |                                                         |                                                                   |                                                  | (x-c)(x-a) = 0  are always -                                                 |  |
|                   | (A) Positive                                            | (B) Negative                                                      | (C) Real                                         | (D) IIIIagiliai'y                                                            |  |

**0.51** If  $x = 2 + 2^{2/3} + 2^{1/3}$ , then  $x^3 - 6x^2 + 6x =$ 

(C) 1

(D) None

If  $\sin \alpha$ ,  $\cos \alpha$  are the roots of the equation  $ax^2 + bx + c = 0$ , then Q.52

(A)  $a^2 - b^2 + 2ac = 0$  (B)  $(a - c)^2 = b^2 + c^2$  (C)  $a^2 + b^2 - 2ac = 0$  (D)  $a^2 + b^2 + 2ac = 0$ 

Q.53 The quadratic equation whose one roots is  $1/(2 + \sqrt{5})$  will be

(A)  $x^2 + 4x - 1 = 0$  (B)  $x^2 + 4x + 1 = 0$  (C)  $x^2 - 4x - 1 = 0$ 

(D)  $\sqrt{2} x^2 - 4x + 1 = 0$ 

Q.54 If  $\alpha$  &  $\beta$  are the roots of the equation  $x^2 - 4x + 1 = 0$ , the value of  $\alpha^3 + \beta^3$  is

(B) 52

(C) -52

(D) - 76

If  $\alpha$ ,  $\beta$  are the roots of the equation  $ax^2 + 3x + 2 = 0$  (a < 0) then the value of  $(\alpha^2/\beta) + (\beta^2/\alpha)$  is. Q.55

(A) greater than 0

(B) greater than 1

(C) less than 1

(D) less than 0

If the equation  $4x^2 + x(p+1) + 1 = 0$  has exactly two equal roots, Then one of the values p is Q.56

(B) - 3

(C) 0

(D)3

**O.57** The solution of (2x+3)/(2x-1) = (3x-1)/(3x+1)

(A) 1/8

(B)-1/8

(C) 8/3

(D) - 8/3

**Q.58** Find the quadratic equation whose roots are square the roots of equation  $x^2 - 16x + 1 = 0$ 

(A)  $x^2 - 254x + 1 = 0$  (B)  $x^2 + 254x + 1 = 0$  (C)  $x^2 - 24x - 1 = 0$  (D)  $x^2 + 24x + 1 = 0$ 

# **Direction (Q.59–Q.61):**

Comment upon the values of a, b, c, D for the standard Q.E as  $y = ax^2 + bx + c$  and find the correct statement.

(A) a < 0

(B) b > 0

(C) D < 0

(D) a > 0

Figure

(A) a < 0

(B) D < 0

(C) b > 0

(D) c > 0

(A) a > 0

(B) D < 0

(C) b > 0

(D) c < 0

## **Direction (Q.62–Q.63):**

Find the inter-relationship in variables for the standard Q.E as  $y = ax^2 + bx + c$ 

(A) a + b + c = 0 (B) a - b + c = 0 (C) 2a + b + c = 0 (D) 4a - 2b + c = 0



(C) - 4(D) 4

Find k if the roots of the equation  $3kx^2 + 4(kx - 1)$  are real and equal. Q.65 (B) k = 1, 3(C) k = 2, 3(A) k = 0, 3(D) k = 0, 1

If one root of the quadratic equation  $ax^2 + bx + c = 0$  is double the other, what is the right relation Q.66 (A)  $2b^2 = 9ac$ (D)  $a^2 = 9bc$ (B)  $b^2 = 9ac$ (C)  $2a^2 = 9bc$ 

The sum of the roots of a quadratic equation is 4 and the sum of their squares is 14. Find the equation. **O.67** (A)  $x^2 - 4x + 1 = 0$  (B)  $x^2 - 2x - 1 = 0$  (C)  $x^2 - 3x - 1 = 0$  (D)  $x^2 + 3x + 1 = 0$ 

(D) None

The number which exceeds its positive square root by 12 is Q.68 (B) 16(D) None (C) 25

Q.69 The number of real solutions of the equation  $|x|^2 - 3|x| + 2 = 0$  are— (C) 3 (B)2(D) 4

The roots of the equation  $x^2 + Ax + B = 0$  are 5 and 4. The roots of  $x^2 + Cx + D = 0$  are 2 and 9. Which of the 0.70following is a root of  $x^2 + Ax + D = 0$ ?

