

7

BINOMIAL THEOREM

INTRODUCTION

Given two number a and b, if we are required to find $(a+b)^2$, we can just add a and b then multiply the sum by itself. Another way of doing it is to find $a^2 + 2ab + b^2$. We also know that $(a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$, Now we may need to use the expression for $(a+b)^5$, $(a + b)^7$, etc. But we cannot remember all the expressions. Binomial theorem helps to find these expressions.

Binomial Expression : An algebraic expression containing two term is called a binomial expression for example,

$$(2x+3), (x^2-\frac{1}{x}), (x+a)$$
, etc are binomial expression.

Binomial theorem : The formula by which any power of a binomial can be expanded in the form of a series is called binomial theorem.

TERMINOLOGY USED IN BINOMIAL THEOREM

Factorial notation : n! is pronounced as factorial n and is

defined as
$$n! = \begin{cases} n (n-1) (n-2) \dots 3.2.1; \text{ if } n \in N \\ 1 ; \text{ if } n = 0 \end{cases}$$

Note : $n! = n . (n-1)!, n \in N$

Mathematical meaning of ⁿC_r (Other symbol
$$\binom{n}{r}$$
 & C(n, r)

The term ${}^{n}C_{r}$ denotes number of combinations of r things chosen from n distinct things mathematically,

$${}^{n}C_{r} = \frac{n!}{(n-r)!r!}$$

Properties related to ⁿC_r:

(i)
$${}^{n}C_{r} = {}^{n}C_{n-r}$$

(ii) ${}^{n}C_{r} + {}^{n}C_{r-1} = {}^{n+1}C_{r}$
(iii) If ${}^{n}C_{x} = {}^{n}C_{y}$ then either $x = y$ or $x + y = n$
(iv) ${}^{n}C_{r} = \frac{n}{r} \cdot {}^{n-1}C_{r-1}$
(v) $\frac{1}{r+1} {}^{n}C_{r} = \frac{1}{n+1} {}^{n+1}C_{r+1}$
(vi) $\frac{{}^{n}C_{r}}{{}^{n}C_{r-1}} = \frac{n-r+1}{r}$

(vii) If n and r are relatively prime, then ${}^{n}C_{r}$ is divisible by n, but converse is not necessarily true.

BINOMIAL THEOREM FOR POSITIVE INTEGRAL INDEX

Theorem : If x and a are real number, then for all
$$n \in N$$
,
 $(x + a)^n = {}^nC_0 x^n a^0 + {}^nC_1 x^{n-1} a^1 + {}^nC_2 x^{n-2} a^2 + \dots + {}^nC_r x^{n-r} a^r + \dots + {}^nC_{n-1} x^1 a^{n-1} + {}^nC_n x^0 a^n$
i.e. $(x + a)^n = \sum_{n=1}^{n} {}^nC_r x^{n-r} a^r$

Properties :

(i) There are (n+1) terms in the expansion of $(x+a)^n$

r=0

- (ii) The sum of powers of a and x in each term of expansion is n.
- (iii) The first and last term being x^n and a^n respectively.
- (iv) The binomial coefficients in the expansion of $(x + a)^n$ equidistant from the beginning and the end are equal. ${}^{n}C_0 = {}^{n}C_n$, ${}^{n}C_1 = {}^{n}C_{n-1}$

General Term : In the expansion of $(x + a)^n$, $(r + 1)^{th}$ term is called the general term which can be represented by T_{r+1} .

$$T_{r+1} = {}^{n}C_{r} x^{n-r} a^{r}$$

= ${}^{n}C_{r} (\text{first term})^{n-r} (\text{second term})^{r}$

To find a term from the end in the expansion of $(x + a)^n$: It can be easily seen that in the expansion of $(x + a)^n$, $(r+1)^{th}$ term from end = $(n-r+1)^{th}$ term from beginning. i.e. $T_{r+1}(E) = T_{n-r+1}(B)$ $T_r(E) = T_{n-r+2}(B)$

Some deduction of binomial expansion :

- (i) Expansion of $(x-a)^n$ $(x-a)^n = {}^nC_0x^na^0 - {}^nC_1x^{n-1}a^1 + {}^nC_2x^{n-2}a^{2}-{}^nC_3x^{n-3}a^3 + \dots + (-1)^{r}\,{}^nC_rx^{n-r}a^r + \dots + (-1)^n\,{}^nC_n\,x^0a^n$ Put (-a) in place of a in the expansion of $(x+a)^n$. General term = $(r+1)^{th}$ term $T_{r+1} = {}^nC_r(-1)^r.x^{n-r}a^r$
- (ii) By putting x = 1 and a = x in the expansion of $(x + a)^n$ $(1 + x)^n = {}^nC_0 + {}^nC_1x + {}^nC_2x^2 + \dots + {}^nC_rx^r + \dots + {}^nC_nx^n$ which is the standard form of binomial expansion General term = $(r + 1)^{\text{th}}$ term

$$T_{r+1} = {}^{n}C_{r}x^{r} = \frac{n(n-1)(n-2)....(n-r+1)}{r!}x^{r}$$

(iii) By putting (-x) in place of x in the expansion of $(1 + x)^n$ $(1 - x)^n = {}^nC_0 - {}^nC_1x + {}^nC_2x^2 - {}^nC_3x^3 + \dots + (-1)^r {}^nC_rx^r + \dots + {}^nC_nx^n.$

General term = $(r+1)^{th}$ term

$$\Gamma_{r+1} = (-1)^{r} \cdot {}^{n}C_{r}x^{r} = (-1)^{r} \frac{n(n-1)(n-2)....(n-r+1)}{r!} x^{r}$$

Number of terms in the expansion of $(x + y + z)^n$:

$$(x + y + z)^n$$
 can be expanded as –
 $(x + y + z)^n = \{(x + y) + z\}^n$
 $= (x + y)^n + {}^nC_1(x + y)^{n-1}. z + {}^nC_2(x + y)^{n-2}z^2 + + {}^nC_nZ^n.$
 $= (n + 1)$ terms + n terms + (n-1) terms +..... + 1 term
 \therefore Total number of terms = $(n + 1) + n + (n - 1) + + 1$

 $=\frac{(n+1)(n+2)}{2}$

The number of distinct terms in the expansion of $(x_1 + x_2 + x_3 + \dots + x_r)^n$ is given by ${}^{n+r-1}C_{r-1}$

BINOMIAL COEFFICIENTS & THEIR PROPERTIES

In the expansion of $(1 + x)^n$ i.e. $(1+x)^n = {}^nC_0 + {}^nC_1x + \dots + {}^nC_rx^r + \dots + {}^nC_nx^n$ The coefficients nC_0 , nC_1 , nC_n of various powers of x, are called binomial coefficients and they are written as $C_0, C_1, C_2, \dots, C_n$. Hence, $(1+x)^n = C_0 + C_1x + C_2x^2 + \dots + C_rx^r + \dots + C_nx^n$ (g(1)

where
$$C_0 = 1$$
, $C_1 = n$, $C_2 = \frac{n(n-1)}{2!}$
 $C_r = \frac{n(n-1)....(n-r+1)}{r!}$, $C_n = 1$

Now, we shall obtain some important expressions involving binomial coefficients-

Sum of coefficient : Putting
$$x = 1$$
 in (1), we get
 $C_0 + C_1 + C_2 + \dots + C^n = 2^n$ (2)

i.e.
$$\sum_{r=0}^{n} {}^{n}C_{r} = 2^{n}$$

(a)

(b) Sum of coefficients with alternate signs: Putting x = -1 in (1) We get

(c) Sum of coefficient of even and odd terms

From (3), we have

 $\begin{array}{l} C_0 + C_2 + C_4 + \dots = C_1 + C_3 + C_5 + \dots \dots \quad (4) \\ \text{i.e. Sum of coefficient of even and odd terms are equals} \\ \text{From (2) and (4) we have} \\ \Rightarrow C_0 + C_2 + \dots = C_1 + C_3 + \dots = 2^{n-1} \end{array}$

(d) Sum of products of coefficients Replacing x by 1/x in (1) We get

$$\left(1+\frac{1}{x}\right)^n = C_0 + \frac{C_1}{x} + \frac{C_2}{x^2} + \dots + \frac{C_n}{x^n} + \dots$$
 (5)

Multiplying (1) by (5), we get

$$\frac{(1+x)^{2n}}{x^n} = (C_0 + C_1 x + C_2 x^2 + \dots) (C_0 + \frac{C_1}{x} + \frac{C_2}{x^2} + \dots)$$

Now, comparing coefficients of x^r on both the sides, we get $C_0C_r + C_1C_{r+1} + \dots + C_{n-r}C_n = {}^{2n}C_{n-r}$

$$=\frac{2n!}{(n+r)!(n-r)!}$$
.....(6)

(e) Sum of squares of coefficients Putting r = 0 in (6), we get

$$C_0^2 + C_1^2 + C_2^2 + \dots + C_n^2 = \frac{2n!}{n!n!}$$

(f) Putting r = 1 in (6) we get

$$C_0C_1 + C_1C_2 + C_2C_3 + \dots + C_{n-1}C_n$$

 $= {}^{2n}C_{n-1} = \frac{2n!}{(n+1)!(n-1)!}$ (7)

g) Putting r = 2 in (6), we get

$$C_0C_2 + C_1C_3 + C_2C_4 + \dots + C_{n-2}C_n$$

 $= {}^{2n}C_{n-2} = \frac{2n!}{(n+2)!(n-2)!}$ (8)

Example 1 :

Find the tenth term in the expansion of $(2x^2 + 1/x)^{12}$

Sol. Comparing
$$(2x^2 + 1/x)^{12}$$
 with $(X + a)^n$
 $n = 12, X = 2x^2, a = 1/x.$
 $\therefore 10^{\text{th}} \text{ term} = T_{10} = {}^{12}C_9 (2x^2)^{12-9} (1/x)^9 = {}^{12}C_9.8.1/x^3$
or $T_{10} = 1760/x^3$

Example 2 :

Find the 7th term from the end in the expansion of

$$\left(x-\frac{2}{x^2}\right)^{10}.$$

Sol. The 7th term from the end = 5th term from beginning

$$T_5 = {}^{10}C_4 x^6 \left(-\frac{2}{x^2}\right)^4 = {}^{10}C_4 \cdot 2^4 \left(\frac{1}{x^2}\right)$$

Example 3:

If the second, third and fourth terms in the expansion of $(a + b)^n$ are 135, 30 and 10/3 respectively, then find the value of n.

Sol.
$$T_2 = {}^{n}C_1 ab^{n-1} = 135$$
(i)
 $T_3 = {}^{n}C_2 a^2 b^{n-2} = 30$ (ii)
 $T_4 = {}^{n}C_3 a^3 b^{n-3} = \frac{10}{3}$ (iii)
Dividing (i) by (ii)

$$\frac{{}^{n}C_{1}ab^{n-1}}{{}^{n}C_{2}a^{2}b^{n-2}} = \frac{135}{30} ; \frac{n}{\frac{n}{2}(n-1)}\frac{b}{a} = \frac{9}{2} \quad \dots \dots (iv)$$

Dividing (ii) & (iii)

 $\frac{b}{a} = \frac{9}{4} (n-1)$

$$\frac{\frac{n(n-1)}{2}}{\frac{n(n-1)(n-2)}{3.2}} \cdot \frac{b}{a} = \frac{10}{3} = 9$$
(vi)

Eliminating a and b from (v) and (vi) \Rightarrow n = 5

Example 4 :

Find the number of terms in the expansion of $(x + y + 2z)^8$. Sol. : n = 8 and from the above given formula we have

Number of terms =
$$\frac{(8+1)(8+2)}{2} = 45$$

Example 5 :

Find the value of $aC_0 + (a+b)C_1 + (a+2b)C_2 + \dots + (a+nb)C_2$

Sol.
$$a(C_0 + C_1 + C_2 + \dots + C_n) + b(C_1 + 2C_2 + \dots + {}^nC_n)$$

= $a \cdot 2^n + b \cdot n \cdot 2^{n-1} = 2^n \left(\frac{2a + nb}{2}\right) = (2a + nb) \cdot 2^{n-1}$

MIDDLE TERM IN THE EXPANSION OF (x+a)ⁿ

There are (n + 1) terms in the expansion of $(x + a)^n$. The middle term depends upon the value of n.

(a) When n is even, then only one middle term exists and it is

$$\left(\frac{n}{2}+1\right)^{\text{th}}$$
 term ; Middle term = ${}^{n}C_{\frac{n}{2}}x^{\frac{n}{2}}.a^{\frac{n}{2}}$

(b) When n is odd, there will be two middle terms and they are

$$\frac{(n+1)^{\text{th}}}{2} \text{ and } \frac{(n+3)^{\text{th}}}{2} \text{ terms.}$$

The first middle term = ${}^{n}C_{n-1}x^{\frac{n+1}{2}}a^{\frac{n-1}{2}}$

The second middle term =
$${}^{n}C_{\frac{n+1}{2}}x$$

Example 6 :

- Find the middle term in the expansion of $(x + 4)^4$.
- Sol. Here n = 4 is even so there is only one middle term which is $(4/2) + 1 = 3^{rd}$ term. Therefore, middle term T₃ = ${}^{4}C_{2}(x)^{2}(4)^{2} = 96x^{2}$

Example 7 :

If the middle term in the expansion of $\left(x^2 + \frac{1}{x}\right)^n$ is 924 x⁶,

then find the value of n.

Sol. Since n is even therefore $\left(\frac{n}{2}+1\right)^{\text{th}}$ term is middle term,

hence
$${}^{n}C_{n/2}(x^{2})^{n/2}\left(\frac{1}{x}\right)^{n/2} = 924 \ x^{6} \Rightarrow x^{n/2} = x^{6} \Rightarrow n = 12$$

GREATEST BINOMIAL COEFFICIENTS

In a binomial expansion binomial coefficients of the middle terms are called as greatest binomial coefficients.

(i) If n is even : When
$$r = \frac{n}{2}$$
 i.e. ${}^{n}C_{n/2}$ takes maximum value.

(ii) if n is odd : $r = \frac{n-1}{2}$ or $\frac{n+1}{2}$ i.e. ${}^{n}C_{\frac{n-1}{2}} = {}^{n}C_{\frac{n+1}{2}}$ and take

maximum value.

Example 8 :

Find the greatest coefficient in the expansion of $(1 + x)^{2n}$. Sol. The greatest coefficient = the coefficient of the middle term

$$e^{2n}C_n = \frac{1.3.5...(2n-1)}{n!} \cdot 2^n$$

Example 9:

Find the term which has the greatest binomial coefficient in the expansion of $(x^2 + 2/x)^6$

Sol. We know that Binomial Coefficient of middle term is the greatest Binomial coefficient. Since n = 6 is even, So the middle term is $T_{n/2+1}$ \therefore middle term = $n/2 + 1 = 3 + 1 \Longrightarrow 4^{\text{th}}$ term

TO DETERMINE A PARTICULAR TERM IN THE EXPANSION

In the expansion of
$$\left(x^{\alpha} \pm \frac{1}{x^{\beta}}\right)^n$$
, if x^m occurs in T_{r+1} , then

r is given by n
$$\alpha$$
 – r (α + β) = m \Rightarrow r = $\frac{n\alpha - m}{\alpha + \beta}$

Thus in above expansion if constant term i.e. the term which is independent of x, occurs in T_{r+1} then r is determined by

$$n \alpha - r (\alpha + \beta) = 0 \Longrightarrow r = \frac{n\alpha}{\alpha + \beta}$$

Example 10:

Find the coefficient of x^{39} in the expansion of $(x^4 - 1/x^3)^{15}$

Sol. From above formula, $r = \frac{15(4) - 39}{4 + 3} = 3$ ∴ The required term = $T_4 = {}^{15}C_3 (x^4){}^{12} (-1/x^3){}^3 = -455 x^{39}$ ∴ coefficient of $x^{39} = -455$

 $\frac{1}{2}$

Example 11 :

Find the term independent of x in the expansion of

$$\left(\sqrt[6]{x} - \frac{1}{\sqrt[3]{x}}\right)^9$$

Sol.
$$T_{r+1} = {}^{9}C_{r} \left(\sqrt[6]{x} \right)^{9-r} \left(-\frac{1}{\sqrt[3]{x}} \right)^{r}$$

= ${}^{9}C_{r} (-1)^{r} \cdot \frac{9-r}{6} - \frac{r}{3} = {}^{9}C_{r} \cdot \frac{9-3r}{6}$
Now $\frac{9-3r}{6} = 0 \Rightarrow r = 3$; $T = -{}^{9}C_{3}$

Example 12:

Find the term independent of x in the expansion of

$$\left(\frac{4}{3}x^2 - \frac{3}{2x}\right)^9$$

Sol. Here comparing $\left(\frac{4}{3}x^2 - \frac{3}{2x}\right)^9$ with $\left(x^{\alpha} \pm \frac{1}{x^{\beta}}\right)^n$

We get $\alpha = 2$, $\beta = 1$, n = 9 and $r = \frac{9(2)}{2+1} = 6$ $\therefore (6+1) = 7^{\text{th}}$ term is independent of x.

NUMERICALLY GREATEST TERM IN THE EXPANSION OF $(x+a)^n$

Let T_{r+1} be the greatest term in $(x + a)^n$

Then
$$\frac{T_{r+1}}{T_r} \ge 1$$
 and $\frac{T_{r+2}}{T_{r+1}} \le 1$
 $\left|\frac{T_{r+1}}{T_r}\right| = \left|\frac{{}^nC_r x^{n-r}a^r}{{}^nC_{r-1}x^{n-r+1}a^{r+1}}\right| = \left(\frac{n-r+1}{r}\right)\left|\frac{a}{x}\right|$
Now $\left(\frac{n-r+1}{r}\right)\left|\frac{a}{x}\right| \ge 1 \implies \frac{n+1}{r} \ge \left|\frac{x}{a}\right| + 1 \implies r \le \frac{n+1}{\left|\frac{x}{a}\right| + 1}$

Algorithm :

Step I : Calculate
$$\frac{n+1}{\left|\frac{x}{a}\right|+1} = k$$
 (say)

Step II: (a) If k is an integer than T_k and T_{k+1} are the numerically greatest term.

(b) If k is not an integer. Let m is its integral part than T_{m+1} is the numerically greatest term.

Example 13:

If the sum of the coefficients is expansion of $(1 + 2x)^n$ is 6561, find the greatest term in the expansion for x = 1/2

Sol. Sum of the coefficient in the expansion of $(1 + 2x)^n = 6561$

 $\Rightarrow (1+2x)^n = 6561, \text{ when } x = 1$ $\Rightarrow 3^n = 6561 \Rightarrow 3^n = 3^8 \Rightarrow n = 8$

Hence 5th term is the greatest term.

TRY IT YOURSELF-1

- **Q.1** Find the 6th term in the expansion of $(2x^2 1/3x^2)^{10}$.
- **Q.2** Find the coefficient of x^k in

 $1 + (1 + x) + (1 - x)^2 + ... + (1 + x)^n (0 \le k \le n).$

- **Q.3** Find the sum ${}^{10}C_1 + {}^{10}C_3 + {}^{10}C_5 + {}^{10}C_7 + {}^{10}C_9$.
- **Q.4** If the coefficient of the middle term in the expansion of $(1 + x)^{2n+2}$ is α and and the coefficients of middle terms in the expansion of $(1 + x)^{2n+1}$ are β and γ , then relate α , β and γ .
- **Q.5** Find the greatest coefficient in the expansion of $(1+2x/3)^{15}$.
- **Q.6** Find the sum $3 {}^{n}C_{0} 8 {}^{n}C_{1} + 13 {}^{n}C_{2} 18 {}^{n}C_{3} + \dots$

Q.7 The number of dissimilar terms in the expansion of

$$(1-3x+3x^2-x^3)^{20}$$
 is –
(A) 21 (B) 31
(C) 41 (D) 61

Q.8 Find 7th term of
$$\left(\frac{4x}{5} - \frac{5}{2x}\right)^{1}$$

Q.9 Find the middle term(s) in the expansion of
$$\left(1 - \frac{x}{2}\right)$$

Q.10 Find the coefficient of
$$x^{32}$$
 and x^{-17} in $\left(x^4 - \frac{1}{x^3}\right)^{13}$.

ANSWERS

(1)
$$-\frac{896}{27}$$
 (2) ${}^{n+1}C_{k+1}$ (3) 2^9

(4)
$$\beta + \gamma = \alpha$$
 (5) ${}^{15}C_6(2/3)^6$ (6) 0

(7) (D) (8)
$$\frac{10500}{x^3}$$
 (9) $-\frac{429}{16}x^{14}$

(10) Coefficient of x^{32} is 1365, x^{-17} is -1365.

MULTINOMIALTHEOREM

If $(n \in N)$, then general terms in expansion of

$$(x_1 + x_2 + x_3 + \dots + x_k)^n$$
 is

$$\frac{n!}{a_1!a_2!a_3!\dots a_k!} \cdot x_1^{a_1} \cdot x_2^{a_2} \cdot x_3^{a_3} \dots x_k^{a_k} \text{ where }$$

 $a_1 + a_2 + a_3 + \dots + a_k = n, 0 \le a_i \le n, i = 1, 2, 3, \dots + k$ and the number of terms in the expansion are ${}^{n+k-1}C_{k-1}$.

Number of terms in $(x + y)^n = {}^{n+1}C_1$;

Number of terms in $(x + y + z)^n = {}^{n+2}C_2$

Example 14:

Find the coefficient of $a^2b^3c^4d$ in the expansion of $(a - b - c + d)^{10}$.

Sol. $(a - b - c + d)^{10}$

$$= \sum_{r_1+r_2+r_3+r_4=10} \frac{(10)!}{r_1!r_2!r_3!r_4!} (a)^{r_1} (-b)^{r_2} (-c)^{r_3} (d)^{r_4}$$

We want to get $a^2b^3c^4d$ this implies that

$$r_1 = 2, r_2 = 3, r_3 = 4, r_4 = 1$$

 \therefore Coefficient of $a^2b^3c^4d$ is

$$\frac{(10)!}{2!\,3!\,4!\,1!}(-1)^3(-1)^4 = -12600$$

BINOMIAL THEOREM FOR NEGATIVE AND FRACTIONAL INDICES

When n is a negative integer or a fraction then the expansion of a binomial is possible only when

- (i) Its first term is 1, and
- (ii) Its second term is numerically less than 1. when $n \notin N$ and |x| < 1, then it states

$$(1+x)^{n} = 1 + nx + \frac{n(n-1)}{2!}x^{2} + \frac{n(n-1)(n-2)}{3!}x^{3} + \dots + \frac{n(n-1)(n-r+1)}{2!}x^{r} + \dots \infty$$

$$r!$$
 $x^r + \dots$

General term :
$$T_{r+1} = \frac{n(n-1)(n-2)...(n-r+1)}{r!} x^r$$

Note:

(i) In this expansion the coefficient of different terms can not be expressed as ${}^{n}C_{0}$, ${}^{n}C_{1}$, ${}^{n}C_{2}$,.... because n is not a positive integer. (ii) In this case there are infinite terms in the expansion.

Some important Expansions :

If |x| < 1 and $n \in Q$ but $n \notin N$, then

(a)
$$(1+x)^n = 1 + nx + \frac{n(n-1)}{2!}x^2 + \dots + \frac{n(n-1)\dots(n-r+1)}{r!}x^r + \dots$$

(b)
$$(1-x)^n = 1 - nx + \frac{n(n-1)}{2!}x^2 - \frac{n(n-1)(n-2)}{3!}x^3$$

$$+ \dots + \frac{n(n-1)\dots(n-r+1)}{r!}(-x)^{r} + \dots$$
(c) $(1-x)^{-n} = 1 + nx + \frac{n(n+1)}{2!}x^{2} + \frac{n(n+1)(n+2)}{3!}x^{3}$

$$+ \dots + \frac{n(n+1)\dots(n+r-1)}{r!}x^{r} + \dots$$
(d) $(1+x)^{-n} = 1 - nx + \frac{n(n+1)}{2!}x^{2} - \frac{n(n+1)(n+2)}{3!}x^{3}$

$$+ \dots + \frac{n(n+1)(n+r-1)}{r!}(-x)^{r} + \dots$$

By putting n = 1, 2, 3 in the above results (c) and (d), we get the following results

- (e) $(1-x)^{-1} = 1 + x + x^2 + x^3 + \dots + x^r + \dots$ General term $T_{r+1} = x^r$
- (f) $(1+x)^{-1} = 1 x + x^2 x^3 + \dots (-x)^r + \dots$ General term $T_{r+1} = (-x)^r$
- (g) $(1-x)^{-2} = 1 + 2x + 3x^2 + 4x^3 + \dots + (r+1)x^r + \dots$ General term $T_{r+1} = (r+1)x^r$
- **(h)** $(1+x)^{-2} = 1 2x + 3x^2 4x^3 + \dots + (r+1)(-x)^r + \dots$ General term $T_{r+1} = (r+1)(-x)^r$

(i)
$$(1-x)^{-3} = 1 + 3x + 6x^2 + 10x^3 + \dots + \frac{(r+1)(r+2)}{2!}x^r + \dots$$

General term =
$$\frac{(r+1)(r+2)}{2!} x^r$$

(j) $(1+x)^{-3} = 1 - 3x + 6x^2 - 10x^3 + + \frac{(r+1)(r+2)}{2!} (-x)^r +$
General term = $\frac{(r+1)(r+2)}{2!} (-x)^r$

Example 15:

Find the term independent of x in the expansion of
$$\left(\frac{1-x}{1+x}\right)^2$$

Sol. $(1-x)^2(1+x)^{-2} = (1-2x+x^2)(1-2x+3x^2+....)$ The term independent of x is 1.

Example 16:

If
$$|x| < 2/3$$
 then find the fourth term in the expansion of

$$\left(1 + \frac{3}{2}x\right)^{1/2}.$$
Sol. $T_4 = \frac{1/2(1/2 - 1)(1/2 - 2)}{3!} \cdot \left(\frac{3x}{2}\right)^3 = \frac{27}{128}x^3$

Example 17:

If
$$\frac{(1-3x)^{1/2} + (1-x)^{5/3}}{\sqrt{4-x}}$$
 is approximately equal to a + bx

for small values of x, then find (a,b)

Sol.
$$\frac{(1-3x)^{1/2} + (1-x)^{5/3}}{2\left[1-\frac{x}{4}\right]^{1/2}} = \frac{\left[1+\frac{1}{2}(-3x)+\frac{1}{2}\left(-\frac{1}{2}\right)\frac{1}{2}(-3x)^2 + \dots\right]}{2\left[1+\frac{5}{3}(-x)+\frac{5}{3}\frac{2}{3}\frac{1}{2}(-x)^2 + \dots\right]}{2\left[1+\frac{1}{2}\left(-\frac{x}{4}\right)+\frac{1}{2}\left(-\frac{1}{2}\right)\frac{1}{2}\left(-\frac{x}{4}\right)^2 + \dots\right]}$$

$$= \frac{\left[1 - \frac{19}{12}x + \frac{53}{144}x^2 - \dots\right]}{\left[1 - \frac{x}{2} - \frac{1}{8}x^2 - \dots\right]} = 1 - \frac{35}{24}x + \dots$$

Neglecting higher powers of x, then

$$a + bx = 1 - \frac{35}{24}x \implies a = 1, b = -\frac{35}{24}$$

SOME APPLICATIONS OF BINOMIAL THEOREM

1. Integral and fractional part :

If $(\sqrt{A} + B)^n = I + f$, where I and n are positive integers, n being odd and $0 \le f \le 1$, then

$$(I+f)$$
. $f = K^n$ where $A - B^2 = K > 0$ and $\sqrt{A} - B < 1$

If n is an even integer, then $(I + f)(1 - f) = K^n$.

2. To find the remainder when a^n is divided b, we adjust the power of a to a^m which is very close to b say with difference 1. Also, the remainder is always positive. When number of the type 3k - 1 is divided by 3, we have

$$\frac{3k-1}{3} = \frac{3k-3+2}{3} = k-1+\frac{2}{3}$$

Hence, the remainder is 2.

3.
$$2 \le \left(1 + \frac{1}{n}\right)^n < 3, n \ge 1, n \in \mathbb{N}$$

4. To find the sum of Infinite series :

We can compare the given infinite series with the expansion

of $(1+x)^n = 1 + nx + \frac{n(n-1)}{2!}x^2 + \dots$ and by finding the

value of x and n and putting in $(1 + x)^n$ the sum of series is determined.

Example 18:

Find the value of cube root of 1001 up to five decimal places.

Sol.
$$(1001)^{1/3} = (1000+1)^{1/3} = 10 \left(1 + \frac{1}{1000}\right)^{1/3}$$

$$= 10 \left\{ 1 + \frac{1}{3} \cdot \frac{1}{1000} + \frac{1/3(1/3 - 1)}{2!} \frac{1}{1000^2} + \dots \right\}$$

= 10 {1 + 0.0003333 - 0.00000011 +} = 10.00333

Example 19:

Find the remainder when 5^{99} is divided by 13.

Sol. Here
$$5^2 = 25$$
 which is close to $26 = 13 \times 2$.
Hence, $E = 5^{99} = 5 \times 5^{98} = 5 \times (5^2)^{49} = 5 (26 - 1)^{49}$
 $E = 5 [{}^{49}C_0 26^{49} - {}^{49}C_1 26^{48} + {}^{49}C_2 26^{48} -$
 $+ {}^{49}C_{48} 26 - {}^{49}C_{49}]$
 $= 5 \times 26k - 5$

Now,
$$\frac{E}{13} = 10k - \frac{5}{13} = 10k - 1 + \frac{8}{13}$$
.

Hence, the remainder is 8.

Example 20:

Find the positive integer just greater than $(1+0.0001)^{10000}$.

Sol.
$$(1+0.0001)^{10000} = \left(1+\frac{1}{10000}\right)^{10000}$$

Now, we know that
$$2 \le \left(1 + \frac{1}{n}\right)^n < 3, n \ge 1, n \in \mathbb{N}$$

Hence, positive integer just greater than $(1 + 0.0001)^{10000}$ is 3.

Example 21 :

The sum of
$$1 + \frac{1}{4} + \frac{1 \cdot 3}{4 \cdot 8} + \frac{1 \cdot 3 \cdot 5}{4 \cdot 8 \cdot 12} + \dots \infty$$
 is-
(A) $\sqrt{2}$ (B) $1/\sqrt{2}$
(C) $\sqrt{3}$ (D) $2^{3/2}$

Sol. Comparing with
$$1 + nx + \frac{n(n-1)}{2!}x^2 + \dots$$

 $nx = 1/4$...(1)

and
$$\frac{n(n-1)x^2}{2!} = \frac{1.3}{4.8}$$

or
$$\frac{nx(nx-x)}{2!} = \frac{3}{32} \Rightarrow \frac{1}{4}\left(\frac{1}{4} - x\right) = \frac{3}{16}$$
 (by (1))

$$\Rightarrow \left(\frac{1}{4} - x\right) = \frac{3}{4} \Rightarrow x = \frac{1}{4} - \frac{3}{4} = -\frac{1}{2} \qquad \dots (2)$$

putting the value of x in (1) n $(-1/2) = 1/4 \implies n = -1/2$

Sum of series =
$$(1+x)^n = (1-1/2)^{-1/2} = (1/2)^{-1/2} = \sqrt{2}$$

Example 22 :

If x is so small so that its square and higher power can be

neglected. Find the value of
$$\frac{\left(1+\frac{2x}{3}\right)^{-5}+(4+2x)^{1/2}}{(4+x)^{3/2}}$$

Sol.
$$\frac{\left(1+\frac{2x}{3}\right)^{-5}+(4+2x)^{1/2}}{(4+x)^{3/2}}=\frac{\left(1-\frac{10x}{3}\right)+2\left(1+\frac{x}{4}\right)}{8\left(1+\frac{3x}{8}\right)}$$

$$= \frac{1}{8} \left(3 - \frac{10x}{3} + \frac{x}{2} \right) \left(1 + \frac{3x}{8} \right)^{-1} = \frac{3}{8} \left(1 - \frac{17x}{18} \right) \left(1 - \frac{3x}{8} \right)$$
$$= \frac{3}{8} \left(1 - \frac{17x}{18} - \frac{3x}{8} \right) = \frac{72 - 95x}{24 \times 8}$$

Example 23:

If $(6\sqrt{6}+14)^{2n+1} = [N] + F$ and F = N - [N]; where [.] denotes greatest integer function, then NF is equal to (A) 20^{2n+1} (B) an even integer (C) odd integer (D) 40^{2n+1}

Sol. (AB). Since
$$(6\sqrt{6}+14)^{2n+1} = [N] + F$$

Let us assume that
$$f = (6\sqrt{6} - 14)^{2n+1}$$
; where $0 \le f < 1$.

$$[N] + F - f = (6\sqrt{6} + 14)^{2n+1} - (6\sqrt{6} - 14)^{2n+1}$$

= $2 \Big[2n+1 C_1 (6\sqrt{6})^{2n} (14) + 2n+1 C_3 (6\sqrt{6})^{2n-2} (14)^3 + \Big]$
 $\Rightarrow [N] + F - f = \text{even integer.}$
Now, $0 < F < 1$ and $0 < f < 1$

So, -1 < F - f < 1 and F - f is an integer so it can only be zero.

Thus, NF =
$$(6\sqrt{6}+14)^{2n+1} (6\sqrt{6}-14)^{2n+1} = 20^{2n+1}$$
.

Example 24 :

Find the last three digits in 11⁵⁰. **Sol.** Expansion of $(10+1)^{50} = {}^{50}C_0 10^{50} + {}^{50}C_1 10^{49} + \dots + {}^{50}C_{48} 10^2 + {}^{50}C_{49} 10 + {}^{50}C_{50}$ $= \underbrace{{}^{50}C_0 10^{50} + {}^{50}C_1 10^{49} + \dots + {}^{50}C_{47} 10^3}_{1000K} + 49 \times 25 \times 100 + 500 + 1$

 $\Rightarrow 1000 \text{ K} + 123001$

 \Rightarrow Last 3 digits are 001.

Example 25 :

Prove that $2222^{5555} + 5555^{2222}$ is divisible by 7.

Sol. When 2222 is divided by 7 it leaves a remainder 3. So adding & subtracting 3⁵⁵⁵⁵, we get :

$$E = \underbrace{2222^{5555} - 3^{5555}}_{E_1} + \underbrace{3^{5555} + 5555^{2222}}_{E_2}$$

For E₁: Now since 2222–3 = 2219 is divisible by 7, therefore E₁ is divisible by 7 $\therefore x^n - a^n$ is divisible by x –a) For E₂: 5555 when divided by 7 leaves remainder 4. So adding and subtracting 4^{2222} , we get : E₂ = $3^{5555} + 4^{2222} + 5555^{2222} - 4^{2222}$ = $(243)^{1111} + (16)^{1111} + (5555)^{2222} - 4^{2222}$ Again (243)¹¹¹¹ + 16¹¹¹¹ and (5555)²²²² - 4²²²² are divisible by 7 ($\therefore x^n + a^n$ is divisible by x + a when n is odd) Hence $2222^{5555} + 5555^{2222}$ is divisible by 7.

TRY IT YOURSELF-2

- **Q.1** Find (i) the last digit, (ii) the last two digits and (iii) the last three digits of 17²⁵⁶.
- **Q.3** Find the values of x, for which $1/(\sqrt{5+4x})$ can be expanded by binomial theorem.

Q.4 Find the sum
$$1 - \frac{1}{8} + \frac{1}{8} \times \frac{3}{16} - \frac{1 \times 3 \times 5}{8 \times 16 \times 24} + \dots$$

Q.5 Using binomial theorem, indicate which number is larger $(1.1)^{10000}$ or 1000.

- **Q.6** Find an approximation of $(0.99)^5$ using the first three terms of its expansion.
- **Q.7** What is the remainder when 5^{99} is divided by 13.
- **Q.8** Find the last two digits of the number $(17)^{10}$.

Q.9 Coefficient of x^{11} in the expansion of $(1+x^2)^4(1+x^3)^7(1+x^4)^{12}$ is – (A) 1051 (B) 1106 (C) 1113 (D) 1120

(1)
$$681, 81, 1$$
 (2) 5 (3) $|x| < 5/4$

(4) $2/\sqrt{5}$	(5) (1.1) ¹⁰⁰⁰	⁰ > 1000 (6) 0.951
(7) 8	(8) 49	(9) (C)

EXPONENTIAL & LOGARITHMIC SERIES

'e' Series : The sum of infinite Series $1 + \frac{1}{1!} + \frac{1}{2!} + \dots \infty$ is denoted by the number e.

If n tends to infinity then value of $\left(1+\frac{1}{n}\right)^n$ is right value of given series therefore.

 ∞

$$e = \operatorname{Limit}_{n \to \infty} \left(1 + \frac{1}{n} \right)^n \text{ or } e = 1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \dots \infty$$
$$e^x = 1 + x + \frac{x^2}{2!} + \dots \infty$$

Logarithmic series : If |x| < 1 then -

$$e^{(1+x)=x-\frac{x^2}{2}+\frac{x^3}{3}-\frac{x^4}{4}+\dots\infty}$$

SOME IMPORTANT RESULTS **Related to exponential series :**

(i)
$$e^{x} = 1 + \frac{x}{1!} + \frac{x^{2}}{2!} + \dots + \frac{x^{r}}{r!} + \dots$$
 or $e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!}$

(ii) Replacing x by -x the above result becomes.

$$e^{-x} = 1 - \frac{x}{1!} + \frac{x^2}{2!} - \frac{x^3}{3!} + \dots + (-1)^r \frac{x^r}{r!} + \dots$$

or $e^{-x} = \sum_{n=0}^{\infty} (-1)^n \frac{x^n}{n!}$

(iii) The value of e lies between 2 and 3

n=0

- (iv) Generally, value of e taken as $e \approx 2.7183$ up to four places of decimal.
- (v) e is an irrational number lying between 2.71 and 2.73.
- (vi) To find the sum of exponential series.
 - (a) Write nth term of given series
 - (b) Numerator of T_n must be independent from n
 - (c) By putting $n = 1, 2, 3, \dots$ we find T_1, T_2, \dots (d) The sum of T_1, T_2, \dots is value of series

(vii) General term :

(a) In the expansion of $e^{a x}$.

General Term =
$$T_{n+1} = \frac{(a x)^n}{n!}$$
; coefficient of $x^n = \frac{a^n}{n!}$

(b) In the expansion of $e^{-a x}$

General term =
$$T_{n+1} = \frac{(-a)^n x^n}{n!}$$
; coefficient of $x^n = \frac{(-a)^n}{n!}$

(c) In the expansion of $e^{ax + b}$

General term = T_{r+1} = e^b
$$\frac{a^n x^n}{n!}$$

coefficient of $x^n = e^b \frac{a^n}{n!}$

Related to Logarithmic series:

(i)
$$a^{x} = 1 + x(\log_{e} a) + \frac{x^{2}}{2!}(\log_{e} a)^{2} + \frac{x^{3}}{3!}(\log_{e} a)^{3} + \dots \infty$$

(ii)
$$\log(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots \infty \text{ when } |x| < 1$$

(iii)
$$\log(1-x) = -x - \frac{x^2}{2} - \frac{x^3}{3} - \frac{x^4}{4} \dots \infty$$
 when $|x| < 1$

(iv)
$$\log \frac{1+x}{1-x} = 2(x + \frac{x^3}{3} + \frac{x^5}{5} + \dots \infty)$$

 $x+1$ $(1$ 1 1 1 $)$

(v)
$$\log \frac{x+1}{x-1} = 2\left(\frac{1}{x} + \frac{1}{3x^3} + \frac{1}{5x^5} + \dots \right)$$

(vi)
$$\log 2 = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots$$

Example 26 :

Find the value of $e^{-1/5}$ correct to four places of decimal.

Sol.
$$e^{x} = 1 + \frac{x}{1!} + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots \text{ to } \infty \qquad \dots \dots (1)$$

Putting $x = (-1/5)$ in eq. (1), we get
 $e^{-1/5} = 1 - \frac{1}{5} + \frac{1}{2!} \left(-\frac{1}{5}\right)^{2} + \frac{1}{3!} \left(-\frac{1}{5}\right)^{3} + \frac{1}{4!} \left(-\frac{1}{5}\right)^{4} + \dots \text{ to}$
 $e^{-1/5} = 1 - \frac{2}{10} + \frac{2^{2}}{2!} \cdot \frac{1}{10^{2}} - \frac{2^{3}}{3!} \cdot \frac{1}{10^{3}} + \frac{2^{4}}{4!} \cdot \frac{1}{10^{4}} + \dots$

$$e^{-1/5} = 1 - 0.200000 + 0.0200000 - 0.001333 + 0.000066$$

 $e^{-1/5} = 0.8187$ (correct to 4 decimal places)

Example 27:

If
$$\alpha$$
, β are the roots of the eq. $x^2 - px + q = 0$, prove that

$$\log_e (1 + px + qx^2) = (\alpha + \beta) x - \frac{\alpha^2 + \beta^2}{2} x^2 + \frac{\alpha^3 + \beta^3}{3} x^3 - \dots$$
Sol. RHS = $\left[\alpha x - \frac{\alpha^2 x^2}{2} + \frac{\alpha^3 x^3}{3} - \dots\right] + \left[\beta x - \frac{\beta^2 x^2}{2} + \frac{\beta^3 x^3}{3} - \dots\right]$
= $\log_e (1 + \alpha x) + \log_e (1 + \beta x)$
= $\log_e (1 + (\alpha + \beta) x + \alpha \beta x^2)$
= $\log_e (1 + px + qx^2) = LHS$
Here, we have used the facts $\alpha + \beta = p$ and $\alpha \beta = q$.
We know this from the given roots of the quadratic
equation. We have also assumed that both $|\alpha \cdot x| < 1$
and $|\beta x| < 1$.