(A) 3 & 9(C) 6 & 9(B) 6 & 3 (D) 3 & 3

One of the two students, while solving a quadratic equation in x, copied the constant term incorrectly and got the roots 3 and 2. The other copied the constant term and coefficient of  $x^2$  correctly as -6 and 1 respectively. The corrects roots are –

(A) 3, -2(B)-3, 2(C) -6, -1(D) 6, -1

What is the condition for one root of the quadratic equation  $ax^2 + bx + c = 0$  to be twice the other – 0.72(B)  $2b^2 = 9ac$  (C)  $c^2 = 4a + b^2$ (D)  $c^2 = 9a - b^2$ 

Q.73 If the sum of the roots of the equation  $\lambda x^2 + 2x + 3\lambda = 0$  be equal to their product, then  $\lambda =$ (A) 4 (B) - 4(C) 6(D) None of these

Q.74 If  $\alpha$ ,  $\beta$  are the roots of the equation  $ax^2 + bx + c = 0$ , then  $\frac{\alpha}{\alpha\beta + b} + \frac{\beta}{a\alpha + b} =$ 

(A) 2/a(B) 2/b(C) 2/c(D)-2/a

**Q.75** If  $x^2 + 2x - 3 \ge 0$  and  $x^2 - 2x - 3 \ge 0$  then –  $(A) x \ge 3$ (B)  $x \le 3$ (C) both (A) and (B) (D) None of these

**Q.76** If  $\alpha$ ,  $\beta$  are the roots of  $x^2 + px + q = 0$  and also  $x^{2n} + p^n x^n + q^n = 0$ ,  $\frac{\alpha}{\beta}$  and  $\frac{\beta}{\alpha}$  are the roots of

 $(x+1)^n + x^n + 1 = 0$ , then n is –

(D) an irrational number (A) an odd integer (B) an even integer (C) a fraction

If a and b are the non-zero distinct roots of  $x^2 + ax + b = 0$ , then the least value of  $x^2 + ax + b$  is – (B) - 9/4(C) 9/4(D) 2/3

Q.78 If  $\alpha$ ,  $\beta$  are the roots of the equation  $x^2 - 7x + 12 = 0$ , then  $\alpha^2 + \beta^2$  equals – (B) 19

(C) 24If  $\alpha$ ,  $\beta$  are the roots of the equation  $x^2 + bx + c = 0$ , then the roots of the equation  $cx^2 + (b^2 - 2c)x + c = 0$  are—

(B)  $\frac{1}{\alpha}$ ,  $\frac{1}{\beta}$  (C)  $\frac{\alpha}{\beta}$ ,  $\frac{\beta}{\alpha}$ (A)  $\alpha^2$ ,  $\beta^2$ (D)  $2\alpha$ ,  $2\beta$ 

| Q.80 | If one root of $x^2 + px - (A) 49/4$                                 | +12 = 0 is 4, while the e<br>(B) $4/49$       | quation $x^2 + px + q = 0$<br>(C) 4                                                 | has equal roots, then the value of q is—(D) 1/4               |
|------|----------------------------------------------------------------------|-----------------------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------|
| Q.81 | If $\left(x - \frac{1}{2}\right)^2 - \left(x - \frac{3}{2}\right)^2$ | = x + 2, then $x = ?$                         |                                                                                     |                                                               |
| Q.82 | (A) 3<br>For what value of 'a' v<br>least—                           | (B) 2<br>will the sum of the squar            | (C) 4 res of the roots of the equ                                                   | (D) None of these various $x^2 - (a-2)x - a - 1 = 0$ have the |
|      | (A) 0                                                                | (B) 1                                         | (C) 2.5                                                                             | (D) 6.4                                                       |
| Q.83 | The roots of the equa (A) Real and different (C) Real and equal      | $tion x^2 - 2\sqrt{2} x + 1 = 0$              | are (B) Imaginary and diff (D) Rational and differ                                  |                                                               |
| Q.84 | If $\alpha, \beta, \gamma$ are the root                              | s of the equation $2x^3 - 3$                  | $3x^2 + 6x + 1 = 0$ , then o                                                        | $\alpha^2 + \beta^2 + \gamma^2$ is equal to –                 |
| Q.85 | (A) - 15/4                                                           | (B) 15/4<br>nen both the roots of the<br>tive | (C) 9/4 e equation ax <sup>2</sup> + bx + c (B) Have negative rea (D) None of these | (D) $4 = 0$                                                   |
| Q.86 | If $x = \sqrt{6 + \sqrt{6 + \sqrt{6 - 46}}}$                         | ${+ \dots to \infty}$ , then –                |                                                                                     |                                                               |
| Q.87 | (A) x is an irrational nu<br>(C) $x = 3$                             | umber                                         | (B) 2 < x < 3<br>(D) None of these<br>1 = 0 have 2 common a                         | roots then the value of k is                                  |
|      | (A) 1                                                                | (B) 3                                         | (C) - 1                                                                             | (D)-2                                                         |
| Q.88 |                                                                      | $tion \sqrt{3x+1} + 1 = \sqrt{x} \ a$         |                                                                                     | (D) 11                                                        |
| Q.89 | (A) 0<br>If $x^2 + y^2 = 25$ , $xy =$                                | (B) 1<br>12. then x =                         | (C) 0, 1                                                                            | (D) None                                                      |
|      |                                                                      |                                               | (C) $\{3, 4, -3, -4\}$<br>  $ x ^2 - 3  x  + 2 = 0$ are                             | (D) $\{-3, -3\}$                                              |
| Q.90 | The number of real so (A) 1                                          | olutions of the equation (B) 2                | $ x ^2 - 3 x  + 2 = 0$ are (C) 3                                                    | –<br>(D) 4                                                    |
| Q.91 | If $x = \sqrt{7 + 4\sqrt{3}}$ , the                                  | • *                                           |                                                                                     |                                                               |
| _    |                                                                      | Λ                                             | (C) 3                                                                               | (D) 2                                                         |
| Q.92 | = 0  is -                                                            |                                               |                                                                                     |                                                               |
|      |                                                                      |                                               |                                                                                     |                                                               |
|      | (A) x = p + q + r                                                    | (B) x = p - q + r                             | $(C) x = \frac{p+q}{q+r}$                                                           | $(D) x = \frac{p}{q} + r$                                     |
| Q.93 |                                                                      | n equation $2x^2 + 3(\lambda - 2)$            | $2)x + \lambda + 4 = 0 \text{ be equal}$                                            | in magnitude but opposite in sign, then                       |
|      | $\lambda = $ (A) 1                                                   | (B) 2                                         | (C) 3                                                                               | (D) 2/3                                                       |
| 0.94 | ` '                                                                  |                                               | and $qx^2 - 2\sqrt{pr}x + q =$                                                      | ` '                                                           |
| χ ·  |                                                                      |                                               | $(C) p^2 = qr$                                                                      |                                                               |
|      |                                                                      |                                               |                                                                                     |                                                               |