NOTE

1.
$$\sum_{n=0}^{\infty} \frac{1}{n!} = \sum_{n=0}^{\infty} \frac{1}{(n-1)!} = \sum_{n=0}^{\infty} \frac{1}{(n-k)!} = e$$

2.
$$\sum_{n=1}^{\infty} \frac{1}{n!} = \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \dots + \infty = e - 1$$

3.
$$e^{ax} = 1 + \frac{(ax)}{1!} + \frac{(ax)^2}{2!} + \frac{(ax)^3}{3!} + \dots + \frac{(ax)^n}{n!} + \dots \infty$$

4.
$$\sum_{n=1}^{\infty} \frac{n^2}{n!} = \sum_{n=1}^{\infty} \frac{n}{(n-1)!} = 2e$$

5.
$$\sum_{n=1}^{\infty} \frac{n^3}{n!} = \sum_{n=1}^{\infty} \frac{n^2}{(n-1)!} = 5 e^{-1}$$

6.
$$\sum_{n=1}^{\infty} \frac{n^4}{n!} = \sum_{n=1}^{\infty} \frac{n^3}{(n-1)!} = 15e$$

7. The coefficient of x^n in the expansion of

$$e^{a+bx} = 1 + \frac{(a+bx)}{1!} + \frac{(a+bx)^2}{2!} + \dots \infty$$
 is $\frac{e^a \cdot b^n}{n!}$

ADDITIONAL EXAMPLES

Example 1:

Find the coefficient of x^{20} in the expansion of

$$(1+x^2)^{40}$$
. $\left(x^2+2+\frac{1}{x^2}\right)^{-5}$

Sol. Expression =
$$(1 + x^2)^{40} \cdot \left(x + \frac{1}{x}\right)^{-10} = (1 + x^2)^{30} \cdot x^{10}$$

The coefficient of x^{20} in $x^{10} (1 + x^2)^{30}$
= the coefficient of x^{10} in $(1 + x^2)^{30} = {}^{30}C_5 = {}^{30}C_{30-5} = {}^{30}C_{25}$

Example 2 :

If in the expansion of $(1+y)^n$, find the coefficient of 5th, 6th and 7th terms are in A.P., then find the value of n.

Sol. As given
$${}^{n}C_{4}$$
, ${}^{n}C_{5}$, ${}^{n}C_{6}$ are in A.P.

$$\Rightarrow {}^{n}C_{4} + {}^{n}C_{6} = 2 \cdot {}^{n}C_{5}$$

$$\Rightarrow \frac{n!}{(n-4)!4!} + \frac{n!}{(n-6)!6!} = 2\frac{n}{(n-5)!5!}$$

$$\Rightarrow 30 + (n-5)(n-4) = 2.6(n-4)$$

$$\Rightarrow n^{2} - 21n + 98 = 0 \Rightarrow (n-7)(n-14) = 0 \therefore n = 7, 14$$

Example 3:

Find the order of polynomial
$$(x + \sqrt{x^3 - 1})^5 + (x - \sqrt{x^3 - 1})^5$$

Sol. $(x + \sqrt{x^3 - 1})^5 + (x - \sqrt{x^3 - 1})^5$
 $= 2 [x^5 + 5C_2 x^3 (x^3 - 1) + 5C_4 x (x^3 - 1)^2]$
 $= 2 [x^5 + 10x^3 (x^3 - 1) + 5x (x^6 - 2x^3 + 1)]$
 $= 10x^7 + 20 x^6 + 2x^5 - 20 x^4 - 20x^3 + 10 x$
 \therefore Polynomial has order of 7

Example 4 :

Find the sum of the last ten coefficients in the expansion of $(1 + x)^{19}$ when expanded in ascending powers of x

Sol. The required sum =
$${}^{19}C_{10} + {}^{19}C_{11} + \dots + {}^{19}C_{19}$$

= ${}^{19}C_0 + {}^{19}C_1 + {}^{19}C_2 + \dots + {}^{19}C_9$ (since ${}^{n}C_r = {}^{n}C_{n-r}$)
Adding, 2 × (required sum) = ${}^{19}C_0 + {}^{19}C_1 + \dots + {}^{19}C_{19} = 2{}^{19}$

Example 5:

If
$$(1 + x - 2x^2)^8 = a_0 + a_1x + a_2x^2 + \dots + a_{16}x^{16}$$
 then find the
sum $a_1 + a_3 + a_5 + \dots + a_{15}$.

Sol. Sum=
$$\frac{1}{2} \{ (a_0 + a_1 + a_2 + \dots + a_{16}) - (a_0 - a_1 + a_2 - \dots + a_{16}) \}$$

= $\frac{1}{2} \{ (1 + 1 - 2)^8 - (1 - 1 - 2)^8 \} = \frac{1}{2} (-2^8) = -2^7$

Example 6:

Find the sum of the coefficients of even powers of x in the expansion of $(1 + x + x^2 + x^3)^5$.

Sol.
$$(1 + x + x^2 + x^3)^5$$

= $(1 + x)^5 (1 + x^2)^5 = (1 + 5x + 10x^2 + 10x^3 + 5x^4 + x^5)$
 $(1 + 5x^2 + 10x^4 + 10x^6 + 5x^8 + x^{10})$
 \Rightarrow Coefficient of even powers of x
= $(1 + 10 + 5) \times 2^5 = 16 \times 32 = 512$

Example 7 :

Find the sum of the coefficient of all the integral powers of

x in the expansion of $(1+2\sqrt{x})^{40}$

Sol. The coefficient of all the integral powers of x are ${}^{40}C_0$, ${}^{40}C_2.2^2, {}^{40}C_4.2^4, ..., {}^{40}C_{40}.2^{40}$ $(1+2)^{40} = {}^{40}C_0 + {}^{40}C_1.2 + {}^{40}C_2.2^2 + ... + {}^{40}C_{40}.2^{40}$ $(1-2)^{40} = {}^{40}C_0 - {}^{40}C_1.2 + {}^{40}C_2.2^2 - ... + {}^{40}C_{40}.2^{40}$ Adding ${}^{340} + 1 = 2 \times (\text{required sum}) = \frac{1}{2}(3^{40} + 1)$

Example 8:

If x is numerically very small as compared with 1, then find the value of $(1 - 7x)^{1/3} (1 + 2x)^{-3/4}$.

Sol.
$$(1-7x)^{1/3} = 1 + \frac{1}{3}(-7x) + \frac{\left(\frac{1}{3}\right)\left(-\frac{2}{3}\right)}{1.2}(-7x)^2 + \dots$$
 (i)

$$(1+2x)^{-3/4} = 1 + (-3/4)(2x) + \frac{(-3/4)(-7/4)}{1.2}(4x^2) + \dots \dots \dots (ii)$$

Multiply (i) and (ii), we get

$$\Rightarrow (1-7x)^{1/3} (1+2x)^{-3/4} = 1 - \frac{7}{3}x - \frac{3}{2}x + \dots = 1 - \frac{23x}{6}$$

(Neglected rest term as x small)

Example 9:

Find the number of terms with integral coefficients in the expansion of $(7^{1/3} + 5^{1/2} \cdot x)^{600}$

Sol.
$$t_{r+1} = {}^{600}C_r$$
. $\frac{600-r}{7}$. 5 ${}^{r/2}$. x r

Here $0 \le r \le 600$ and $\frac{r}{2}$, $200 - \frac{r}{3}$ are integers \therefore r should be a multiple of 6 \therefore r=0, 6, 12,, 600

88

BINOMIAL THEOREM

Example 10:

If $(1 + ax)^n = 1 + 8x + 24x^2 + ...$ then find the values of a and n

Sol.
$$na = 8 \Rightarrow n^2 a^2 = 64$$
, $\frac{n(n-1)}{2}a^2 = 24$. since $\frac{2n}{n-1} = \frac{8}{3}$
 $\Rightarrow 6n = 8n - 8 \Rightarrow n = 4, a = 2$

Example 11 :

If $(1 - x + x^2)^n = a_0 + a_1 x + a_2 x^2 + \dots + a_{2n} x^{2n}$ then find the value of $a_0 + a_2 + a_4 + \dots + a_{2n}$ Sol. Put $x = 1 \Rightarrow 1 = a_0 + a_1 + a_2 + \dots + a_{2n}$ Put $x = -1 \Rightarrow 3^n = a_0 - a_1 + a_2 - a_3 + \dots + a_{2n}$ Adding, $3^n + 1 = 2 (a_0 + a_2 + a_4 + \dots + a_{2n})$

Example 12 :

Find the largest coefficient in the expansion of $(4 + 3x)^{25}$

Sol.
$$(4+3x)^{25} = 4^{25} \left(1+\frac{3}{4}x\right)^{25}$$

Let (r + 1)th term will have largest coefficient

$$\Rightarrow \frac{\text{Coefficient of } T_{r+1}}{\text{Coefficient of } T_r} \ge 1 \Rightarrow \frac{{}^{25} C_r \left(\frac{3}{4}\right)^r}{{}^{25} C_{r-1} \left(\frac{3}{4}\right)^{r-1}} \ge 1$$

$$\Rightarrow \left(\frac{25-r+1}{r}\right)\frac{3}{4} \ge 1 \implies r \le \frac{78}{7}$$

Largest possible value of r is 11

$$\therefore$$
 Coefficient of T₁₂ = $4^{25} \times {}^{25}C_{11} \times (3/4)^{11}$

Example 13:

Find the coefficient of x^{13} in the expansion of $(1-x)^5 (1+x+x^2+x^3)^4$ is **Sol.** Expression = $(1-x)^5 . (1+x)^4 (1+x^2)^4$ $= (1-x) (1-x^2)^4 (1+x^2)^4 = (1-x) (1-x^4)^4$ \therefore so the coefficient of $x^{13} = -{}^4C_3 (-1)^3 = 4$

Example 14 :

Find the value of

$$\frac{(18^{3} + 7^{3} + 3.18.7.25)}{3^{6} + 6.243.2 + 15.81.4 + 20.27.8 + 15.9.16 + 6.3.32 + 64}$$
Sol. The numerator is of the form $a^{3} + b^{3} + 3ab (a + b) = (a + b)^{3}$
Where $a = 18$, and $b = 7$ \therefore N^r = $(18 + 7)^{3} = (25)^{3}$
Denominator can be written as
 $3^{6} + {}^{6}C_{1}.3^{5}.2^{1} + {}^{6}C_{2}.3^{4}.2^{2} + {}^{6}C_{3}.3^{3}.2^{3} + {}^{6}C_{4}.3^{2}.2^{4} + {}^{6}C_{5}$
 $3.2^{5} + {}^{6}C_{6}2^{6} = (3 + 2)^{6} = 5^{6} = (25)^{3} \Rightarrow \frac{Nr}{Dr} = \frac{(25)^{3}}{(25)^{3}} = 1$

Example 15:

If the coefficients of r^{th} and $(r + 1)^{th}$ terms in the expansion of $(3 + 7x)^{29}$ are equal, then find the value of r

Sol. We have,
$$T_{r+1} = {}^{29}C_r . 3^{29-r} . (7x)^r = ({}^{29}C_r . 3^{29-r} . 7^r) x^r$$

∴ $a_r = \text{coefficient of } (r+1)^{\text{th}} \text{ term } = {}^{29}C_r . 3^{29-r} . 7^r$
Now, $a_r = a_{r-1} \Rightarrow {}^{29}C_r . 3^{29-r} . 7^r = {}^{29}C_{r-1} . 3^{30-r} . 7^{r-1}$
 $\Rightarrow \frac{{}^{29}C_r}{{}^{29}C_{r-1}} = \frac{3}{7} \Rightarrow \frac{30-r}{r} = \frac{3}{7} \Rightarrow r = 21$

Example 16:

If $(1 + x)^n = C_0 + C_1 x + C_2 x^2 + \dots + C_n x^n$, then find the value of $3C_0 - 5C_1 + 7C_2 + \dots + (-1)^n (2n+3)C_n$ Sol. We have $3C_0 - 5C_1 + 7C_2 + \dots + (-1)^n (2n+3)C_n$ $= 3C_0 - 3C_1 + 3C_2 + \dots + (-1)^n 3C_n - 2C_1$ $+ 4C_2 + \dots + (-1)^n 2n C_n$ $= 3 (C_0 - C_1 + C_2 + \dots + (-1)^n C_n) - 2 (C_1 - 2C_2 + \dots + (-1)^n nC_n)$ $= 3 \times 0 - 2 \times 0 = 0$

Example 17:

Find the sum of ${}^{10}C_3 + {}^{11}C_3 + {}^{12}C_3 + \dots + {}^{20}C_3$ Sol. Expression = coefficient of x³ in

$$\{(1+x)^{10} + (1+x)^{11} + (1+x)^{12} + \dots + (1+x)^{20}\}$$

= Coefficient of x³ in $\frac{(1+x)^{10} \{1-(1+x)^{11}\}}{1-(1+x)}$
Coefficient of x⁴ in $\{(1+x)^{21}-(1+x)^{10}\}$
= ${}^{21}C_4 - {}^{10}C_4 = {}^{21}C_{17} - {}^{10}C_6$

Example 18:

Find the sum of series
$$1 + \frac{1}{3} \left(\frac{1}{2}\right)^2 + \frac{1}{5} \left(\frac{1}{2}\right)^4 + \dots \infty$$

Sol. Given:
$$1 + \frac{1}{3} \left(\frac{1}{2}\right)^2 + \frac{1}{5} \left(\frac{1}{2}\right)^4 + \dots \infty$$

$$= 2 \left[\frac{1}{2} + \frac{1}{3} \left(\frac{1}{2}\right)^3 + \frac{1}{5} \left(\frac{1}{2}\right)^5 + \dots \right]$$

$$= 2 \left[x + \frac{x^3}{3} + \frac{x^5}{5} + \dots \right], \text{ where } x = \frac{1}{2}$$

$$= 2 \cdot \frac{1}{2} \log \frac{1+x}{1-x} = \log \frac{1+x}{1-x}$$

$$= \log \frac{1+\frac{1}{2}}{1-\frac{1}{2}} = \log \frac{3/2}{1/2} = \log_e 3$$

QUESTION BANK

QUESTION BANK CHAPTER 7 : BINOMIAL THEOREM					
EXERCISE - 1 [LEVEL-1]					
PA	RT 1 : GENERAL TERN	<u>A. COEFFICIENT.</u> M. MIDDI E TERM	Q.10	The first four terms in the e (A) 81 x^4 -108 x^2 + 54 - 12	xpansion of $(3x + 1/x)^4$ is -
	AND CREAT	<u>M, MIDDLE IERM</u> FST TFDM		(B) $81 x^4 + 108 x^2 + 54 + 12 x^4$	x ⁻²
	AND GREAT			$(C) - 81 x^4 - 108 x^2 - 54 - 100 x^2 - 50 $	12 x ⁻²
0.1	The second state of the se	$\left(\begin{array}{c} 2 \end{array}\right)^8$	0.11	(D) None of these	· · · · · · · · · · · · · · · · · · ·
Q.1	The middle term of the expan	$\left(\begin{array}{c} x - \frac{1}{x} \right)$ is-	Q.11	The tenth term in the expansion (Λ) 1760/ x^3	1sion of $(2x^2 + 1/x)^{12}$ is –
	(A) 560	(B)-560		(A) $1760/x^2$	$(B) - 1 / 00/X^{\circ}$ (D) None of these
	(C) 1120	(D)-1120		(C) 1700/X	
Q.2	Independent from x in the exp	bansion of $\left(\sqrt{x} - \frac{3}{x^2}\right)^{10}$ is -	Q.12	If in the expansion of	$\left(x^3 - \frac{3}{x^2}\right)^{15}$ the r th term is
	(A) 3240	(B) - 3240		independent of x, then r eq	uals-
	(C) 405	(D)-405		(A) 8 (C) 10	(B) 9 (D) N 64
Q.3	The middle terms in the expansion	nsion $(x+6)^7$ is-		(C) 10	(D) None of these
	(A) $7560 x^4$, $-45360 x^3$	$(B) -7560 x^4, -45360 x^3$			$\begin{pmatrix} x & x^2 & x^n \end{pmatrix}^2$
04	(C) $/560 x^{4}, 45360 x^{3}$ Even engine of $(1 + 3x + 2x^{2})^{6}$	(D) None of these find the coefficient of x^{11}	Q.13	Find the coefficients of x^n	$\ln \left(\frac{1+\frac{1}{1!}+\frac{1}{2!}+\dots+\frac{1}{n!}}{1!} \right) $
Q.4	(A) 576	(B)460		(A) $6^{n}/n!$	(B) $4^{n}/n!$
	(C) 148	(D) 450		(C) $2^{n}/n!$	(D) $7^{n}/n!$
Q.5	The 4 th term from the end in th	e expansion of $(2x - 1/x^2)^{10}$	Q.14	In the expansion of $(4-3x)^7$, the numerically greatest term
	(A) 960 x^{-11}	(B) 960 x^{-12}		at $x = 2/3$ is -	
0($(C) -960 x^{-12}$	$(D) - 960 x^{-11}$	0.15	(A) I_4 (B) I_5 Find the coefficient of x^5 is	(C) I_3 (D) I_2
Q.6	The term which has the g	reatest coefficient in the	Q.13	$(1+x)^{21} + (1+x)^{22} + (1+x)^{22}$	$(+x)^{30}$
	(A) 3^{rd}	(B) 4 th		(A) ${}^{31}C_6 - {}^{21}C_6$	(B) ${}^{31}C_5 - {}^{21}C_2$
	$(C) 5^{\text{th}}$	$(D) 6^{\text{th}}$		$(C)^{21}C_6^0 - {}^{31}C_6^0$	(D) ${}^{11}C_6 - {}^{12}C_6$
Q.7	The greatest term in the expa	nsion of $(2x + 7)^{10}$, when			$1 + 2x + 3x^2$
	x = 3 is-		Q.16	The coefficient of x^4 in the	expansion of $\frac{1+2x+3x}{(1-x)^2}$
	$(A) T_5$	$(B) T_6$		(A) 13	(B) 14 $(1-x)$
	$(C) 1_7$	(D) None of these		(C) 20	(D) 22
0.0		$(1)^5$	Q.17	If the fourth term in the ex	pansion of $(px + 1/x)^n$ is $5/2$
Q.8	The first four terms of the exp	ansion of $\left(\frac{ax - \frac{1}{bx^2}}{bx^2}\right)$ are		then the value of n and p a $(A) (-1/2)$	re respectively-
				(A) 0, 1/2	(D) $\frac{1}{2}, 0$
	(A) $a^{5}x^{5} - 5 \frac{a^{4}}{a^{2}}x^{2} + 10 \frac{a^{3}}{a^{3}}$	$-10 \frac{a^2}{2}$	O.18	The coefficient of x^4 in the	expansion of
	$b \qquad b^2x$	$b^{3}x^{4}$	-	$(1+x+x^2+x^3)^n$ is -	1
	4 3	2		$(A) {}^{n}C_{4}$	(B) ${}^{n}C_{4} + {}^{n}C_{2}$
	(B) $a^5x^5 + 5 \frac{a^4}{10}x^2 - 10 \frac{a^4}{10}$	$+10\frac{a^{-1}}{a^{-1}}$	0.10	$(C) {}^{n}C_{1} + {}^{n}C_{2} + {}^{n}C_{4} {}^{n}C_{2}$	(D) ${}^{n}C_{4} + {}^{n}C_{2} + {}^{n}C_{1} \cdot {}^{n}C_{2}$
	$b \qquad b^2 x$	b ⁵ x ⁺	Q.19	$\prod (2-x-x^2)^{2n} = a_0^2 + a_1^2 x + a_1^2 x$	$a_2x^2 + a_3x^3 + \dots$, then the value
	a^4 a^3	a^2		(A) 2^{n-1}	(B) 2^{2n}
	(C) $a^5x^5 - 5 \frac{a}{b}x^2 - 10 \frac{a}{b^2x}$	$-10 \frac{a}{b^3 x^4}$		(C) 2^{2n-1}	(D) None of these
	0 0 X	U X			$(1)^{2n}$
	(D) $5 5 + 5 a^4 + 2 + 10 a^3$	a^2	Q.20	If x ^m occurs in the expans	ion of $\left(x + \frac{1}{x^2}\right)$,
	(D) $a^{3}x^{3} + 5 - \frac{b}{b}x^{2} + 10 - \frac{b^{2}x}{b^{2}x}$	$+10 \frac{1}{b^3 x^4}$		the coefficient of x ^m is -	7 x
		× × × ×		(2n)!	(2n)!3!3!
0.9	The sixth term in the expansion	on of $\left(3x^2 - \frac{1}{x}\right)^{\circ}$ is-		(A) $\overline{m!(2n-m)!}$	(B) $(2n-m)!$
~ ~~		$(2x)^{2}$		(2n)!	
	189 189	189 , 189 ,		(C) $\frac{(2n)!}{(2n-m)(4n+m)}$	(D) None of these
	(A) $\frac{1}{4}x$ (B) $-\frac{1}{4}x$	(C) $\frac{1}{4}x^2$ (D) $\frac{1}{4}x^3$		$\left(\frac{2\pi}{3}\right)!\left(\frac{2\pi}{3}\right)!$	
			90		
			-		