|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | a                                                                         | b                                                                         |                                                                              |  |  |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------|------------------------------------------------------------------------------|--|--|
| Q.95     | The value of m for which the equation $\frac{a}{x+a+m} + \frac{b}{x+b+m} = 1$ has roots equal in magnitude but opposite in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                           |                                                                           |                                                                              |  |  |
|          | sign is –                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                           |                                                                           |                                                                              |  |  |
|          | $(A) \frac{a+b}{a-b}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (B) 0                                                                     | (C) $\frac{a-b}{a+b}$                                                     | (D) $\frac{2(a-b)}{a+b}$                                                     |  |  |
| Q.96     | u o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                           | a i o                                                                     | oth real, distinct and negative is –                                         |  |  |
|          | (A) 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (B) 2                                                                     | (C) 3                                                                     | (D) - 4                                                                      |  |  |
| Q.97     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                           |                                                                           | whose roots are $\alpha + \frac{1}{\beta}$ and $\beta + \frac{1}{\alpha}$ is |  |  |
|          | (A) $acx^2 + (a + c) bx - (C) acx^2 + (a + b) cx - (C) acx^2 + (a + b) cx - (C) acx^2 + (a + b) acx^2 + (a + $ | $(a+c)^2 = 0$<br>+ $(a+c)^2 = 0$                                          | (B) $abx^2 + (a + c) bx - (D)$ None of these                              | $+(a+c)^2=0$                                                                 |  |  |
| Q.98     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n whose one root is $2-\sqrt{2}$                                          |                                                                           |                                                                              |  |  |
| 0.00     | ` /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (B) $x^2 - 4x + 1 = 0$                                                    | ` /                                                                       | · /                                                                          |  |  |
| Q.99     | The equation $2x^2 + 2($<br>(A) Equal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (p+1)x + p = 0, where p                                                   | o is real, always has root<br>(B) Equal in magnitude                      |                                                                              |  |  |
|          | (C) Irrational                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                           | (D) Real                                                                  | out opposite in sign                                                         |  |  |
| Q.100    | Find two numbers, one (A) 5, 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | e of which is 3/5th of the (B) 5, 3                                       | other, such that the diffe (C) 10, 6                                      | erence of their squares is equal to 16. (D) 1, 4                             |  |  |
| Q.101    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · / -                                                                     |                                                                           | rom the donkey's side, while solving a                                       |  |  |
| <b>Q</b> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nmitted the following mi                                                  |                                                                           |                                                                              |  |  |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | a mistake in the constan                                                  | _                                                                         |                                                                              |  |  |
|          | * /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | nitted an error in the coef                                               | _                                                                         | ne roots as 12 and 4. to get it right jointly. Find the quadratic            |  |  |
|          | equation-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ey realised that they are w                                               | viong and they managed                                                    | to get it right jointry. Find the quadratic                                  |  |  |
|          | $(A) x^2 + 4x + 14 = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (B) $2x^2 + 7x - 24 = 0$                                                  | (C) $x^2 - 14x + 48 = 0$                                                  | (D) $3x^2 - 17x + 52 = 0$                                                    |  |  |
| Q.102    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | which of the following is                                                 |                                                                           | (D) 3 + 6 + 6 0                                                              |  |  |
| O 103    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (B) $p^3 - 6p + 6 = 0$<br>ne equations $X^2 + X = Y$                      |                                                                           |                                                                              |  |  |
| Q.105    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (B) $(a+1)/(b-a)$                                                         |                                                                           |                                                                              |  |  |
|          | If the ratio of the roots                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | s of the equation $x^2 + bx$                                              | c + c = 0 is the same as the                                              | hat of $x^2 + qx + r = 0$ , then                                             |  |  |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (B) $r^2c = qb^2$<br>b, c are rational, then the                          |                                                                           | $(D) b^2 r = q^2 c$                                                          |  |  |
| Q.103    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (a + b - c) = 0                                                           |                                                                           |                                                                              |  |  |
|          | (A) rational                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (B) irrational                                                            | (C) imaginary                                                             | (D) equal                                                                    |  |  |
| Q.106    | If $\alpha$ is a root of $4x^2 + 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2x - 1 = 0, then the other                                                | er root is –                                                              |                                                                              |  |  |
|          | (A) $3\alpha^3 - 4\alpha$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (B) $4\alpha^3 - 3\alpha$                                                 | (C) $3\alpha^3 + 4\alpha$                                                 | (D) $4\alpha^3 + 3\alpha$                                                    |  |  |
| Q.107    | If r tbe the ratio of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | roots of the equation ax                                                  | $x^2 + bx + c = 0$ , then $\frac{(r - a)^2}{a^2}$                         | $\frac{(r+1)^2}{r} =$                                                        |  |  |
| O 100    | (A) $a^2/bc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (B) $b^2/ca$                                                              | (C) $c^2/ab$                                                              | (D) None of these                                                            |  |  |
| Q.108    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | of $bx^2 + nx + n = 0$ is p:                                              |                                                                           |                                                                              |  |  |
|          | (A) $\sqrt{\frac{q}{p}} + \sqrt{\frac{p}{q}} + \sqrt{\frac{\ell}{n}} = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (B) $\sqrt{\frac{p}{q}} + \sqrt{\frac{q}{p}} + \sqrt{\frac{n}{\ell}} = 0$ | (C) $\sqrt{\frac{q}{p}} + \sqrt{\frac{p}{q}} + \sqrt{\frac{\ell}{n}} = 0$ | (D) $\sqrt{\frac{p}{q}} + \sqrt{\frac{q}{p}} + \sqrt{\frac{n}{\ell}} = 0$    |  |  |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                           |                                                                           |                                                                              |  |  |