BINOMIAL THEOREM

Q.22

(

QUESTION BANK

Q.21 If the third term in the expansion of $\left[x + x^{\log_{10} x}\right]^5$

is equal to 10,00,000 thei	n x equals-
(A)10	(B) 10^2
$(C)10^3$	(D) No such x exists
The greatest integer in th	he expansion of $(1+x)^{2n+2}$ is -

(A)
$$\frac{(2n)!}{(n!)^2}$$
 (B) $\frac{(2n+2)!}{[(n+1)!]^2}$

C)
$$\frac{(2n+2)!}{n!(n+1)!}$$
 (D) $\frac{(2n)!}{n!(n+1)!}$

- Q.23 If $\frac{T_2}{T_3}$ in the expansion of $(a+b)^n$ and $\frac{T_3}{T_4}$ in the expansion of $(a+b)^{n+3}$ are equal, then n =(A) 3 (B) 4 (C) 5 (D) 6
- **Q.24** Let n be an odd integer. If $\sin n\theta = \sum_{r=0}^{n} b_r \sin^r \theta$ for every

value of
$$\theta$$
, then
(A) $b_0 = 1, b_1 = 3$ (B) $b_0 = 0, b_1 = n$
(C) $b_0 = -1, b_1 = n$ (D) $b_0 = 0, b_1 = n^2 - 3n + 3$

Q.25 If $(1 - x + x^2)^n = a_0 + a_1x + a_2x^2 + \dots + a_{2n}x^{2n}$, then $a_0 + a_2 + a_4 + \dots + a_{2n} =$

(A)
$$\frac{3^{n}+1}{2}$$
 (B) $\frac{3^{n}-1}{2}$ (C) $\frac{1-3^{n}}{2}$ (D) $3^{n}+\frac{1}{2}$

Q.26 If the sum of the coefficients in the expansion of $(x + y)^n$ is 1024, then the value of the greatest coefficient in the expansion is –

(A) 356	(B) 252
(C)210	(D) 120

Q.27 The interval in which x must lie so that the numerically greatest term in the expansion of $(1 - x)^{21}$ has the numerically greatest coefficient is

(A)
$$\left[\frac{5}{6}, \frac{6}{5}\right]$$
 (B) $\left(\frac{5}{6}, \frac{6}{5}\right)$ (C) $\left(\frac{5}{6}, \frac{6}{5}\right)$ (D) $\left[\frac{4}{5}, \frac{5}{4}\right]$

Q.28 If the 6th term in the expansion of the binomial

$$\left[\sqrt{2^{\log(10-3^{X})}} + \sqrt[5]{2^{(x-2)\log 3}}\right]^{m}$$
 is equal to 21 and it is

known that the binomial coefficients of the 2nd, 3rd and 4th terms in the expansion represent respectively the first, third and fifth terms of an A.P. (the symbol log stands for logarithm to the base 10), then x = (A) 0 (B) 1

$$\begin{array}{c} (A) & (B) \\ (C) 2 & (D) Both (A) and (C) \end{array}$$

Q.29 If for positive integers r > 1, n > 2 the coefficient of the $(3r)^{th}$ and $(r + 2)^{th}$ powers of x in the expansion of $(1+x)^{2n}$ are equal, then

(A) n = 2r(C) n = 2r + 1

(B)
$$n = 3r$$

(D) None of these

- **Q.30** If the coefficient of the second, third and fourth terms in the expansion of $(1 + x)^n$ are in A.P., then n is equal to (A) 7 (B) 2 (C) 6 (D) None of these
- **Q.31** In the binomial expansion of $(a b)^n$, $n \ge 5$, the sum of the 5th and 6th terms is zero. Then a/b is equal to

(A)
$$\frac{1}{6}(n-5)$$
 (B) $\frac{1}{5}(n-4)$ (C) $\frac{5}{(n-4)}$ (D) $\frac{6}{(n-5)}$

Q.32 Given that 4th term in the expansion of $\left(2 + \frac{3}{8}x\right)^{10}$ has

the maximum numerical value, the range of value of x for which this will be true is given by

(A)
$$-\frac{64}{21} < x < -2$$
 (B) $-\frac{64}{21} < x < 2$

(C)
$$\frac{64}{21} < x < 4$$
 (D) None of these

Q.33 6th term in expansion of
$$\left(2x^2 - \frac{1}{3x^2}\right)^{10}$$
 is

(A)
$$\frac{4580}{17}$$
 (B) $-\frac{896}{27}$ (C) $\frac{5580}{17}$ (D) None

Q.34 If the
$$(r + 1)$$
th term in the expansion of $\left(\sqrt[3]{\frac{a}{\sqrt{b}}} + \sqrt{\frac{b}{\sqrt[3]{a}}}\right)^2$

has the same power of a and b, then the value of r is (A) 9 (B) 10 (C) 8 (D) 6

Q.35 In the expansion of $\left(\frac{x}{2} - \frac{3}{x^2}\right)^{10}$, the coefficient of x^4 is

(A)
$$\frac{405}{256}$$
 (B) $\frac{504}{259}$ (C) $\frac{450}{263}$ (D) None of these

Q.36 If coefficients of $(2r+1)^{th}$ term and $(r+2)^{th}$ term are equal in the expansion of $(1+x)^{43}$, then the value of r

- Q.37 If the second, third and fourth term in the expansion of $(x + a)^n$ are 240, 720 and 1080 respectively, then n =(A) 15 (B) 20 (C) 10 (D) 5
- **Q.38** The term independent of x in $\left(2x \frac{1}{2x^2}\right)^{12}$ is

Q.39 Independent of x in the expansion of
$$\left(x^2 - \frac{3\sqrt{3}}{x^3}\right)^{10}$$
 is

A) 153090	(B) 150000
C) 150090	(D) 153180

- **Q.40** If the sum of the coefficients in the expansion of $(1+2x)^n$ is 6561, the greatest term in the expansion for x = 1/2 is -(A) 4th (B) 5th (C) 6th (D) None of these
- Q.41 If (r+1)th term is $\frac{3.5...(2r-1)}{r!} \left(\frac{1}{5}\right)^r$, then this is the term

of binomial expansion-

(A)
$$\left(1 - \frac{2}{5}\right)^{1/2}$$
 (B) $\left(1 - \frac{2}{5}\right)^{-1/2}$
(C) $\left(1 + \frac{2}{5}\right)^{-1/2}$ (D) $\left(1 + \frac{2}{5}\right)^{1/2}$

Q.42 The coefficient of the term independent of x in the

expansion of (1+ x +	$(2x^3)\left(\frac{3}{2}x^2 - \frac{1}{3x}\right)^9$ is-
(A) 1/3	(B) 19/54
(C) 17/54	(D) 1/4

Q.43 If the coefficient of 4th term in the expansion of

$\left(x+\frac{\alpha}{2x}\right)^n$	is 20, then the respective values of $\alpha \& n$ are
(A) 2, 7	(B) 5, 8
(C) 3, 6	(D) 2, 6

- **Q.44** The coefficient of x^{m} in $(1+x)^{m}+(1+x)^{m+1}+\dots+(1+x)^{n}, m \le n \text{ is} -$ (A) ${}^{n+1}C_{m+1}$ (B) ${}^{n-1}C_{m-1}$ (C) ${}^{n}C_{m}$ (D) ${}^{n}C_{m+1}$ **Q.45** Coefficient of x^{25} in expansion of expression
- **Q.45** Coefficient of x^{25} in expansion of expression

$$\sum_{r=0}^{50} C_r (2x-3)^r (2-x)^{50-r} \text{ is} -$$
(A) ⁵⁰C₂₅ (B) - ⁵

(A) ${}^{50}C_{25}$ (C) ${}^{50}C_{30}$ (B) $-{}^{50}C_{30}$ (D) $-{}^{50}C_{25}$

Q.46 The term independent of x in $\left[\sqrt{\frac{x}{3}} + \sqrt{\frac{3}{2x^2}}\right]^{10}$ is – (A) 1 (B) ${}^{10}C_1$ (C) 5/12 (D) None of these

Q.47 The
$$(p+2)$$
th term from end in $\left(x-\frac{1}{x}\right)^{2n+1}$ is -

$$(A) \ (-1)^p \frac{(2n+1)!}{(2n-p)! \ (p+1)!} x^{2p-2n+1}$$

B)
$$(-1)^{p} \frac{(2n+1)!}{(2n-p)!(p+1)!} x^{2n-2p+1}$$

(

(C)
$$(-1)^{p} \frac{(2n+1)!}{(2n-p)!(p+1)!} x^{2p-2n-1}$$

(D) None of these

Q.48 If sum of the coefficients in expansion $(1 + x)^n$ is 4096 then value of largest binomial coefficients is – (A) 792 (B) 924 (C) 462 (D) None of these

- Q.49 Numerically greatest term in expansion of $(3-5x)^{11}$ at x = 1/5 is (A) (55).3⁹ (B) (55).3⁸
- (C) (55).3¹⁰ (D) None of these Q.50 In the binomial expansion of $(1 + x)^{15}$, the coefficients of x^{r} and x^{r-3} are equal. Then r is – (A) 8 (B) 7
- (C) 4 (D) 6 Q.51 If 21^{st} and 22^{nd} terms in the expansion of $(1 + x)^{44}$ are
 - equal, then x is equal to (A) 8/7 (B) 21/22
 - (C) 7/8 (D) 23/24
- Q.52 The middle term of expansion $\left(\frac{10}{x} + \frac{x}{10}\right)^{10}$ (A) ${}^{7}C_{5}$ (B) ${}^{8}C_{5}$

(C)
$${}^{9}C_{5}$$
 (D) ${}^{10}C_{5}$

Q.53 The 11th term in the expansion of $\left(x + \frac{1}{\sqrt{x}}\right)^{14}$ is –

(A)
$$\frac{1001}{x}$$
 (B) $\frac{x}{1001}$
(C) $\frac{999}{x}$ (D) i

PART 2 : PROPERTIES OF BINOMIAL COEFFICIENTS

- **Q.54** Maximum value of ${}^{20}C_r$, is equal to (A) ${}^{20}C_{11}$ (B) ${}^{20}C_{12}$ (C) ${}^{20}C_{10}$ (D) none of these
- **Q.55** If $\alpha_1, \alpha_2, \alpha_3, \dots, \alpha_n$ are the nth roots of unity, then ${}^{n}C_1 \alpha_1 + {}^{n}C_2 \alpha_2 + {}^{n}C_3 \alpha_3 + \dots + {}^{n}C_n \alpha_n$ equals –

(A)
$$\frac{\alpha_1}{\alpha_2}$$
 (B) $\frac{\alpha_1}{\alpha_2} ((\alpha_1 + \alpha_2)^{2n} - 1)$

(C)
$$\frac{\alpha_1}{\alpha_2} ((1+\alpha_2)^n - 1)$$
 (D) $\frac{\alpha_1}{\alpha_2} ((\alpha_1 + \alpha_2)^n + 1)$

BINOMIAL THEOREM

QUESTION BANK

Q.58	$If (1+x)^{n} = C_0 + C_1 x + C_2 x^2 + C_1 x + C_2 x^2 + C_2 x^2$	$\dots + C_n x^n$ then
	$C_0 + 2C_1 + 3C_2 + \dots + (n+1)C_2$	C_n is equal to-
	(A) 2^{n-1} (n+2)	(B) $2^{n}(n+1)$
	$(C)2^{n-1}(n+1)$	(D) $2^{n}(n+2)$
Q.59	Find the sum $\sum_{n=0}^{n} \frac{r^{n}C_{r}}{n}$	
	$r=1$ C_{r-1}	
	$(A) \frac{n(n-1)}{2}$	$(B) \frac{n(n+1)}{2}$
	$(C) \frac{(n+1)}{2}$	(D) None
Q.60	The value of $\sum_{r=1}^{10} r \cdot \frac{{}^{n}C_{r}}{{}^{n}C_{r-1}}$ is	equal to
	(A) $5(2n-9)$ (C) $9(n-4)$	(B) 10 n(D) None of these
Q.61	Value of $2C_0 - \frac{2^2}{2}C_1 + \frac{2^3}{3}C_1$	$C_2 + \dots + (-1)^{n+1} \frac{2^{n+1}}{(n+1)}$.
	(A) 0	(B) 1
	(C)2	(D) 3
Q.62	If $\sum_{r=0}^{2n} a_r (x-1)^r = \sum_{r=0}^{2n} b_r (x-1)^r$	2) ^r and $b_r = (-1)^{r-n}$ for all
	$r \ge n$, find a_n	
	(A) $^{n+1}C_n$	(B) ${}^{2n-1}C_n$
	(C) $^{n-1}C_n$	(D) ${}^{2n+1}C_n$
Q.63	Find the value of $\sum_{r=1}^{n} C_r \sin t$	$n rx \cos(n-r) x$.
C	(A) $2^{n-1} \sin nx = \overline{r=0}$	(B) $3^{n-1} \sin nx$
	(C) $7^{n-1} \cos nx$	(D) $5^{n-1} \cos nx$
Q.64	If $C_0, C_1, C_2, \dots, C_n$ are	binomial coefficients then
	$\frac{1}{n!0!} + \frac{1}{(n-1)!} + \frac{1}{(n-2)!2!} + \frac{1}{(n-2)!2!2!} + \frac{1}{(n-2)!2!2!} + \frac{1}{(n-2)!2!} + \frac{1}{(n-2)!2!2!} + \frac{1}$	$+\dots++\frac{1}{0! n!}$ is equal to
	$(\Lambda) 2^{n}$	(B) $\frac{2^{n-1}}{2^{n-1}}$
	(Λ) 2	(b) n!
	2^n	
	$(C) \frac{1}{n!}$	(D) none of these
Q.65	Set of value of r for which, 180	200
	$^{10}C_{r-2} + 2 \cdot ^{10}C_{r-1} + ^{10}C_{r}$ (A) 4 elements	$\geq {}^{20}C_{13}$ contains : (B) 5 elements
	(C) 7 elements	(D) 10 elements
Q.66	Let $(1 + x)^n = \sum_{r=0}^n a_r x^r$ then	
	$\left(1+\frac{a_1}{a_0}\right) \cdot \left(1+\frac{a_2}{a_0}\right) \dots \cdots \left(1+\frac{a_n}{a_{n-1}}\right)$) is equal to –

(A)
$$\frac{(n+1)^{n+1}}{n!}$$
 (B) $\frac{(n+1)^n}{n!}$
(C) $\frac{n^{n-1}}{(n-1)!}$ (D) $\frac{(n+1)^n}{(n+1)!}$
Q.67 $\frac{1}{1!(n-1)} + \frac{1}{3!(n-3)!} + \frac{1}{5!(n-5)!} + \dots$ is equal to
(A) $\frac{2^{n-1}}{n!}$ for even values of n only
(B) $\frac{2^{n-1}+1}{n!} - 1$ for odd values of n only
(C) $\frac{2^{n-1}}{n!}$ for all $n \in \mathbb{N}$
(D) None of these
The value of ${}^{10}C_1 + {}^{10}C_2 + {}^{10}C_3 + \dots + {}^{10}C_9 \text{ is } - \frac{(A) 2^{10} - 1}{(C) 2^{11}}$ (D) $2^{10} - 2$
Q.69 If the value of $C_0 + 2 \cdot C_1 + 3 \cdot C_2 + \dots + (n+1) \cdot C_n = 576, \text{ then n is } - \frac{(A) 7}{(C) 6}$ (D) 9

PART 3 : BINOMIAL THEOREM FOR ANY INDEX

Q.70 If
$$|x| < 1/2$$
, then expansion of $(1-2x)^{1/2}$ is-

(A)
$$1 - x - \frac{1}{2}x^2 \dots$$
 (B) $1 - x + \frac{1}{2}x^2 \dots$

(C)
$$1 + x - \frac{1}{2}x^2$$
 (D) None of these

Q.71 The tenth term in the expansion of $(1+x)^{-3}$ is -(A) - 55 x⁹ (B) 55 x⁹ (C) - 66 x¹⁰ (D) 66 x¹⁰ **Q.72** The coefficient of x⁵ in the expansion of $(1-x)^{-6}$ is -(A) 1260 (B) - 1260

Q.73 To expand $(1 + 2x)^{-1/2}$ as an infinite series, the range of x should be -

$$(A)\left[\frac{-1}{2},\frac{1}{2}\right] \qquad (B)\left(\frac{-1}{2},\frac{1}{2}\right)$$

(C)
$$[-2, 2]$$
 (D) $(-2, 2)$
Q.74 If rth and $(r + 1)$ th terms in the expansion of $(p + 1)$

q)ⁿ are

equal, then
$$\frac{(n+1) q}{r (p+q)}$$
 is –
(A) 1/2 (B) 1/4
(C) 1 (D) 0

QUESTION BANK

0.75	The 13 th term in the ev	pansion of $\left(x^2 + \frac{2}{2}\right)^n$ is	
Q.15	The 15 th term in the expansion of $\begin{pmatrix} x \\ x \end{pmatrix}$ is		
	independent of x then the su (A) 20	m of the divisors of n is $-$	
	(A) 39	(B) 30	
	(C)37	(D) 38	
	PART 4 : APPLIC	ATIONS OF	
	BINOMIAL TH	EOREM	
Q.76	The value of $\sqrt{99}$ upto three	e decimals is -	
	(A)9.949	(B)9.958	
	(C) 9.948	(D) None of these	
Q.77	The sum of the series $1 + \frac{1}{5} $	$-\frac{1.3}{5.10} + \frac{1.3.5}{5.10.15} + \dots =$	
	(A) $1/\sqrt{5}$	(B) $1/\sqrt{2}$	
	(C) $\sqrt{5/3}$	(D) $\sqrt{5}$	
Q.78	The sum of the series		
	$\sum_{r=0}^{n} (-1)^{r-n} C_r \left(\frac{1}{2^r} + \frac{3^r}{2^{2r}} + \frac{7}{2} \right)^{r-1}$	$\frac{7^{r}}{3r} + \frac{15^{r}}{2^{4r}} + \dots m \text{ terms} $ is	
	(A) $\frac{2^{mn}-1}{2^{mn}(2^n-1)}$	(B) $\frac{2^{mn}-1}{2^n-1}$	
	(C) $\frac{2^{mn} + 1}{2^n + 1}$	(D) None	
Q.79	$49^n + 16n - 1$ is divisible by		
	(A) 3	(B) 19	
	(C) 64	(D) 29	
Q.80	The difference between an int	teger and its cube is divisible	
	(A)4	(B)6	
	(C)9	(D) None of these	
Q.81	The greatest integer which divides $101^{100} - 1$ is -		
	(A) 100	(B) 1000	
0.03	(C) 10,000	(D) 100,000	
Q.82	I he sum of the rational term	s in the expansion of	
	$(\sqrt{2} + 3^{1/5})^{10}$ is equal to		
	(A)40	(B)41	
	(C)42	(D) 0	

Q.83	The integer just greater than	$(3+\sqrt{5})^{2n}$ is divisible by
	$(n \in N)$	
	(A) 2^{n-1}	(B) 2^{n+1}
	(C) 2^{n+2}	(D) not divisible by 2
Q.84	The remainder when 27^{40} is	divided by 12 is –
	(A) 3	(B)7
	(C)9	(D) 11
Q.85	The last two digits of the num	mber $(23)^{14}$ are –
	(A) 01	(B) 03
	(C) 09	(D) None of these
Q.86	$If (1 - x - 2x^2)^6 = 1 + a_1 x + a_2 x^2 + a_1 x + a_2 x^2 + a_2 x^2 + a_1 x + a_2 x^2 + a_2 x^2 + a_1 x + a_2 x^2 + a_3 x^2 + a_4 x^2 + a_5 x^$	$a_2x^2 + \dots + a_{12}x^{12}$. Then
	$\frac{a_2}{2^2} + \frac{a_4}{2^4} + \frac{a_6}{2^6} + \dots + \frac{a_{12}}{2^{12}}$	s equal to –
	(A)-1	(B) - 1/2
	(C) 0	(D) 1/2
Q.87	The remainder when 7^{103} is	divided by 25 is –
	(A) 0	(B) 18
	(C)9	(D) None of these
Q.88	The number $(49^2 - 4)(49^3 - 4)(49$	49) is divisible by –
	(A) 7!	(B)9!
	(C) 6!	(D) 5!
Q.89	The digit in the unit's place of	of $7^{171} + (177)!$
	(A) 0	(B) 1
	(C) 1	(D) 3
Q.90	The remainder when, 10^{10} . (1	$(10^{10} + 1)(10^{10} + 2)$ is divided
	by 6 is –	
	(A) 2	(B)4
	(C)0	(D) 6
Q.91	The remainder obtained whe divided by 12 is –	en $1! + 2! + 3! + \dots + 11!$ is
	(A) 9	(B) 8
	(C)7	(D) 6
	PART 5 : MISCEI	LANEOUS