| Q.109       | The value of k so that the equations $x^2 - x - 12 = 0$ and $kx^2 + 10x + 3 = 0$ may have one root in common, is- |                                                                                  |                                                              |                                                                                    |  |
|-------------|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------------------------------|--|
|             | (A) $\frac{43}{16}$                                                                                               | (B) 3                                                                            | (C) –3                                                       | (D) $-\frac{43}{16}$                                                               |  |
| Q.110       | If $\alpha$ , $\beta$ are roots of the (A) 0                                                                      |                                                                                  | $+ \text{Amx} + \text{cm}^2 x^2 = 0$ , 1<br>(C) -1           | then $A(\alpha^2 + \beta^2) + A\alpha\beta + c\alpha^2\beta^2 =$ (D) None of these |  |
| Q.111       | In copying a quadratic the roots were found to                                                                    | equation of the form $x^2 + 6$ be 3 and 10, another stue found the roots to be 4 | +px+q=0, a student wr<br>udent wrote the same eq             | ote the coefficient of x incorrectly and uation but he wrote the constant term     |  |
| Q.112       |                                                                                                                   | $Fx^2 - 2px + q = 0$ and $\gamma$ ,<br>(B) $s - q = r^2 - p^2$                   |                                                              | + s = 0 and $\alpha, \beta, \gamma, \delta$ are in A.P. then – (D) None of these   |  |
| Q.113       | If one root of the equator of q is—                                                                               | $\sin x^2 + px + 12 = 0$ is 4                                                    | , while the equation $x^2$                                   | +px + q = 0 has equal roots, the value                                             |  |
| O 114       | (A) 49/4 The real roots of the a                                                                                  | (B) $4/49$ quation $x^{2/3} + x^{1/3} - 2 =$                                     |                                                              | (D) None of these                                                                  |  |
|             | (A) 1, 8                                                                                                          | (B)-1,-8                                                                         | (C)-1, 8                                                     | (D) 1, -8                                                                          |  |
| Q.115       | Solution of the equation                                                                                          | $on \sqrt{x-2} + \sqrt{4-x} = \sqrt{6}$                                          | 6-x is-                                                      |                                                                                    |  |
|             | (A) $x = 4 - \frac{4}{\sqrt{5}}$                                                                                  | (B) $x = 4 + \frac{4}{\sqrt{5}}$                                                 | (C) $x = 4 - \frac{2}{\sqrt{5}}$                             | (D) $x = 4 + \frac{2}{\sqrt{5}}$                                                   |  |
| Q.116       | The value of m so that                                                                                            | the equation $3x^2 - 2mx$                                                        | x - 4 = 0 and $x(x - 4m)$                                    | +2=0 may have a common root is $-$                                                 |  |
|             | , ,                                                                                                               | (B) $-1/\sqrt{2}$                                                                | • •                                                          | ` '                                                                                |  |
| Q.117       |                                                                                                                   |                                                                                  |                                                              | whose root are $\alpha^{19}.\beta^7$ is –                                          |  |
| Q.118       | The expression $x^2 + 2$                                                                                          | (B) $x^2 - x + 1 = 0$<br>(a+b+c) x + 3 (bc+c)<br>(B) $ac+bc+ab=0$                | ca + ab) will be a perfec                                    | · ·                                                                                |  |
|             |                                                                                                                   | EXE                                                                              | RCISE - 4                                                    |                                                                                    |  |
| ———<br>Матс | CH THE COLUMN                                                                                                     |                                                                                  |                                                              |                                                                                    |  |
| WIATC       | Each question contains                                                                                            | statements given in two natched with statements                                  |                                                              | be matched. Statements (A, B, C, D) in                                             |  |
| Q.1         | Column II give roots of Column I  (A) $6x^2 + x - 12 = 0$                                                         | f quadration equations gi                                                        | iven in column I, match t<br><b>Column II</b><br>(p) (–6, 4) | them correctly.                                                                    |  |
|             | (B) $8x^2 + 16x + 10 = 1$                                                                                         | 202                                                                              | (q) (9, 36)                                                  |                                                                                    |  |
|             | (C) $x^2 - 45x + 324 =$                                                                                           |                                                                                  | (r)(3,-1/2)                                                  |                                                                                    |  |
|             | (D) $2x^2 - 5x - 3 = 0$                                                                                           |                                                                                  | (s)(-3/2,4/3)                                                |                                                                                    |  |
| Q.2         | Match the column                                                                                                  |                                                                                  |                                                              |                                                                                    |  |
|             | Column I $(A) (y = 2) (y + 4) + 1$                                                                                | - 0                                                                              | Column II                                                    | a nalynamial                                                                       |  |
|             | (A) $(x-3)(x+4)+1$<br>(B) $(x+2)^3 = 2x(x^2-1)$                                                                   |                                                                                  | (p) Forth degre<br>(q) Quadratic e                           |                                                                                    |  |
|             | (B) $(x+2)^2 - 2x(x^2 - (C))(2x-2)^2 = 4x^2$                                                                      | - 1)                                                                             | (q) Quadranc e<br>(r) Non-quadra                             | -                                                                                  |  |
|             | (D) $(2x^2-2)^2=3$                                                                                                |                                                                                  | (s) linear equat                                             | •                                                                                  |  |
|             | (D)(2A-2)=3                                                                                                       |                                                                                  | (5) micai equal                                              | ion                                                                                |  |