Q.92 Given that the term of the expansion $(x^{1/3} - x^{-1/2})^{15}$ which does not contain x is 5 m where $m \in N$, then m =

(A) 1100	(B) 1010
(C) 1001	(D) none

Q.93 If the coefficients of $x^7 & x^8$ in the expansion of

 $\begin{bmatrix} 2 + \frac{x}{3} \end{bmatrix}^n \text{ are equal, then the value of n is }^-$ (A) 15 (B) 45
(C) 55 (D) 56

QUESTION BANK

Q.94	The remainder, when (15^{23})	$+23^{23}$) is divided by 19, is
	(A)4	(B) 15
	(C) 0	(D) 18

Q.95 If $n \in N$ & n is even, then

$$\frac{1}{1.(n-1)!} + \frac{1}{3!(n-3)!} + \frac{1}{5!(n-5)!} + \dots + \frac{1}{(n-1)!1!} =$$

(A)
$$2^n$$
 (B) $\frac{2^{n-1}}{n!}$

(C) $2^n n!$ (D) none of these

Q.96 If in the expansion of $\left(2^{x} + \frac{1}{4^{x}}\right)^{n}$, T₃ = 7T₂ and sum of

the binomial coefficients of second and third terms is 36, then the value of x is -

(A)-1/3	(B) - 1/2
(C) 1/3	(D) 1/2

Q.97
$$(1 + x + x^2)^n = a_0 + a_1x + a_2x^2 + \dots a_{2n}x^{2n}$$
, then
 $a_0 + a_2 + a_4 + \dots a_{2n} = 0$
(A) $\frac{3^n + 1}{2}$ (B) $\frac{3^n - 1}{2}$
(C) $\frac{3^{n-1} + 1}{2}$ (D) $\frac{3^{n-1} - 1}{2}$
Q.98 If $(11)^{27} + (21)^{27}$ when divided by 16 leaves the remainder
(A) 0 (B) 1
(C) 2 (D) 14
Q.99 If $(1 + x)^{2n} = a_0 + a_1x + a_2x^2 + \dots + a_{2n}x^{2n}$ then
(A) $a_0 + a_2 + a_4 + \dots = (1/2)(a_0 + a_1 + a_2 + a_3 + \dots)$
(B) $a_{n+1} < a_n$
(C) $a_n = a_n$

(C)
$$a_{n-3} = a_{n+3}$$

(D) All of these

Q.100 The coefficient of x^4 in the expansion of

$$(1 + x + x^2 + x^3)^{11}$$
, is
(A) 440 (B) 770
(C) 990 (D) 1001

EXERCISE - 2 [LEVEL-2]

ONLY ONE OPTION IS CORRECT

Q.1 The coefficient of x^{49} in the expansion of

$$(x-1)\left(x-\frac{1}{2}\right)\left(x-\frac{1}{2^2}\right)\dots\left(x-\frac{1}{2^{49}}\right)$$
 is equal to

$$(A) - 2\left(1 - \frac{1}{2^{50}}\right)$$

$$(B)$$
 + ve coefficient of x

(C) – ve coefficient of x (D) –
$$2\left(1-\frac{1}{2^{49}}\right)$$

- Q.2 If $6^{83} + 8^{83}$ is divided by 49, then the remainder is (A) 35 (B) 5 (C) 1 (D) 0
- Q.3 When $11^{27} + 21^{27}$ is divided by 16, the remainder is (A) 1 (B) 14 (C) 0 (D) 2
- Q.4 If the 3rd term in the expansion of $(x + x^{t})^{5}$ is 10⁶ where t = log₁₀ x then the number of possible values of x is – (A) 2 (B) 0 (C) 1 (D) infinite
- Q.5 $\left(x + \sqrt{x^3 1}\right)^5 + \left(x \sqrt{x^3 1}\right)^5$ is a polynomial of the order of –

- Q.6 Last three digits of the number $N = 7^{100} 3^{100}$ are (A) 100 (B) 300 (C) 500 (D) 000
- Q.7 If $(1 + x 2x^2)^8 = a_0 + a_1x + a_2x^2 + \dots + a_{16}x^{16}$ then the sum $a_1 + a_3 + a_5 + \dots + a_{15}$ is equal to (A) -2^7 (B) 2^7 (C) 2^8 (D) None of these Q.8 The coefficient of x^{83} in $(1 + x + x^2 + x^3 + x^4)^n (x - 1)^{n+3}$,
- Q.8 The coefficient of x^{83} in $(1 + x + x^2 + x^3 + x^4)^n (x-1)^{n+3}$, is equal to (A) ${}^{n}C_{7}(-1)^n$ (B) $-{}^{n}C_{16}$ (C) ${}^{n}C_{13}$ (D) ${}^{n}C_{9}$
- Q.9 The coefficient of x^4 of in the expansion $(1 + 5x + 9x^2 +\infty)(1 + x^2)^{11}$ is – (A) ${}^{11}C_2 + 4 {}^{11}C_1 + 3$ (B) ${}^{11}C_2 + 3 {}^{11}C_1 + 4$ (C) $3 {}^{11}C_2 + 4 {}^{11}C_1 + 3$ (D) 171
- Q.10 The number formed by last two digits of the number $(17)^{256}$ is (A) 81 (B) 80 (C) 91 (D) 93
- Q.11 The last two digits of the number 3^{400} are : (A) 81 (B) 43
- (C) 29 (D) 01 Q.12 In the binomial $(2^{1/3}+3^{-1/3})^n$, if the ratio of the seventh term from the beginning of the expansion to the seventh term from its end is 1/6, then n equal to (A) 6 (B) 9

Q.13 If
$$(1 + x + x^2)^{25} = a_0 + a_1 x + a_2 x^2 + \dots + a_{50} \cdot x^{50}$$
 then
 $a_0 + a_2 + a_4 + \dots + a_{50}$ is :
(A) even
(B) odd & of the form 3n

- (C) odd & of the form (3n-1)
- (D) odd & of the form (3n+1)

Q.14
$$(2n+1)(2n+3)(2n+5)\dots(4n-1)$$
 is equal to :

(A)
$$\frac{(4n)!}{2^{n} \cdot (2n)! (2n)!}$$
 (B) $\frac{(4n)! n!}{2^{n} \cdot (2n)! (2n)!}$

(C)
$$\frac{(4n)! n!}{(2n)!(2n)!}$$
 (D) $\frac{(4n)! n!}{2^n!(2n)!}$

 $\textbf{Q.15} \quad \text{The coefficient of } \lambda^n \mu^n \text{ in the expansion of }$

$$\begin{bmatrix} (1+\lambda) (1+\mu) (\lambda+\mu) \end{bmatrix}^{n} \text{ is}$$
(A) $\sum_{r=0}^{n} C_{r}^{2}$
(B) $\sum_{r=0}^{n} C_{r+2}^{2}$
(C) $\sum_{r=0}^{n} C_{r+3}^{2}$
(D) $\sum_{r=0}^{n} C_{r}^{3}$

Q.16 The coefficient of the term independent of x in the

expansion of
$$\left(\sqrt{\frac{x}{3}} + \frac{3}{2x^2}\right)^{10}$$
 is
(A) 5/4 (B) 7/4
(C) 9/4 (D) none of these
The comparison of $(1 + x)^{11}$ here 2 comparation to

Q.17 The expansion of $(1 + x)^n$ has 3 consecutive terms with coefficients in the ratio 1 : 2 : 3 and can be written in the form ${}^nC_k : {}^nC_{k+1} : {}^nC_{k+2}$. The sum of all possible values of (n + k) is –

Q.18 The sum of the coefficient of all the terms in the expansion of $(2x - y + z)^{20}$ in which y do nto appear at all while x appears in even powers and z appears in odd powers is –

(A) 0 (B)
$$\frac{2^{20}-1}{2}$$
 (C) 2^{19} (D) $\frac{3^{20}-1}{2}$

Q.19 If the second term of the expansion $a^{1/2}$

$$(13 + \frac{a}{\sqrt{a^{-1}}} \Big]^n$$

is $14a^{5/2}$ then the value of $\frac{{}^{n}C_{3}}{{}^{n}C_{2}}$ is : (A) 4 (B) 3

Q.20 If $(1 + x + x^2)^n = a_0 + a_1x + a_2x^2 + \dots + a_{2n}x^{2n}$ then (A) $a_0 - a_2 + a_4 - a_6 + \dots = 0$, if n is odd (B) $a_1 - a_3 + a_5 - a_7 + \dots = 0$, if n is even (C) $a_0 - a_2 + a_4 - a_6 + \dots = 0$, if n = 4p, $p \in I^+$ (D) $a_1 - a_3 + a_5 - a_7 + \dots = 0$, if n = 4p + 1, $p \in I^+$ Q.21 The last term in the binomial expansion of $\left(\sqrt[3]{2} - \frac{1}{\sqrt{2}}\right)^n$ is $\left(\frac{1}{2\sqrt{2}}\right)^{\log_3 8}$. Then the 5th term from the beginning is (A) ${}^{10}C_6$ (C) ${}^{1/2}$, ${}^{10}C_4$ (B) 2. ${}^{10}C_4$ (D) None of these **Q.22** In the expansion of $(1 + x)^{15}$, the value of $\frac{C_1}{C_0} + 2\frac{C_2}{C_1} + 3\frac{C_3}{C_2} + \dots + \frac{15C_{15}}{C_{14}}$ is (B) 2¹⁵ (A) 24 (C) 0(D) 120 Q.23 The sum of the co-efficients of all the even powers of x in the expansion of $(2x^2 - 3x + 1)^{11}$ is : (A) 2.6¹⁰ (B) 3.6¹⁰ (C) 6^{11} (D) none **Q.24** Co-efficient of α^t in the expansion of, $(\alpha + p)^{m-1} + (\alpha + p)^{m-2} (\alpha + q) + (\alpha + p)^{m-3} (\alpha + q)^2$ + $(\alpha + q)^{m-1}$ where $\alpha \neq -q$ and $p \neq q$ is: (A) $\frac{{}^{m}C_{t} (p^{t}-q^{t})}{p-q}$ (B) $\frac{{}^{m}C_{t} (p^{m-t}-q^{m-t})}{p-q}$ (C) $\frac{{}^{m}C_{t}(p^{t}+q^{t})}{p-q}$ (D) $\frac{{}^{m}C_{t}(p^{m-t}+q^{m-t})}{p-q}$ **Q.25** If $(1 + x)^n = a_0 + a_1 x + a_2 x^2 + \ldots + a_n x^n$, then $\left(1+\frac{a_1}{a_2}\right)\left(1+\frac{a_2}{a_2}\right)\left(1+\frac{a_3}{a_2}\right)\dots\left(1+\frac{a_n}{a_{n-1}}\right)$ is equal to (A) $\frac{n^n}{n!}$ (B) $\frac{(n+1)^n}{n!}$ (C) $\frac{n^{n+1}}{(n+1)!}$ (D) none **Q.26** The value of $\left\{\frac{3^{2003}}{28}\right\}$, where $\{\cdot\}$ denotes the fractional part, is equal to (A) 15/28 (B) 5/28 (D) 9/28 (C) 19/28 **Q.27** $(1+x)(1+x+x^2)(1+x+x^2+x^3)\dots(1+x+x^2+\dots+x^2)$ x^{100}) when written in the ascending power of x then the highest exponent of x is -

- (A) 4950 (B) 5050 (C) 5150 (D) none
- **Q.28** The term independent of x in the expansion of 10^{10}

$$\left(9x - \frac{1}{3\sqrt{x}}\right)^{18}$$
, $x > 0$, is a times the corresponding

(A) 3 (B) 1/3 (C) - 1/3(D) None of these **Q.29** $(1 + \sqrt{2}x^2)^9 - 1 - 9\sqrt{2}x^2 - 70x^4$ is divisible by $(A) x^6$ $(B)x^8$ (A) x^{6} (B) x^{8} (C) x^{10} (D) none of these Q.30 $aC_{0} + (a+b)C_{1} + (a+2b)C_{2} + \dots + (a+nb)C_{n}$ is equal (A) $(2a + nb) 2^n$ (B) $(2a + nb) 2^{n-1}$ (D) $(na + 2b) 2^{n-1}$ (C) $(na+2b) 2^{n}$ **Q.31** x^r occurs in the expansion of $\left(x^3 + \frac{1}{x^4}\right)^n$ provided – (A) 2n - r is divisible by 5 (B) 3n - r is divisible by 5 (C) 2n - r is divisible by 7 (D) 3n - r is divisible by 7 **Q.32** In the expansion of $\left(\sqrt[3]{\frac{a}{b}} + \sqrt[3]{\frac{b}{\sqrt{a}}}\right)^{21}$ the term containing same powers of a and b is -(A) 11th (B) 13th $(C) 12^{\text{th}}$ $(D) 6^{\text{th}}$ **Q.33** The middle term in the expansion of $\left(1+\frac{1}{\sqrt{2}}\right)\left(1+x^2\right)^n$ (A) ${}^{2n}C_n x^{2n}$ (B) ${}^{2n}C_n x^{-2n}$ (D) ${}^{2n}C_{n-1}$ $(C)^{2n}C_n$ Q.34 If n is even positive integer, then the condition that the greatest term in the expansion of $(1 + x)^n$ may have the greatest coefficient also is (A) $\frac{n}{n+2} < x < \frac{n+2}{n}$ (B) $\frac{n+1}{n} < x < \frac{n}{n+1}$ (C) $\frac{n}{n+4} < x < \frac{n+4}{n}$ (D) none of these **Q.35** The coefficient of x^{n-2} in the polynomial (x-1)(x-2)(x-3).....(x-n) is -(A) $\frac{n(n^2+2)(3n+1)}{24}$ (B) $\frac{n(n^2-1)(3n+2)}{24}$ (C) $\frac{n(n^2+1)(3n+4)}{24}$ (D) None of these

ASSERTION AND REASON OUESTIONS

- (A) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1.
- (B) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1.
- (C) Statement -1 is True, Statement-2 is False.
- (D) Statement -1 is False, Statement-2 is True.
- (E) Statement -1 is False, Statement-2 is False.

binomial coefficient then a is

QUESTION BANK

- Q.36 Statement-1: 2⁶⁰ when divided by 7 leaves the reminder Q.43 Match the column **Statement-2**: $(1 + x)^n = 1 + n_1 x$, where $n, n_1 \in N$.
- **Q.37** Statement-1: $C_0^2 + C_1^2 + C_2^2 + C_3^2 + ... + C_n^2 = \frac{2n!}{(n!)^2}$

Statement-2: ${}^{n}C_{0} - {}^{n}C_{1} + {}^{n}C_{2} \dots + (-1){}^{n}{}^{n}C_{n} = 0$

Statement-1: The maximum value of ${}^{2n}C_k$ is ${}^{2n}C_n$.

Statement-2:
$$\frac{{{{2^n}C_{k+1}}}}{{{{2^n}C_k}}} > 1$$
, for k = 0, 1, 2, ..., n - 1.

Q.39 Statement-1: Any positive integral power of $(\sqrt{2}-1)$ can be expresses as $\sqrt{N} - \sqrt{N-1}$ for some natural number

Statement-2: Any positive integral power of $\sqrt{2}$ –1 can

be expressed as $A + B\sqrt{2}$ where A and B are integers.

Q.40 Statement 1 :
$$\sum_{k=1}^{n} K ({}^{n}C_{K})^{2} = n \cdot {}^{2n-1}C_{n-1}$$

Statement 2 : If 2^{2003} is divided by 15 the remainder is 1.

Q.41 Statement-1 : The coefficient of x^{203} in the expression $(x-1)(x^2-2)(x^2-3)...(x^{20}-20)$ must be 13. **Statement–2** : The coefficient of x^8 in the expression $(2+x)^2 (3+x)^3 (4+x)^4$ is equal to 30.

MATCH THE COLUMN TYPE OUESTIONS

Q.42 Match the column – Column I

Column II

- (a) If (r+1)th term is the first negative (p) divisible by 2 term in the expansion of $(1 + x)^{7/2}$, then the value of r (where |x| < 1) is
- (b)The coefficient of y in the expansion (g)divisible by 5 of $(y^2 + 1/y)^5$ is
- (c) If the second term in the expansion (r) divisible by 10

$$\left(a^{1/13} + \frac{a}{\sqrt{a^{-1}}}\right)^n$$
 is 14a^{5/2}, then

the value of n is

(d) The coefficient of x^4 in the (s) a prime number expression

 $(1+2x+3x^2+4x^3+...upto \infty)^{1/2}$

is c,
$$(c \in N)$$
, then $c + 1$ (where $|x| < 1$) is

Code :

Column I

(a)
$${}^{m}C_{1} {}^{n}C_{m} - {}^{m}C_{2} {}^{2n}C_{m} + {}^{m}C_{3} {}^{3n}C_{m} + \dots$$
 is

(b)
$${}^{n}C_{m} + {}^{n-1}C_{m} + {}^{n-2}C_{m} + \dots + {}^{m}C_{m}$$
 is

(c)
$$C_0C_1 + C_1C_{n-1} + \dots + C_nC_0$$
 is

(d) $2^{m} C_0 - 2^{m-1} C_1^{n-1} C_{m-1}$

 $+ \dots + (-1)^{m} C_m^{n-m} C_0$ is

- (t) the coefficient of x^n in $(1 + x)^{2n}$ Column II
- (p) the coefficient of x^m in the expansion of $(1-(1+x)^n)^m$.
- (q) the coefficient of x^m in $\frac{(1+x)^{n+1}}{x}$
- (r) the coefficient of x^{n+1} in $(1+x)^{2n}$
- (s) the coefficient of x^m in the expansion of $(1 + x)^n$
- (t) the coefficient of x^n in $(1 + x)^{2n}$

Code:

(A) a-p, b-t, c-s, d-p (B) a-p, b-q, c-t, d-s (D) a-r, b-s, c-p, d-q (C) a-r, b-q, c-s, d-t

Q.44 Match the column – Column I

Column II

7

- (a) Let $a = 3^{\overline{223}} + 1$ and for all $n \ge 3$, let (p) 3 $f(n) = {}^{n}C_{0}a^{n-1} - {}^{n}C_{1}a^{n-2} + {}^{n}C_{2}a^{n-3} - \dots + (-1)^{n-1} {}^{n}C_{n-1}a^{0}.$ If the value of f (2007) + f (2008) = 2187k, where $k \in N$, then values lesser than k are.
- (b) The power of x which has the greatest (q)4coefficient in the expansion of

$$\left(1+\frac{x}{2}\right)^{10}$$
 is r then values greater

than r are

(c) If the coefficient of 4^{th} term in the (r) 5

ansion of
$$\left(x + \frac{\alpha}{2x}\right)^n$$
 is 20, then (s) 6

the values greater than
$$\alpha$$
 are (t)
Code :

(A) a-pgrst, b-grst, c-pgrst (B) a-pgrs, b-gr, c-st (C) a-pqr, b-pqrs, c-pqs (D) a-qr, b-pqs, c-prst

PASSAGE BASED OUESTIONS

Passage 1-(Q.45-Q.47)

exp

Consider the mutinomial expansion $(a + b + c)^{10}$, then answer the following questions.

Q.45 Total number of terms in the expansion of $(a + b + c)^{10}$ are (A) 65 (B)66 (C)67 (D)68

BINOMIAL THEOREM

OUESTION BANK

Q.46	Coefficient o	f a ⁸ bc in the expansion of $(a + b + c)^{10}$ is
	(A) 95	(B) 85
	(C)91	(D) 90
		- 4-5-2 · · · · · · · · · · · · · · · · · · ·

Q.47 Coefficient of $a^4b^5c^3$ in the expansion of $(a+b+c)^{10}$ is-(A) 1 (B)2(C)3 (D) None of these

Passage 2-(Q.48-Q.50)

Consider the binomial expansion $R = (1 + 2x)^n = I + f$ where I is the integral part of R and f is the fractional part of $R n \in N$. Also the sum of the coefficients of R is 6561.

Q.48 The value of (n + R - Rf) for $x = 1/\sqrt{2}$ equals – (A)7 (B)8 (D)10 (C)9

- **Q.49** If ith terms is the greatest term for x = 1/2, then 'i' equals (B)5 (A)4 (C)6 (D)7
- Q.50 If kth terms is having greatest coefficient then sum of all possible value(s) of k is -(B)7 (A)6 (D)13

Passage 3-(Q.51-Q.53)

If $(1+x)^n = C_0 + C_1 x + C_2 x^2 + \dots + C_n x^n$ (1) then sum of the series $C_0 + C_k + C_{2k} + \dots$ can be obtained by putting all the roots of the equation $x^k - 1 = 0$ in (1) and then adding vertically.

For example : Sum of these $C_0 + C_2 + C_4 + \dots$ can be obtained by putting roots of the equation x

 $x^2 - 1 = 0 \Rightarrow x = \pm 1$ in (1) and then adding vertically. x = 1 $C_{0} + C_{1} + C_{2} +$ $=2^{n}$

$$\begin{array}{c} x = -1 \\ x = -1 \end{array} \quad \begin{array}{c} c_0 + c_1 + c_2 + \dots + c_2 \\ c_0 - c_1 + c_2 + \dots + c_0 \end{array}$$

$$2(C_0 + C_2 + C_4 + \dots) = 2^n$$

$$C_0 + C_2 + C_4 + \dots = 2^{n-1}$$

- **Q.51** Values of x, we should substitute in (1) to get the sum of the series $C_0 + C_3 + C_6 + C_9$, are – (A) 1, –1, ω (B) ω , ω^2 , ω^3 (C) ω , ω^2 –1 (D) None of
 - $(C) \omega, \omega^2, -1$ (D) None of these
- **Q.52** If n is a multiple of 3, then $C_0 + C_3 + C_6 + \dots$ is equal to

(A)
$$\frac{2^{n}+2}{3}$$
 (B) $\frac{2^{n}-2}{3}$
(C) $\frac{2^{n}+2(-1)^{n}}{3}$ (D) $\frac{2^{n}-2(-1)^{n}}{3}$

Q.53 Sum of values of x, which we should substitute in (1) to give the sum of the series : $C_0 + C_4 + C_8 + C_{12} + \dots$, is (B) 2(1+i)(A) 2 (C) 2(1-i)(D)0

Passage 4-(Q.54-Q.56)

Consider the identity
$$(1+x)^{6m} = \sum_{r=0}^{6m} {}^{6m}C_r . x^r$$
.

By putting different values of x on both sides, we can get summation of several series involving binomial coefficients. For example, by putting x = 1/2 we get

$$\sum_{r=0}^{6m} {}^{6m}C_r \frac{1}{2^r} = \left(\frac{3}{2}\right)^{6m}.$$

Q.54 The value of
$$\sum_{r=0}^{6m} {}^{6m}C_r 2^{r/2}$$
 is equal to –

A)
$$\frac{3^{6m}}{2}$$
 (B) $(1+\sqrt{2})^{3n}$

C)
$$(3+2\sqrt{2})^{3m}$$

(

Q.55 The value of
$$\sum_{r=0}^{3m} (-1)^{r-6m} C_{2r-is}$$

(A) 2^{3m} (B) (C)

(A)
$$2^{3m}$$
 (B) 0 if m is odd
(C) -2^{3m} if m is even (D) None of these

Q.56 The value of
$$\sum_{r=1}^{3m} (-3)^{r-1} {}^{6m}C_{2r-1}$$
 is –

Passage 5-(Q.57-Q.59)

Coefficient of x^r in expansion of $(1 + x)^n$ is nC_r . To determine the numerically greatest term (absolute value) in the expansion of $(a + x)^n$, when n is a positive integer. Consider

$$\begin{aligned} \left| \frac{\mathbf{T}_{r+1}}{\mathbf{T}_{r}} \right| &= \left| \frac{{}^{\mathbf{n}}\mathbf{C}_{r} a^{\mathbf{n}-\mathbf{r}} \mathbf{x}^{\mathbf{r}}}{{}^{\mathbf{n}}\mathbf{C}_{r-1} a^{\mathbf{n}-\mathbf{r}+1} \mathbf{x}^{\mathbf{r}-1}} \right| &= \left| \frac{{}^{\mathbf{n}}\mathbf{C}_{r}}{{}^{\mathbf{n}}\mathbf{C}_{r-1}} \right| \left| \frac{\mathbf{x}}{\mathbf{a}} \right| \\ &= \left| \frac{\mathbf{n}-\mathbf{r}+1}{\mathbf{r}} \right| \cdot \left| \frac{\mathbf{x}}{\mathbf{a}} \right| = \left| \frac{\mathbf{n}+1}{\mathbf{r}} - 1 \right| \left| \frac{\mathbf{x}}{\mathbf{a}} \right| \\ &\text{Thus,} \quad |\mathbf{T}_{r+1}| > |\mathbf{T}_{r}| \quad \text{if } \left\{ \frac{\mathbf{n}+1}{\mathbf{r}} - 1 \right\} \left| \frac{\mathbf{x}}{\mathbf{a}} \right| > 1 \\ &\text{i.e.,} \quad \frac{\mathbf{n}+1}{\mathbf{r}} > 1 + \frac{\mathbf{a}}{\mathbf{x}} \Longrightarrow \frac{\mathbf{n}+1}{1+\left| \frac{\mathbf{a}}{\mathbf{l}} \right|} > \mathbf{r} \end{aligned}$$

Q.57 If the sum of the coefficient in the expansion of $(1 + 2x)^n$ is 6561, the greatest term in the expansion for x = 1/2 is – $(A) 4^{\text{th}}$ $(B) 5^{\text{th}}$ $(C) 6^{th}$

x

(D) None of these

Q.58 If the coefficient of x^7 and x^8 in $\left(2 + \frac{x}{3}\right)^n$ are equal, then

O.59 Given the integers r > 1, n > 2, and coefficient of (3r)th and $(r + 2)^{\text{th}}$ term in the binomial expansion of $(1 + x)^{2n}$ are equal, then – (B) n = 3r(A) n = 2r(C) n = 2r + 1(D) None of these

EXERCISE - 3 (NUMERICAL VALUE BASED QUESTIONS)

NOTE : The answer to each question is a NUMERICAL VALUE.

Q.1 If
$$\sum_{p=1}^{n} \sum_{m=p}^{n} {}^{n}C_{m}$$
. ${}^{m}C_{p} = 19$, then find value of n

- Q.2 Given $(1 2x + 5x^2 10x^3)(1 + x)^n = 1 + a_1x + a_2x^2 + ...$ and that $a_1^2 = 2a_2$ then the value of n is
- **Q.3** If $(1 + x 3x^2)^{2145} = a_0 + a_1x + a_2x^2 + \dots$ then
 - $a_0 a_1 + a_2 a_3 + \dots$ ends with
- Q.4 The remainder, if $1 + 2 + 2^2 + 2^3 + \dots + 2^{1999}$ is divided by 5 is
- Q.5 Sum of all the rational terms is the expansion of $(3^{1/4} + 4^{1/3})^{12}$, is

Q.6 If the coefficient of
$$x^n$$
 is the expansion of $\frac{(1+x)^2}{(1-x)^2}$ is

32 then the value of n equals

- Q.7 The number of values of 'r' satisfying the equation , ${}^{39}C_{3r-1} - {}^{39}C_{r^2} = {}^{39}C_{r^2-1} - {}^{39}C_{3r}$ is :
- Q.8 Number of rational terms in the expansion of

$$\left(\sqrt{2} + \sqrt[4]{3}\right)^{100}$$
 is :

Q.9 Sum of last two digits of 21 to the $(100)^{\text{th}}$ power, is

Q.10 The coefficient of
$$x^3$$
 in the expansion of $\left(\frac{x^2}{4} + \frac{2}{x}\right)^{12}$, is

- **Q.11** The coefficient of x^3 in the expansion of $(1 + x + x^2)^{12}$, is
- **Q.12** In the expansion $1 + (1 + x) + (1 + x)^2 + \dots + (1 + x)^{19}$, if the coefficient of x^p is the greatest, then the value of p is
- **Q.13** If in the expansion of $(1 + x)^m (1 x)^n$, coefficients of x and x^2 are 3 and -6 respectively, then m is -

Q.14 The sum
$$\sum_{i=0}^{m} {10 \choose i} {20 \choose m-i}$$
, where $\left[{p \choose q} = 0, \text{ if } p < q \right]$ is

maximum, when m is

- **Q.15** The coefficients of three consecutive terms of $(1 + x)^{n+5}$ are in the ratio 5 : 10 : 14. Then n = _____
- **Q.16** The coefficients of the $(r-1)^{\text{th}}$, r^{th} and $(r+1)^{\text{th}}$ terms in the expansion of $(x+1)^n$ are in the ratio 1 : 3 : 5. Find n +r.
- Q.17 Find a positive value of m for which the coefficient of x^2 in the expansion $(1 + x)^m$ is 6.
- **Q.18** Find n, if the ratio of the fifth term from the beginning to the fifth term from the end in the expansion of

$$\left(\frac{4\sqrt{2}}{\sqrt{2}} + \frac{1}{\frac{4\sqrt{3}}{\sqrt{3}}}\right)^n$$
 is $\sqrt{6}:1$.

BINOMIAL THEOREM

QUESTION BANK

EXERCISE - 4 [PREVIOUS YEARS AIEEE / JEE MAIN QUESTIONS]

0.1

- If the coefficient of (r + 2)th and (3r)th term in the exp. of Q.1 $(1+x)^{2n}$ are equal then – [AIEEE 2002] (A) n = 2r + 1(B) n = 2r - 1(C) n = 2r (D) None of these If $(1+x)^n = C_0 + C_1x + C_2x^2 + \dots + C_nx^n$, then Q.2
 - $\frac{C_1}{C_0} + \frac{2C_2}{C_1} + \frac{3C_3}{C_2} + \dots + \frac{nC_n}{C_{n-1}} =$ [AIEEE-2002] (A) $\frac{n}{2}$ (B) n (n+1) (C) $\frac{n(n+1)}{12}$ (D) $\frac{n(n+1)}{2}$
- The coefficient of x^{39} in the expansion of $\left(x^4 \frac{1}{x^3}\right)^{15}$ Q.3
 - [AIEEE-2002] is-(B)-105 (A) - 455
 - (C) + 455(D) + 105
- If x is nearly equal to 1 then the value of $\frac{ax^n bx^a}{x^b x^a}$ is Q.12 If the expansion in powers of x of the function **Q.4** (A) $\frac{a+b}{1-x}$ (B) $\frac{1}{1-x}$ (C) $\frac{1}{1+x}$ (D) $\frac{a+b}{1+x}$

The number of integral terms in the expansion of Q.5

$\left(\sqrt{3} + \sqrt[8]{5}\right)^{256}$ is -		[AIEEE- 2003]
(A) 35	(B) 32	
(C) 33	(D) 34	

The coefficient of the middle term in the binomial 0.6 expansion in powers of x of $(1 + \alpha x)^4$ and of $(1 - \alpha x)^6$ is the same if α equals-[AIEEE 2004] (A) - 5/3(B) 10/3 (C) - 3/10(D) 3/5

The coefficient of x^n in expansion of $(1+x)(1-x)^n$ is-Q.7 [AIEEE 2004] $(B)(-1)^n(1-n)$ (A)(n-1) $(C)(-1)^{n-1}(n-1)^2$ $(D)(-1)^{n-1}n$

Q.8 If
$$S_n = \sum_{r=0}^n \frac{1}{{}^nC_r}$$
 and $t_n = \sum_{r=0}^n \frac{r}{{}^nC_r}$, then $\frac{t_n}{s_n}$ is equal to

(A)
$$\frac{1}{2}$$
n (B) $\frac{1}{2}$ n-1 [AIEEE 2004]

(D) $\frac{2n-1}{2}$ (C) n-1

0.9 If the coefficients of rth, (r + 1)th and (r + 2)th terms in the binomial expansion of $(1 + y)^m$ are in A.P., then m and r satisfy the equation -[AIEEE-2005] (A) $\dot{m^2} - m(4r - 1) + 4r^2 - 2 = 0$ (B) $m^2 - m(4r+1) + 4r^2 + 2 = 0$ (C) $m^2 - m(4r+1) + 4r^2 - 2 = 0$ (D) $m^2 - m(4r - 1) + 4r^2 + 2 = 0$

0 If the coefficient of
$$x^7$$
 in $\left[ax^2 + \left(\frac{1}{bx}\right)\right]^{11}$ equals the
coefficient of x^{-7} in $\left[ax - \left(\frac{1}{bx^2}\right)\right]^{11}$, then a and b satisfy
the relation - [AIEEE-2005]
(A) $a - b = 1$ (B) $a + b = 1$
(C) $a/b = 1$ (D) $ab = 1$

Q.11 If x is so small that x^2 and higher power of x may be

neglected, then
$$\frac{(1+x)^{3/2} - (1+x/2)^3}{(1-x)^{1/2}}$$
 may be

approximated as -

A)
$$1 - \frac{3}{8}x^2$$
 (B) $3x + \frac{3}{8}x^2$ (C) $-\frac{3}{8}x^2$ (D) $\frac{x}{2} - \frac{3}{8}x^2$

$$\frac{1}{(1-ax)(1-bx)} \text{ is } a_0 + a_1x + a_2x^2 + a_3x^3 + \dots \text{ then } a_n \text{ is}$$
(A) $\frac{a^n - b^n}{a_1 - b_1^n}$ (B) $\frac{a^{n+1} - b^{n+1}}{a_1 - b_1^n}$

(C)
$$\frac{b^{n+1} - a^{n+1}}{b-a}$$
 (D) $\frac{b^n - a^n}{b-a}$

Q.13 For natural numbers m, n if $(1-y)^m (1+y)^n = 1 + a_1y + a_2y^2 + \dots$, and $a_1 = a_2 = 10$, [AIEEE 2006] then (m, n) is-(A) (35, 20) (B)(45,35) (C)(35, 45)(D)(20,45)

Q.14 In the binomial expansion of $(a - b)^n$, $n \ge 5$, the sum of 5^{th} and 6th terms is zero, then a/b equals- [AIEEE 2007]

(A)
$$\frac{5}{n-4}$$
 (B) $\frac{6}{n-5}$ (C) $\frac{n-5}{6}$ (D) $\frac{n-4}{5}$

Q.15 The sum of the series ${}^{20}C_0 - {}^{20}C_1 + {}^{20}C_2 - {}^{20}C_3 + \dots + {}^{20}C_{10}$ is- [AIEEE 2007]

(A)
$$-{}^{20}C_{10}$$
 (B) $\frac{1}{2} {}^{20}C_{10}$
(C) 0 (D) ${}^{20}C_{10}$

Q.16 Statement- 1:
$$\sum_{r=0}^{n} (r+1) {}^{n}C_{r} = (n+2) 2^{n-1}$$

Statement -2: $\sum_{r=0}^{n} (r+1) {}^{n}C_{r} x^{r} = (1+x)^{n} + nx (1+x)^{n-1}$

[AIEEE-2008]

- (A) Statement-1 is true, Statement -2 is true; Statement-2 is a correct explanation for Statement-1
- (B) Statement-1 is true, Statement -2 is true; Statement-2 is not a correct explanation for Statement-1
- (C) Statement-1 is true, Statement -2 is false
- (D) Statement-1 is false, Statement-2 is true

QUESTION BANK

Q.17	The remainder left out when 9 is -	$18^{2n} - (62)^{2n+1}$ is divided by [AIEEE-2009]	Q.24	If the number of terms in the	e expansion of
	(A)0	(B)?		$\begin{pmatrix} 2 & 4 \end{pmatrix}^n$ r (0 is 28 th	on the sum of the coefficients
	$(\Gamma)^{7}$	(D)8		$\begin{pmatrix} 1 - \frac{1}{x} + \frac{1}{x^2} \end{pmatrix}$, $x \neq 0$ is 20, un	en me sum of me coefficients
	(\mathbf{C})	(D)0		of the terms in this expansio	on, is : [JEE MAIN 2016]
0 18	Let S _i = $\sum_{i=1}^{10} i(i-1)^{10}C_{i-1}$	$\sum_{i=1}^{10} \frac{10}{10} = \sum_{i=1}^{10} \frac{10}{10} \frac{10}{10} = \frac{10}{10} 10$		(A)2187	(B) 243
Q.10	$\sum_{j=1}^{n} f(j-1) = C_1, S_2 =$	$\sum_{j=1}^{j} C_j, S_3 = \sum_{j=1}^{j} C_j$		(C) 729	(D) 64
	Statement-1: $S_3 = 55 \times 2^9$	[AIEEE 2010]	Q.25	The value of $({}^{21}C_1 - {}^{10}C_1)$	$+(^{21}C_2 - {}^{10}C_2)$
	Statement-2: $S_1 = 90 \times 2^8$ a	and $S_2 = 10 \times 2^8$.		$+({}^{21}C_{3}-{}^{10}C_{3})+({}^{21}C_{4}-{}^{10}C_{4})$	$(C_4) + \dots + ({}^{21}C_{10} - {}^{10}C_{10}),$
	(A) Statement-1 is true, Stat	ement-2 is true; Statement-2 n for Statement 1		is	[JEE MAIN 2017]
	(B) Statement-1 is true Stat	ement_7 is false		(A) $2^{20} - 2^9$	(B) $2^{20} - 2^{10}$
	(C) Statement 1 is false. Stat	tement 2 is true		(C) $2^{21} - 2^{11}$	(D) $2^{21} - 2^{10}$
	(C) Statement 1 is true. Stat	amont 2 is true: Statement 2	0.26	The sum of the co-efficient $f(x) = \frac{1}{2}$	$(\underline{B}) \underline{D} = \underline{D}$
	is the correct explanation fo	r Statement-1	Q.20	the expansion of $(x + \sqrt{x^3} - \sqrt{x^3})$	$\overline{(1)^{5}} + (x - \sqrt{x^{3} - 1})^{5}, (x > 1)$
Q.19	Coefficient of x^7 in the expansion	nsion of $(1 - x - x^2 + x^3)^6$ is		(A) 1	(B) 2 LIFE MAIN 2018
	(A) 144	(B)-132 [AIEEE 2011]		(C) -1	(D)0
	(C)-144	(D) 132			(-) ·
Q.20	If n is a positive integer, the	en $(\sqrt{3}+1)^{2n} - (\sqrt{3}-1)^{2n}$ is	Q.27	If the fractional part of the m	umber $\frac{2^{405}}{15}$ is $\frac{k}{15}$, then k =
	(A) an irrational number	[AIEEE 2012]			[JEE MAIN 2019 (JAN)]
	(B) an odd positive integer			(A) 14	(B) 6
	(C) an even positive integer			(C)4	(D)8
Q.21	(D) a rational number other The term independent of x i	than positive integers n expansion of	Q.28	The coefficient of t ⁴ in the e	expansion of $\left(\frac{1-t^6}{1-t}\right)^3$ is
-		10			[JEE MAIN 2019 (JAN)]
	$\left(\frac{x+1}{2}-\frac{x-1}{2}\right)$	is – [JEE MAIN 2013]		(A) 12	(B) 15
	$(x^{2/3} - x^{1/3} + 1 - x - x^{1/2})$			(C) 10	(D) 14
	(A)4	(B) 120	Q.29	The sum of the series $20 = 20 = 20 = 20$	20
	(C)210	(D) 310		$2.{}^{20}C_0 + 5.{}^{20}C_1 + 8.{}^{20}C_2 + 1$	$11.^{20}C_3 + + 62.^{20}C_{20}$
Q.22	If the coefficients of x^3 and	x^4 in the expansion of		is equal to : $(A) 2^{24}$	[JEE MAIN 2019 (APKIL)]
	$(1+ax+bx^2)(1-2x)^{18}$ in p	owers of x are both zero, then		(A) 2^{26}	(B) 2^{23} (D) 2^{23}
	(a, b) is equal to	[JEE MAIN 2014]	0.30	$(C)^{2}$ The sum of the co-efficients	$(D) 2^{-1}$
	(A) (16, 251/3)	(B)(14,251/3)	Q.30	in the expansion of $\sqrt{3}$	$\sqrt{\frac{3}{2}}$
	(C) (14, 272/3)	(D)(16,272/3)		In the expansion of $(x + \sqrt{x})$	$(1)^{6} + (x - \sqrt{x^{5}} - 1)^{6}, (x > 1)$
Q.23	The sum of coefficients of	integral powers of x in the		(Λ) 32	
	binomial expansion of $(1-2)$	$(\sqrt{x})^{50}$ is [JEE MAIN 2015]		(C) 29	(D) 24
	1	1	0.31	If the fourth term in the bino	mial expansion of
	$(A)\frac{1}{2}(3^{50})$	(B) $\frac{1}{2}(3^{50}-1)$	2.01		and expansion of
	2	2		$\left(\sqrt{\frac{1}{1+\log_{10}x}} + x^{1/12}\right)^{6}$ is equi	al to 200, and $x>1$ then the
	$(C) \frac{1}{2}(2^{50}+1)$	(D) $\frac{1}{2}(3^{50}+1)$		$(\bigvee x^{1+\log_10x})$	
	2	2		value of x is :	[JEE MAIN 2019 (APRIL)]
				(A) 10 ³	(B) 100
				(C) 10 ⁴	(D) 10