| Q.3         | Column II give pair of <b>Column I</b>          | two number for solution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | n to problems given in co                                  | lumn I, match th                       | em correctly. <b>Column II</b> |
|-------------|-------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|----------------------------------------|--------------------------------|
|             |                                                 | uares of two positive in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ntegers is 208. If the squ                                 | are of the                             | (p) (7, 49)                    |
|             | larger number is 18 tin                         | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                            |                                        |                                |
|             | (B) A year ago, the fat of his son's age.       | her was eight times as o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ld as his son.Now his ag                                   | ge is the square                       | (q)(5,29)                      |
|             | (C) The age of father                           | is equal to the sqare of the age of the son is 66 ye                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | _                                                          | m of the age of                        | (r) (36, 6)                    |
|             | (D) Two years ago, Ja                           | acob's age was three time will be one-fourth of Ja                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | es the square of John's                                    | age. In three                          | (s) (8, 12)                    |
|             |                                                 | EXI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ERCISE - 5                                                 |                                        |                                |
| PREV        |                                                 | PETITION PROBLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                            |                                        | _                              |
| Q.1         | If one root of $x^2 + px - (A) 49/4$            | + 12 = 0 is 4, while the e<br>(B) $4/49$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | equation $x^2 + px + q = 0$<br>(C) 4                       | has equal roots, (D) 1/4               | then the value of q is—        |
| Q.2         |                                                 | 8 = 0 is square of the of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                            |                                        |                                |
|             | (A) 2                                           | (B) 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (C) -8                                                     | (D)-2                                  |                                |
| Q.3         |                                                 | $yuation x^2 - (A-3)x - (A-3)$ | A-2), for what vlaue of $A$                                | will the sum of t                      | the squares of the roots       |
|             | be zero –<br>(A) –2                             | (B) 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (C) 6                                                      | (D) None of th                         | nece                           |
| Q.4         | If the roots, $x_1$ and $x_2$                   | of the quadratic equation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | on $x^2 - 2x + c = 0$ also sa                              | tisfy the equatio                      | $n 7x_2 - 4x_1 = 47$ , then    |
|             | which of the following                          | g is true –                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                            |                                        |                                |
| 0.5         | (A) $c = -15$                                   | (B) $x_1 = -5, x_2 = 3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $(C) x_1 = 4.5, x_2 = -2.$                                 | 5 (D) None of t                        | hese                           |
| Q.5         | Let p and q be the roo value of $p^2 + q^2$     | ts of the quadratic equa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $(\alpha - 2)x - \alpha -$                                 | I = 0. What is the                     | he minimum possible            |
|             | (A) 0                                           | (B) 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (C) 4                                                      | (D) 5                                  |                                |