- **0.32** If some three consecutive in the binomial expansion of Q.38 If sum of all the coefficient of even powers in $(x + 1)^n$ is powers of x are in the ratio 2 : 15 : 70, then the $(1-x+x^2-x^3....x^{2n})(1+x+x^2+x^3....+x^{2n})$ is 61 average of these three coefficient is : then n is equal to [JEE MAIN 2020 (JAN)] [JEE MAIN 2019 (APRIL)] **0.39** Let coefficient of x^4 and x^2 in the expansion of (A)964 (B) 625 $(x + \sqrt{x^2 - 1})^6 + (x - \sqrt{x^2 - 1})^6$ is α and β then (C)227 (D) 232 **0.33** If the coefficients of x^2 and x^3 are both zero, in the [JEE MAIN 2020 (JAN)] expansion of the expression $(1 + ax + bx^2)(1 - 3x)^{15}$ in (A) $\alpha + \beta = 48$ (B) $\alpha + \beta = 60$ powers of x, then the ordered pair (a, b) is equal to : (D) $\alpha - \beta = -60$ (C) $\alpha - \beta = -132$ [JEE MAIN 2019 (APRIL)] **Q.40** The coefficient of x^4 is the expansion of $(1 + x + x^2)^{10}$ is (A) (28, 315) (B)(-54,315)[JEE MAIN 2020 (JAN)] (C)(-21,714)(D)(24,861) **Q.41** In the expansion of $\left(\frac{x}{\cos\theta} + \frac{1}{x\sin\theta}\right)^{16}$, if ℓ_1 is the least Q.34 The smallest natural number n, such that the coefficient of x in the expansion of $\left(x^2 + \frac{1}{x^3}\right)^n$ is ${}^{n}C_{23}$, is : value of the term independent of x when $\frac{\pi}{8} \le \theta \le \frac{\pi}{4}$ and ℓ_2 is the least value of the term independent of x when [JEE MAIN 2019 (APRIL)] (A) 35 (B) 38 $\frac{\pi}{16} \le \theta \le \frac{\pi}{8}$, then the ratio $\ell_2 : \ell_1$ is equal to : (C)23 (D) 58 **0.35** The coefficient of x^{18} in the product [JEE MAIN 2020 (JAN)] $(1+x)(1-x)^{10}(1+x+x^2)^9$ is: [JEE MAIN 2019 (APRIL)] (A) 1:8 (B)1:16 (C)8:1(D) 16:1 (B)84 (A) - 84**Q.42** If $C_r = {}^{25}C_r$ and $C_0 + 5.C_1 + 9.C_2 + + (101).C_{25} = {}^{25}.k_r$ (C) 126 (D)-126 **Q.36** If ${}^{20}C_1 + (2^2) {}^{20}C_2 + (3^2) {}^{20}C_3 + \dots + (20^2) {}^{20}C_{20} = A(2^{\beta})$, then the ordered pair (A, β) is equal to: then k is equal to _____. [JEE MAIN 2020 (JAN)] **Q.43** Coefficient of x^7 in $(1+x)^{10} + x(1+x)^9 + x^2(1+x)^8 + \dots + x^{10}$ is-[JEE MAIN 2019 (APRIL)] (B) (380, 19) (A) (420, 18) [JEE MAIN 2020 (JAN)] (C)(380, 18)(D)(420,19) (A) 330 (B)210 Q.37 The term independent of x in the expansion of (C)420 (D) 260
 - $\left(\frac{1}{60}-\frac{x^8}{81}\right)\cdot\left(2x^2-\frac{3}{x^2}\right)^6$ is equal to :

[JEE MAIN 2019 (APRIL)]

(A) 36	(B)-108
(C)-72	(D)-36

ANSWER KEY

											EX	(ERC	SISE	- 1											
Q	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
Α	С	С	С	Α	D	С	В	Α	В	В	А	С	С	С	А	D	Α	D	С	С	А	В	С	В	А
Q	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50
Α	В	В	D	С	Α	В	Α	В	Α	Α	Α	D	D	Α	В	В	С	D	Α	D	D	Α	В	А	D
Q	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75
Α	С	D	Α	С	С	D	С	Α	В	Α	Α	D	Α	С	С	В	С	D	А	Α	Α	D	В	С	Α
Q	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	100
Α	Α	С	А	С	В	С	В	В	С	С	В	В	D	D	С	Α	С	С	С	В	Α	А	Α	D	С

											EX	ERC	ISE	- 2											
Q	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
Α	А	А	С	А	С	D	А	В	D	А	D	В	А	В	D	А	А	А	А	А	А	D	В	В	В
Q	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50
Α	С	В	D	D	В	D	В	С	А	В	А	В	А	А	С	С	А	В	А	В	D	D	С	В	D
Q	51	52	53	54	55	56	57	58	59																
Α	В	С	D	С	В	А	В	В	А																

								EXE	RCIS	SE - 3	3							
Q	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
Α	3	6	3	0	283	8	2	26	1	99	352	9	12	15	6	10	4	10

												E	XER	CIS	E - 4	4												
Q	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28
Α	С	D	А	В	С	С	В	Α	С	D	С	С	С	D	В	Α	В	В	С	Α	С	D	D	С	В	В	D	В
Q	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43													
Α	В	D	D	D	А	В	В	Α	D	30	С	615	D	51	Α													

TRY SOLUTIONS

(7)

(9)

<u>CHAPTER- 7 :</u> <u>BINOMIAL THEOREM</u> <u>SOLUTIONS TO TRY IT YOURSELF</u> <u>TRY IT YOURSELF-1</u>

(1)
$$T_{r+1} = {}^{n}C_{r}x^{n-r}y^{r}$$
 for $(x+y)^{n}$

$$T_6 = {}^{10}C_5(2x^2)^5 \left(-\frac{1}{3x^2}\right)^5 = -\frac{10!}{5!5!}32 \times \frac{1}{243} = -\frac{896}{27}$$

(2) The expression being in G.P., we have $E = 1 + (1 + x) + (1 + x)^{2} + \dots + (1 + x)^{n}$ $= \frac{(1 + x)^{n+1} - 1}{(1 + x) - 1} = x^{-1}[(1 + x)^{n+1} - 1]$

Therefore, the coefficient of x^k in E is equal to the coefficient of x^{k+1} in $[(1+x)^{n+1}-1]$, which is given by ${}^{n+1}C_{k+1}$.

(3) We know that

 $\begin{aligned} 2^{n-1} &= {}^{n}C_{0} + {}^{n}C_{2} + {}^{n}C_{4} + \ldots = {}^{n}C_{1} + {}^{n}C_{3} + {}^{n}C_{5} + \ldots \\ \text{So, } {}^{10}C_{1} + {}^{10}C_{3} + {}^{10}C_{5} + \ldots + {}^{10}C_{9} = 2^{10-1} = 2^{9}. \end{aligned}$

(4) Since, $(n+2)^{th}$ term is the middle term in the expansion of $(1+x)^{2n+2}$, therefore $\alpha = {}^{2n+2}C_{n+1}$.

Since $(n + 1)^{\text{th}}$ and $(n + 2)^{\text{th}}$ terms are middle terms in the expansion of $(1 + x)^{2n+1}$, therefore,

$$\beta = {}^{2n+1}C_n \text{ and } \gamma = {}^{2n+1}C_{n+1}$$

But ${}^{2n+1}C_n + {}^{2n+1}C_{n+1} = {}^{2n+2}C_{n+1} \Longrightarrow \beta + \gamma = \alpha$

(5) The greatest coefficient is equal to the greatest term when x=1.

For x = 1,
$$\frac{T_{r+1}}{T_r} = \frac{15 - r + 12}{r}$$

Let $\frac{T_{r+1}}{T_r} \ge 1 \Rightarrow \frac{15 - r + 12}{r} \ge 1 \Rightarrow 32 - 2r \ge 3r$
 $r \le 32/5 \Rightarrow r = 6$

Hence, 7th term has the greatest coefficient and its value is $T_{6+1} = {}^{15}C_6 (2/3)^6$.

(6) The general term of the series is $T_r = (-1)^r (3+5r)^n C_r$ where, r = 0, 1, 2, ..., n. Therefore, sum of the series is

given by
$$S = \sum_{r=0}^{n} (-1)^{r} (3+5r)^{n} C_{r}$$

= $3 \left(\sum_{r=0}^{n} (-1)^{r} C_{r} \right) + 5 \left(\sum_{r=1}^{n} (-1)^{r} n^{n-1} C_{r-1} \right)$
= $3 \left(\sum_{r=0}^{n} (-1)^{r} C_{r} \right) - 5n \left(\sum_{r=1}^{n} (-1)^{r-1} C_{r-1} \right)$

$$= 3 (1-1)^{n} - 5n (1-1)^{n-1} = 0$$
(D). $(1-3x+3x^{2}-x^{3})^{20} = [(1-x)^{3}]^{20} = (1-x)^{60}$
Therefore, number of dissimilar terms in the expansion of $(1-3x+3x^{2}-x^{3})^{20}$ is 61.

(8) 7th term of
$$\left(\frac{4x}{5} - \frac{5}{2x}\right)^9$$

$$T_{6+1} = {}^{9}C_{6} \left(\frac{4x}{5}\right)^{9-6} \left(-\frac{5}{2x}\right)^{6}$$

9! $(4x)^{3} (5)^{6}$ 105

$$=\frac{9!}{3!6!}\left(\frac{4x}{5}\right)^{3}\left(\frac{5}{2x}\right)^{6}=\frac{10500}{x^{3}}$$

Here, n is even, therefore middle term is $\left(\frac{14+2}{2}\right)^{\text{th}}$ term.

It means T₈ is middle term

$$\Gamma_8 = {}^{14}C_7 \left(-\frac{x^2}{2}\right)^7 = -\frac{429}{16}x^{14}.$$

(10) Let $(r+1)^{th}$ term contains x^m

$$T_{r+1} = {}^{15}C_r (x^4)^{15-r} \left(-\frac{1}{x^3}\right)^r = {}^{15}C_r x^{60-7r} (-1)^r$$

- (i) For x^{32} , $60-70r=32 \Rightarrow 7r=28 \Rightarrow r=4$, so 5th term $T_5 = {}^{15}C_4 x^{32} (-1)^4$ Hence, coefficient of x^{32} is 1365.
- (ii) For x^{-17} , $60 7r = -17 \Rightarrow r = 11$, so 12^{th} term. $T_{12} = {}^{15}C_{11} x^{-17} (-1)^{11}$ Hence, coefficient of x^{-17} is -1365.

TRY IT YOURSELF-2

1) We have,
$$17^{256} = (17^2)^{128} = (289)^{128} = (290 - 1)^{128}$$

 $\therefore 17^{256} = {}^{128}C_0 (290)^{128} - {}^{128}C_1 (290)^{127} + {}^{128}C_2 (290)^{126} - \dots - {}^{128}C_{125} (290)^3 + {}^{128}C_{126} (290)^2 - {}^{128}C_{127} (290) + 1$
 $= [{}^{128}C_0 (290)^{128} - {}^{128}C_1 (290)^{127} + {}^{128}C_2 (290)^{126} - \dots - {}^{128}C_{125} (290)^3] + {}^{128}C_{126} (290)^2 - {}^{128}C_{127} (290) + 1$
 $= 1000m + {}^{128}C_2 (290)^2 - {}^{128}C_1 (290)^2 - {}^{128}C_{127} (290) + 1$
 $= 1000m + {}^{(128)} (127) (290)^2 - {}^{128} \times 290 + 1$
 $= 1000m + (128) (127) (290) (145) - {}^{128} \times 290 + 1$

$$= 1000m + (128)(290)(127 \times 145 - 1) + 1$$

(

- =1000m+(128)(290)(18414)+1
- = 1000m + 683527680 + 1 = 1000m + 683527000 + 680 + 1
- =1000(m+683527)+681

Hence, the last three digits of 17^{256} must be 681. As a result, the last two digits of 17^{256} are 81 and the last digit of 17^{256} is 1.

.5

(2)

Here $5^{5^{5^{\circ}}}$ (23 times 5) is an odd natural number.

Therefore, $x = 5^{2m+1} = 5 \times (25^m)$, where m is a natural number. Thus, $x = 5 \times (24 + 1)^m = 5 + a$ multiple of 24. Hence, the remainder is 5.

(3) The given expression can be written as $5-1/2 \{1+(4/5x)-1/2\}$ and is valid only when

$$\left|\frac{4}{5}x\right| < 1 \Longrightarrow |x| < \frac{5}{4}$$

(4) Comparing the given expression to

$$1 + nx + \frac{n(n-1)}{2!}x^2 + \dots = (1+x)^n$$

We get,
$$nx = -\frac{1}{8}$$
 and $\frac{n(n-1)}{2!}x^2 = \frac{3}{128}$

$$\implies x = \frac{1}{4}, n = -\frac{1}{2}$$

Hence,
$$1 - \frac{1}{8} + \frac{1}{8} \frac{3}{16} - \dots = \left(1 + \frac{1}{4}\right)^{-1/2} = \frac{2}{\sqrt{5}}$$

(5) We have, $(1.1)^{10000} = [1 + (0.1)]^{10000} = 1$ + 10000 C₁ (0.1) + ¹⁰⁰⁰⁰C₂ (0.1)² +

 $= 1 + 10000 \times (0.1) + \text{other terms}$ = 1001 + other positive terms of the expansion.

Hence, $(1.1)^{10000} > 1000$

(6) We have,
$$(0.99)^5 = (1-0.01)^5$$

 $= {}^5C_0 - {}^5C_1 (0.01) - {}^5C_2 (0.01)^2 \dots$
 $= 1 - (5 \times 0.01) + (10 \times 0.0001) \dots$
 $= 1 - 0.05 + 0.001 \dots$
 $= 0.951$
(7) $5^{99} = 5 \cdot 5^{98} = 5 \cdot (25)^{49} = 5 (26 - 1)^{49}$
 $= 5 [{}^{49}C_0 (26)^{49} - {}^{49}C_1 (26)^{48} + \dots + {}^{49}C_{48} (26)^1 - {}^{49}C_{49} (26)^0]$
 $= 5 [{}^{49}C_0 (26)^{49} - {}^{49}C_1 (26)^{48} + \dots + {}^{49}C_{48} (26)^1 - 1]$
 $= 5 [{}^{49}C_0 (26)^{49} - {}^{49}C_1 (26)^{48} + \dots + {}^{49}C_{48} (26)^1 - 1]$
 $= 5 [{}^{49}C_0 (26)^{49} - {}^{49}C_1 (26)^{48} + \dots + {}^{49}C_{48} (26)^1 - 1]$
 $= 13 (k) + 52 + 8 (where k is a positive integer)$
 $= 13 (k + 4) + 8.$
Hence, remainder is 8

Hence, remainder is 8.
$$(17)^{10} - (280)^{5} - (200)^{-1}^{5}$$

(8)
$$(17)^{10} = (289)^5 = (290 - 1)^5$$

= ${}^5C_0 (290)^5 - {}^5C_1 (290)^4 + \dots + {}^5C_4 (290)^1 - {}^5C_5 (290)^0$
= ${}^5C_0 (290)^5 - {}^5C_1 (290)^4 + \dots + {}^5C_3 (290)^2 + 5 \times 290 - 1$
= A multiple of 1000 + 1449
Hence, last two digits are 49

Hence, last two digits are 49.

(9) (C). Power of Co

x^2	x ³	x^4	${}^{4}C_{0} \times {}^{7}C_{1} \times {}^{12}C_{2}$ ${}^{4}C_{2} \times {}^{7}C_{1} \times {}^{12}C_{1}$
2	1	1	${}^{4}C_{4} \times {}^{7}C_{1} \times {}^{12}C_{0}$
4 1	1 3	0 0	$\frac{{}^{4}C_{1} \times {}^{7}C_{3} \times {}^{12}C_{0}}{1113}$

Q.B.- SOLUTIONS

CHAPTER-7: BINOMIAL THEOREM

EXERCISE-1

(1) (C). Since (n = 8) is even then there is only one middle

term i.e.
$$\frac{T_{8+2}}{2} = T_5$$

 $\therefore T_5 = {}^8C_4(x)^4(-2/x)^4$
 $= {}^8C_4 \cdot (-2)^4 = 16 \cdot {}^8C_4 = 1120$

(2) (C). Since we require term independent from x $\therefore n\alpha - r(\alpha + \beta) = 0$

$$\Rightarrow 10 \times \frac{1}{2} - r\left(\frac{1}{2} + 2\right) = 0$$

$$\Rightarrow r = 2 \text{ i.e. } 3^{rd} \text{ term.}$$

$$\therefore T_3 = {}^{10}C_2 (\sqrt{x})^8 (-3/x^2)^2$$

$$= {}^{10}C_2 .(-3)^2 .x^\circ = \frac{10.9}{21} .9 = 405$$

(3) (C). Here n = 7 is odd so there are two middle terms which

are
$$\left(\frac{7+1}{2}\right) = 4^{\text{th}}$$
 term and $\frac{7+3}{2} = 5^{\text{th}}$ term.

Hence middle terms
$$T_4 = {}^7C_3x^4.6^3 = 7560 x^4$$

 $T_5 = {}^7C_4x^3.6^4 = 45360 x^3$

(4) (A). $(1+3x+2x^2)^6 = [1+x(3+2x)]^6$ = $1+{}^6C_1 x (3+2x) + {}^6C_2 x^2 (3+2x)^2 + {}^6C_3 x^3 (3+2x)^3 + {}^6C_4 x^4 (3+2x)^4 + {}^6C_5 x^5 (3+2x)^5 + {}^6C_6 x^6 (3+2x)^6$ We get x^{11} only from ${}^6C_6 x^6 (3+2x)^6$. Hence, coefficient of x^{11} is ${}^6C_5 \times 3 \times 2^5 = 576$ (5) (D). Required term = $T_{12} = x = T_2 = {}^{10}C_2(2x)^3(x^2)^7$

(5) (D). Required term
$$= T_{10-4+2} = T_8 = {}^{10}C_7(2x) {}^{3}(-1/x^2)^7$$

= -960 x⁻¹¹

(6) (C). Since n = 8 is even, therefore the term with greatest

coefficient =
$$\left(\frac{8+2}{2}\right)^{\text{th}}$$
 term = 5th term.

(7) (B). Here
$$\frac{(n+1)a}{x+a} = \frac{(10+1).7}{6+7} = \frac{77}{13} = 5\frac{12}{13}$$

∴ Greatest term = $T_{5+1} = T_6$

(8) (A).
$$\left(ax - \frac{1}{bx^2}\right)^5$$

$$= {}^{5}C_{0}(ax)^{5} + {}^{5}C_{1}(ax)^{4}\left(-\frac{1}{bx^{2}}\right) + {}^{5}C_{2}(ax)^{3}\left(-\frac{1}{bx^{2}}\right)^{2}$$
$$+ {}^{5}C_{3}(ax)^{2}\left(-\frac{1}{bx^{2}}\right)^{3} + \cdots$$
$$= a^{5}x^{5} - 5 \frac{a^{4}}{b}x^{2} + 10 \frac{a^{3}}{b^{2}x} - 10 \frac{a^{2}}{b^{3}x^{4}}$$

(9) **(B).**
$$T_6 = {}^8C_5 (3x^2)^3 \left(-\frac{1}{2x}\right)^5$$

$$= 56 \times (27x^{6}) \times \left(-\frac{1}{32x^{5}}\right) = -\frac{189}{4}x$$
(10) (B). = ${}^{4}C_{0}(3x)^{4} + {}^{4}C_{1}(3x)^{3}(1/x) + {}^{4}C_{2}(3x)^{2}(1/x)^{2} + {}^{4}C_{3}(3x)(1/x)^{3}$

$$= 81x^{4} + 108x^{2} + 54 + 12x^{-2}$$
(11) (A). Comparing $(2x^{2} + 1/x)^{12}$ with $(X + a)^{n}$.
 $n = 12, X = 2x^{2}, a = 1/x$.
 $\therefore 10^{\text{th}}$ term = T₁₀ = ${}^{12}C_{9}(2x^{2})^{12-9}(1/x)^{9}$
 $= {}^{12}C_{9}.8.1/x^{3}$

or $T_{10}=1760/x^3$ (12) (C). If rth term is independent of x, then by the formula $15 \times 3 - (r-1)(3+2) = 0$ $\Rightarrow r-1=9 \Rightarrow r=10$

(13) (C). We have,
$$\left(1 + \frac{x}{1!} + \frac{x^2}{2!} + \dots + \frac{x^n}{n!}\right)^2$$

$$\left(1 + \frac{x}{1!} + \frac{x^2}{2!} + \dots + \frac{x^n}{n!}\right) \left(1 + \frac{x}{1!} + \frac{x^2}{2!} + \dots + \frac{x^{n-1}}{(n-1)!} + \frac{x^n}{n!}\right)$$

Now, x^n term is generated if terms of the two brackets are multiplied as shown in loops above. Hence, the coefficient of x^n is

$$1 \times \frac{1}{n!} + \frac{1}{1!} \times \frac{1}{(n-1)!} + \frac{1}{2!} \times \frac{1}{(n-2)!} + \dots + \frac{1}{n!}$$

$$= \frac{1}{n!} \left(\frac{n!}{n!} \times \frac{n!}{(n-1)!1!} + \frac{n!}{(n-2)!2!} + \dots + \frac{n!}{n!} \right)$$

$$= \frac{1}{n!} ({}^{n}C_{0} + {}^{n}C_{1} + {}^{n}C_{2} + \dots + {}^{n}C_{n}) = \frac{2^{n}}{n!}$$
(14) (C). $(4-3x)^{7} = 4^{7} \left(1 - \frac{3x}{4} \right)^{7}$

$$\therefore \frac{T_{r+1}}{T_{r}} = \left| \frac{7 - r + 1}{r} \cdot \frac{-3x}{4} \right| = \frac{8 - r}{2r} \qquad \left(\because x = \frac{2}{3} \right)$$
Now $T_{r+1} \ge T_{r+1}$ if $8 - r \ge 2r$

$$\Rightarrow 3r \le 8 \Rightarrow r \le 2\frac{2}{3}$$

$$\therefore T_{1} \le T_{2} \le T_{3} \ge T_{4} \ge T_{5} \dots \dots$$

$$\therefore$$
 Numerical value of T_{3} is greatest.