| Q.6         | If $\alpha$ and $\beta$ are the roo             | ots of the equation ( $ax^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | +bx+c=0), then what                                        | is the value of                        | $(\alpha^2 + \beta^2) -$       |
|             | I. $\alpha + \beta = -\left(\frac{b}{a}\right)$ | II $2\alpha\beta - \left(\frac{c}{c}\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                            |                                        |                                |
|             | $\frac{1. (a)}{(a)}$                            | $\frac{\text{II. } 2\alpha\beta - \binom{1}{a}}{(B) 2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (C) 3                                                      | (D) 4                                  |                                |
| <b>Q.</b> 7 |                                                 | ratic equation $2x^2 + 3x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                            | (D) 4                                  |                                |
| ~.          | (A) Irrational                                  | (B) Rational                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (C) Imaginary                                              | (D) None of th                         | nese                           |
| <b>Q.8</b>  |                                                 | quation $(\cos p - 1) x^2 +$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                            |                                        |                                |
|             | (A) $p \in (-\pi, 0)$                           | (B) $p \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (C) $p \in (0,\pi)$                                        | (D) $p \in (0, 2\pi)$                  | )                              |
| <b>Q.9</b>  | The expression $x^2 + 2$                        | bx + c has the positive v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | alue if –                                                  | _                                      |                                |
| 0.10        |                                                 | (B) $b^2 - 4c < 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $(C) c^2 < b$                                              | (D) $b^2 < c$                          | 0.1                            |
| Q.10        | reciprocals, then c/a,                          | s of the quadratic equati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $100 \text{ ax}^2 + \text{bx} + \text{c} = 0 \text{ is e}$ | qual to the sum                        | of the squares of their        |
|             | (A)A.P.                                         | (B) G.P.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (C) H.P.                                                   | (D) None of th                         |                                |
| Q.11        | If the roots of the equa                        | $tion \frac{1}{x+p} + \frac{1}{x+q} = \frac{1}{r}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | are equal in magnitude b                                   | out opposite in si                     | gn, then the product of        |
|             | the roots will be—                              | x+p $x+q$ $r$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                            | 11                                     |                                |
|             | $(A) \frac{p^2 + q^2}{}$                        | (B) $-\frac{(p^2+q^2)}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $(C) \frac{p^2 - q^2}{q^2}$                                | (D) $-\frac{(p^2-q^2)^2}{(p^2-q^2)^2}$ | <sup>2</sup> )                 |
| 0.12        | $\frac{(\Delta)}{2}$                            | $\frac{2}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\frac{1}{2}$                                              | $\frac{(D) = -\frac{1}{2}}{2}$         |                                |
| Q.12        | If the roots of $x^2 - bx$<br>(A) 1             | + c = 0 are two consecution (B) 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | itive integers, then b <sup>2</sup> – (C) 3                | 4c is –<br>(D) 4                       |                                |
| МАТП        | EMATICS FOUNDATION                              | • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 111                                                        |                                        | DDATIC EQUATIONS               |
| MAIN        | EMIATICS FUUNDATION                             | <b>1</b> = <b>∕ X</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 111                                                        | QUAI                                   | DRATIC EQUATIONS               |

- If  $\alpha \neq \beta$  but  $\alpha^2 = 5\alpha 3$  and  $\beta^2 = 5\beta 3$ , then the equation whose roots are  $\alpha/\beta$  and  $\beta/\alpha$  is (A)  $3x^2 - 25x + 3 = 0$  (B)  $x^2 + 5x - 3 = 0$  (C)  $x^2 - 5x + 3 = 0$  (D)  $3x^2 - 19x + 3 = 0$  **Q.14** If a root of the equations  $x^2 + px + q = 0$  and  $x^2 + \alpha x + \beta = 0$  is common, then its value will be
- (where  $p \neq \alpha$  and  $q \neq \beta$ )

- (A)  $\frac{q-\beta}{\alpha-p}$  (B)  $\frac{p\beta-\alpha q}{q-\beta}$  (C)  $\frac{q-\beta}{\alpha-p}$  or  $\frac{p\beta-\alpha q}{q-\beta}$  (D) None of these If one root of the quadratic equation  $ax^2+bx+c=0$  is equal to the  $n^{th}$  power of the other root, then the value of  $(ac^{n})^{\overline{n+1}} + (a^{n}c)^{\overline{n+1}} =$ 
  - (A) b
- (B)-b
- (C)  $b^{\frac{1}{n+1}}$  (D)  $-b^{\frac{1}{n+1}}$
- The value of 'a' for which one root of the quadratic equation  $(a^2 5a + 3) x^2 + (3a 1) x + 2 = 0$  is twice as 0.16 large as the other, is-
  - (A) 2/3
- (B) 2/3
- (C) 1/3
- Let a, b, c be real numbers  $a \ne 0$ . If  $\alpha$  is a root  $a^2x^2 + bx + c = 0$ ,  $\beta$  is a root of  $a^2x^2 bx c = 0$  and Q.17  $0 < \alpha < \beta$ , then the equation  $a^2x^2 + 2bx + 2c = 0$  has a root  $\gamma$  that always satisfies –
  - (A)  $\gamma = \frac{\alpha + \beta}{2}$
- (B)  $\gamma = \alpha + \frac{\beta}{2}$  (C)  $\gamma = \alpha$
- (D)  $\alpha < \gamma < \beta$

### **EXERCISE - 6**

## PREVIOUS YEARS BOARD QUESTIONS

- For what value of k, does the quadratic equation  $9x^2 + 8kx + 16 = 0$  have equal roots? 0.1
- **Q.2** Find the value of c such that equation  $4x^2 - 2(c+1)x + (c+4) = 0$  has real and equal roots.
- Find the value of k for which the quadratic equation (k+4) r + (k+1) x + 1 = 0 has equal roots. Q.3
- If one root of the equation  $3x^2 kx 2 = 0$  is 2, find the value of k. Also find the other root. **Q.4**
- If -5 is a root of the quadratic equation  $2x^2 + px 15 = 0$  and the quadratic equation  $p(x^2 + x) + k = 0$  has **Q.5** equal roots, find the value of k.
- If one root of the quadratic equation  $2x^2 + kx 6 = 0$  is 2, find the value of k. Also find the other root. **Q.6**
- For what value of k, given equation has real and equal roots:  $(k+1)x^2-2(k-1)x+1=0$ . **Q.**7
- Find the values of k so that (x-1) is a factor of  $k^2x^2-2kx-3$ . 0.8
- Solve for  $x: 4x^2 2(a^2 + b^2)x + a^2b^2 = 0$ 0.9
- Solve for  $x: 4x^2 4a^2x + (a^4 b^4) = 0$ Q.10
- Solve for x:  $9x^2 9(a+b)x + [2a^2 + 5ab + 2b^2] = 0$ . 0.11
- Using quadratic formula, solve the following quadratic equation for  $x: p^2x^2 + (p^2 q^2)x q^2 = 0$ 0.12
- Using quadratic formula, solve the following quadratic equation for  $x: x^2 2ax + (a^2 b^2) = 0$ Q.13
- Using quadratic formula, solve the following quadratic equation for  $x: x^2 4ax + 4a^2 b^2 = 0$ . Q.14
- Solve for x:  $36x^2 12ax + (a^2 b^2) = 0$ 0.15
- Solve for x:  $\frac{1}{a+b+x} = \frac{1}{a} + \frac{1}{b} + \frac{1}{x}$ ,  $a \ne 0$ ,  $b \ne 0$ ,  $x \ne 0$  **Q.17** Solve for x:  $a^2b^2x^2 + b^2x a^2x 1 = 0$ Q.16
- Solve for x:  $4\sqrt{3}x^2 + 5x 2\sqrt{3} = 0$  Q.19 Using quadratic formula, solve for x:  $9x^2 3(a + b)x + ab = 0$ Q.18
- Q.20Using quadratic formula, solve the following for x:  $9x^2 - 3(a^2 + b^2)x + a^2b^2 = 0$
- Solve for x:  $12 \text{ abx}^2 (9a^2 8b^2) x 6ab = 0$ Q.21
- Using the quadratic formula, solve the equation:  $a^2b^2x^2 (4b^4 3a^4)x 12a^2b^2 = 0$ Q.22
- Solve for x:  $(a+b)^2x^2 + 8(a^2-b^2)x + 16(a-b)^2 = 0$ Q.23
- Rewrite the following as a quadratic equation in x and then solve for x. **Q.24**

$$\frac{4}{x} - 3 = \frac{5}{2x + 3}, x \neq 0, -\frac{3}{2}$$