(15) (A).
$$(1+x)^{21} + (1+x)^{22} + \dots (1+x)^{30}$$

$$= (1+x)^{21} \left[\frac{(1+x)^{10} - 1}{(1+x) - 1} \right] = \frac{1}{x} \left[(1+x)^{31} - (1+x)^{21} \right]$$

$$\Rightarrow \text{Coefficient of } x^5 \text{ in the given expression}$$

$$= \text{Coefficient of } x^5 \text{ in } \left\{ \frac{1}{x} \left[(1+x)^{31} - (1+x)^{21} \right] \right\}$$

$$= \text{Coefficient of } x^6 \text{ in } (1+x)^{31} - (1+x)^{21} \right] = ^{31}\text{C}_6 - ^{21}\text{C}_6$$
(16) (D). Exp. = $(1+2x+3x^2)(1-x)^{-2}$

$$= (1+2x+3x^2)(1+2x+3x^2+4x^3+5x^4+\dots)$$

$$\therefore \text{ Coefficient of } x^4 = 5+8+9 = 22$$
(17) (A). The fourth term in expansion of $(px + 1/x)^n$
 $T_4 = ^n\text{C}_3 \cdot (px)^{n-3} \cdot (1/x)^3 = 5/2.$

$$\Rightarrow (^n\text{C}_3.p^{n-3}) \cdot x^{n-6} = 5/2 \cdot x^0$$
Comparing the coefficient of x and constant term
 $n-6 = 0 \Rightarrow n = 6 \text{ and } ^n\text{C}_3 (p)^{n-3} = 5/2$
putting $n = 6$ in it
 $6\text{C}_3 p^3 = 5/2 \Rightarrow p^3 = 1/8$
 $\Rightarrow p^3 = (1/2)^3 \Rightarrow p = 1/2$
(18) (D). Exp. $= (1+x)^n (1+x^2)^n$
 $= (1+^n\text{C}_1x+^n\text{C}_2x^{2+n}\text{C}_3x^{3+n}\text{C}_4x^4 + \dots + x^n)$
 $(1+^n\text{C}_1x^2 + ^n\text{C}_2x^4 + \dots + x^{2n})$
 $\therefore \text{ Coefficient of } x^4 = n^2\text{C}_4 + ^n\text{C}_2.^n\text{C}_1 + ^n\text{C}_2$
(19) (C). Putting $x = 1$ and $x = -1$ in the given expansion, we get
 $a_0 + a_1 + a_2 + a_3 + a_4 + \dots = 0$
 $a_0 - a_1 + a_2 - a_3 + a_4 - \dots = 2^{2n}$
Adding $2(a_0 + a_2 + a_4 + \dots) = 2^{2n}$

$$\Rightarrow a_0 + a_2 + a_4 + \dots = 2^{2n-1}$$

(20) (C). The general term in the expansion of the given

expression is
$$T_{r+1} = {}^{2n}C_r x^{2n-r} \left(\frac{1}{x^2}\right)^r = {}^{2n}C_r x^{2n-3r}$$

For the coefficient of x^m, we must have

$$2n-3r = m \Longrightarrow r = \frac{2n-m}{3}$$

So, coefficient of

$$x^{m} = {}^{2n}C_{\underline{2n-m}} = \frac{(2n)!}{\left(\frac{2n-m}{3}\right)!\left(\frac{4n+m}{3}\right)!}$$

- (21) (A). Here $T_3 = {}^5C_2 x^3 (x \log_{10} x)^2 = 10^6$ or $x^3 x^2 \log_{10} x = 10^5$ Taking log of both sides, we get $3 \log_{10} x + 2 (\log_{10} x)^2 = 5$ or $2(\log_{10} x)^2 + 5 \log_{10} x - 2 \log_{10} x - 5 = 0$ or $(\log_{10} x - 1) (2 \log_{10} x + 5) = 0$ or x = 10 or $2 \log_{10} x + 5 = 0$
- (22) (B). The coefficient of $(r+1)^{th}$ term in the expansion of $(1+x)^{n+2}$ will be maximum.

If
$$r \le \frac{(2n+2)+1}{2}$$

 $r \le (n+1)+1/2$
 $r = n+1 = Maximum \text{ coefficient} = \frac{2n+2}{C_{n+1}}$
 $= \frac{(2n+2)!}{(n+1)!(n+1)!} = \frac{(2n+2)!}{[(n+1)!]^2}$

(23) (C). Accordingly,
$$\frac{T_2}{T_3} = \frac{{}^n C_1 a^{n-1} b}{{}^n C_2 a^{n-2} b^2}$$
(i)

$$\frac{T_3}{T_4} = \frac{{}^{n+3}C_2 a^{n+1} b^2}{{}^{n+3}C_3 a^n b^3} \qquad \dots \dots (ii)$$

(i) = (ii)
$$\Rightarrow \frac{2n}{n(n-1)} = \frac{6(n+3)(n+2)}{2(n+3)(n+2)(n+1)}$$

 $\Rightarrow 2(n+1) = 3(n-1) \Rightarrow n = 5.$

(24) **(B).** Given
$$\sin n\theta = \sum_{r=0}^{n} b_r \sin^r \theta$$

$$\Rightarrow \sin n \theta = b_0 \sin^0 \theta + b_1 \sin^1 \theta$$

$$+b_2\sin^2\theta + b_3\sin^3\theta + \dots + b_n\sin^n\theta$$

$$\Rightarrow \sin n\theta = b_0 + b_1 \sin \theta + b_2 \sin^2 \theta + \dots + b_n \sin^n \theta$$

(n is an odd integer)
$$\because \sin n\theta = {}^nC_1 \sin \theta \cos^{n-1} \theta - {}^nC_3 \sin^3 \theta \cos^{n-3} \theta + \dots$$
$$= {}^nC_1 \sin \theta . (1 - \sin^2 \theta)^{(n-1)/2} - {}^nC_3 \sin^3 \theta (1 - \sin^2 \theta)^{(n-3)/2} + \dots$$
$$\therefore b_0 = 0, b_1 = \text{coefficient of } \sin \theta = {}^nC_1 = n$$

(\because n - 1 = n - 3 are all even integers)

(25) (A).
$$(1 - x + x^2)^n = a_0 + a_1 x + a_2 x^2 + \dots + a_{2n} x^{2n}$$

Putting $x = 1$, we get
 $(1 - 1 + 1)^n = a_0 + a_1 + a_2 + \dots + a_{2n}$
 $\Rightarrow 1 = a_0 + a_1 + a_2 + \dots + a_{2n} \qquad \dots (i)$
Putting $x = -1$, we get

$$\Rightarrow 3^n = a_0 - a_1 + a_2 - \dots + a_{2n}$$
(ii)

Adding (i) and (ii), we get

$$\frac{3^n + 1}{2} = a_0 + a_2 + a_4 + \dots + a_{2n}.$$

- (26) (B). Given $2^n = 1024$, $\therefore n = 10$
 - \therefore The greatest coefficient is ${}^{10}C_5 = 252$.
- (27) (B). If n is odd, then numerically the greatest coefficient in the expansion of $(1-x)^n$ is ${}^n C_{(n-1)/2}$ or ${}^n C_{(n+1)/2}$, Therefore in case of $(1-x)^{21}$, the numerically greatest coefficient is ${}^{21}C_{10}$ or ${}^{21}C_{11}$.

Therefore the numerically greatest term

$$={}^{21} C_{11} x^{11} \text{ or } {}^{21} C_{10} x^{10}$$

$$\therefore {}^{21} C_{11} x^{11} > {}^{21} C_{12} x^{12} \text{ and } {}^{21} C_{10} x^{10} > {}^{21} C_{9} x^{9}$$

$$\Rightarrow \frac{21!}{10!11!} > \frac{21!}{9!12!} x \text{ and } \frac{21!}{11!10!} x > \frac{21!}{9!12!}$$

$$\Rightarrow \frac{6}{5} > x \text{ and } x < \frac{5}{6} \Rightarrow x \in \left(\frac{5}{6}, \frac{6}{5}\right)$$

(28) (D). Since coefficients ${}^{m}C_{1}$, ${}^{m}C_{2}$ and ${}^{m}C_{3}$ of T_{2} , T_{3} , T_{4} i.e. are the first, third and fifth terms of an A. P., which will also be in A. P. of common difference 2d.

Hence $2^m C_2 = {}^m C_1 + {}^m C_3 \Longrightarrow (m-2)(m-7) = 0$.

Since 6^{th} term is 21, m = 2 is ruled out and we have m = 7

and
$$T_6 = 21 = {}^7 C_5 \left[\sqrt{2^{\log(10-3^x)}} \right]^{7-5} \times \left[\sqrt[5]{2^{(x-2)} \log 3} \right]^5$$

 $\Rightarrow 21 = 21 \cdot 2^{\log(10-3^x) + \log 3^{x-2}}$
 $\Rightarrow 2^{\log[(10-3^x) 3^{x-2}]} = 1 = 2^0$

Which on simplification gives x = 0, 2.

(29) (C). In the expansion of $(1+x)^{2n}$, the general term = ${}^{2n}C_k, 0 \le k \le 2n$

As given for
$$r > 1, n > 2$$
, ${}^{2n} C_{3r} = {}^{2n} C_{r+2}$
 \Rightarrow Either $3r = r + 2$
or $3r = 2n - (r+2)$, $(\because {}^{n} C_{r} = {}^{n} C_{n-r})$
 $\Rightarrow r = 1$ or $n = 2r + 1 \Rightarrow n = 2r + 1$, $(\because r > 1)$.

(30) (A). In the expansion of $(1+x)^n$, it is given that

$${}^{n}C_{1}, {}^{n}C_{2}, {}^{n}C_{3} \text{ are in A.P.}$$

$$\Rightarrow 2.{}^{n}C_{2} = {}^{n}C_{1} + {}^{n}C_{3}$$

$$\Rightarrow 2.\frac{n(n-1)}{1.2} = \frac{n}{1} + \frac{n(n-1)(n-2)}{1.2.3}$$

$$\Rightarrow 6(n-1) = 6 + (n-2)(n-1)$$

$$\Rightarrow n^{2} - 9n + 14 = 0 \Rightarrow n = 2 \text{ or } n = 7.$$
But n = 2 is not acceptable because, when n=2, there are only three terms in the expansion of $(1 + x)^{2}, \therefore n = 7.$
(B). $T_{r+1} = {}^{n}C_{r}(a)^{n-r}(-b)^{r}.$

$$T_5 = T_{4+1} = {}^nC_4 a^{n-4} (-b)^4 = {}^nC_4 a^{n-4} b^4 \text{ and } 6^{\text{th}} \text{ term}$$
$$= (T_6) = T_{5+1} = {}^nC_5 a^{n-5} (-b)^5 = -{}^nC_5 a^{n-5} b^5$$
Since $T_5 + T_6 = 0$, therefore

(31)

$${}^{n}C_{4} a^{n-4} b^{4} - {}^{n}C_{5} a^{n-5} b^{5} = 0 \implies \frac{a^{n-4} b^{4}}{a^{n-5} b^{5}} = \frac{{}^{n}C_{5}}{{}^{n}C_{4}}$$

$$\Rightarrow \frac{a}{b} = \frac{n!}{(n-5)!} \cdot \frac{4! (n-4)!}{n!} \Rightarrow \frac{a}{b} = \frac{n-4}{5}$$

(32) (A). T_3, T_4, T_5 in the given expansion are respectively

¹⁰
$$C_2 2^8 \left(\frac{3x}{8}\right)^2$$
, ¹⁰ $C_3 2^7 \left(\frac{3x}{8}\right)^3$, ¹⁰ $C_4 2^6 \left(\frac{3x}{8}\right)^3$

or $1620 x^2, 810 x^3, \frac{8505}{32} x^4$

We are given that T_4 is numerically the greatest term so that $|T_4| \ge |T_3|$ and $|T_4| \ge |T_5|$

$$\therefore |x| > 2 \text{ and } \frac{64}{21} |x|; \quad 2 < |x| < \frac{64}{21} \qquad \dots (i)$$

The above inequality (i) is equivalent to two inequalities

$$2 < x < \frac{64}{21}$$
 and $-\frac{64}{21} < x < -2$

(33) (B). Applying
$$T_{r+1} = {}^{n}C_{r}x^{n-r}a^{r}$$
 for $(x+a)^{n}$

Hence
$$T_6 = {}^{10}C_5(2x^2)^5 \left(-\frac{1}{3x^2}\right)^5$$

= $-\frac{10!}{5!5!} 32 \times \frac{1}{243} = -\frac{896}{27}$

(34) (A). We have
$$T_{r+1} = {}^{21}C_r \left(\sqrt[3]{\frac{a}{\sqrt{b}}} \right)^{21-r} \left(\sqrt{\frac{b}{\sqrt[3]{a}}} \right)^r$$

$$= {}^{21}C_r a^{7-(r/2)} b^{(2/3)r-(7/2)}$$

Since the powers of a and b are the same, therefore

$$7 - \frac{r}{2} = \frac{2}{3}r - \frac{7}{2} \Longrightarrow r = 9$$

(35) (A). In the expansion of $\left(\frac{x}{2} - \frac{3}{x^2}\right)^{10}$, the general term is

$$T_{r+1} = {}^{10}C_r \left(\frac{x}{2}\right)^{10-r} \cdot \left(-\frac{3}{x^2}\right)^r$$
$$= {}^{10}C_r (-1)^r \cdot \frac{3^r}{2^{10-r}} x^{10-r-2r}$$

Here, the exponent of x is $10 - 3r = 4 \implies r = 2$

$$\therefore T_{2+1} = {}^{10} C_2 \left(\frac{x}{2}\right)^8 \left(-\frac{3}{x^2}\right)^2 = \frac{10.9}{1.2} \cdot \frac{1}{2^8} \cdot 3^2 \cdot x^4$$
$$= \frac{405}{256} x^4$$

 \therefore The required coefficient $=\frac{405}{256}$

109

- (36) (A). Coefficient of $(2r + 1)^{th}$ term in expansion of $(1 + x)^{43} = {}^{43}C_{2r}$ and coefficient of $(r + 2)^{th}$ term = coefficient of $\{(r+1)+1\}^{th}$ term $= {}^{43}C_{r+1}$ According to question ${}^{43}C_{2r} = {}^{43}C_{r+1} = {}^{43}C_{43-(r+1)}$ then 2r = 43 - (r+1) or 3r = 42 or r = 14.
- (37) (D). $T_2 = n(x)^{n-1}(a)^1 = 240$ (i)

$$T_3 = \frac{n(n-1)}{1.2} x^{n-2} a^2 = 720$$
(ii)

$$T_4 = \frac{n(n-1)(n-2)}{1.2.3} x^{n-3} a^3 = 1080 \qquad \dots \dots (iii)$$

To eliminate x,

$$\frac{T_2 \cdot T_4}{T_3^2} = \frac{240 \cdot 1080}{720 \cdot 720} = \frac{1}{2} \implies \frac{T_2}{T_3} \cdot \frac{T_4}{T_3} = \frac{1}{2}$$

Now,
$$\frac{T_{r+1}}{T_r} = \frac{{}^nC_r}{{}^nC_{r-1}} = \frac{n-r+1}{r}$$

Putting r = 3 and 2 in above expression, we get

$$\Rightarrow \frac{n-2}{3} \cdot \frac{2}{n-1} = \frac{1}{2} \Rightarrow n = 5 \; .$$

(38) (D). We have
$$(x)^{12-r} \left(\frac{1}{x^2}\right)^r = x^0 \Rightarrow x^{12-3r} = x^0 \Rightarrow r = 4$$

Hence the required term is ${}^{12}C_4 2^8 \left(-\frac{1}{2}\right)^4 = 7920$.

(39) (A).
$$T_{r+1} = {}^{10}C_r (x^2)^{10-r} \left(\frac{-3\sqrt{3}}{x^3}\right)^r$$

For term independent of x, $20 - 2r - 3r = 0 \implies r = 4$

$$\therefore T_{4+1} = {}^{10}C_4 (-3)^4 (\sqrt{3})^4 = 153090 .$$

(40) (B). Sum of the coefficients in the expansion of $(1+2x)^n = 6561$ $\Rightarrow (1+2x)^n = 6561$ when x = 1 $\Rightarrow 3^n = 6561 \Rightarrow 3^n = 3^8 \Rightarrow n = 8$

Now,
$$\frac{T_{r+1}}{T_r} = \frac{{}^8C_r(2x)^r}{{}^8C_{r-1}(2x)^{r-1}} = \frac{9-r}{r}.2x$$

$$\Rightarrow \frac{T_{r+1}}{T_r} = \frac{9-r}{r} \qquad [\because x = 1/2]$$
$$\therefore \frac{T_{r+1}}{T_r} > 1 \Rightarrow \frac{9-r}{r} > 1 \Rightarrow 9-r > r \Rightarrow 2r < 9 \Rightarrow r < 4\frac{1}{2}$$

Hence, 5th term is the greatest term.

(41) (B).
$$T_{r+1} = \frac{3.5...(2r-1)}{r!} \left(\frac{1}{5}\right)^{r}$$

$$= \frac{\left(\frac{1}{2}\right) \left(\frac{3}{2}\right) \left(\frac{5}{2}\right) ... \left(\frac{2r-1}{2}\right)}{r!} \left(\frac{2}{5}\right)^{r}$$

$$= \frac{\left(-\frac{1}{2}\right) \left(-\frac{1}{2}-1\right) \left(-\frac{1}{2}-2\right) ... \left(-\frac{1}{2}-r+1\right)}{r!} \left(-\frac{2}{5}\right)^{r}$$
which is the $(r+1)^{\text{th}}$ term of $\left(1-\frac{2}{5}\right)^{-1/2}$
(42) (C). $(1+x+2x^{3}) \left(\frac{3}{2}x^{2}-\frac{1}{3x}\right)^{9}$

$$= (1+x+2x^{3}) \left[\sum_{r=0}^{9} {}^{9}C_{r} \left(\frac{3}{2}x^{2}\right)^{9-r} \left(-\frac{1}{3x}\right)^{r}\right]$$

$$= (1+x+2x^{3}) \left[\sum_{r=0}^{9} {}^{9}C_{r} \left(\frac{3}{2}\right)^{9-r} \left(-\frac{1}{3}\right)^{r}x^{19-3r}\right]$$

+
$$2\left[\sum_{r=0}^{9} {}^{9}C_{r}\left(\frac{3}{2}\right)^{9-r}\left(-\frac{1}{3}\right)^{r}x^{21-3r}\right]$$

Clearly, first and third expansions contain term independent of x and are obtained by equation 18 - 3r = 0 and 21-3 r = 0 respectively.So, coefficient of the term independent of

$$x = {}^{9}C_{6}\left(\frac{3}{2}\right)^{9-6} \left(-\frac{1}{3}\right)^{6} + 2\left({}^{9}C_{7}\left(\frac{3}{2}\right)^{9-7} - \left(\frac{1}{3}\right)^{7}\right)$$
$$= \frac{7}{18} - \frac{7}{27} = \frac{17}{54}$$

(43) (D). $T_{4} = {}^{n}C_{3} x^{n-3} \left(\frac{\alpha}{2x}\right)^{3} \Rightarrow {}^{n}C_{3} x^{n-3} \left(\frac{\alpha}{2}\right)^{3} = 20$
$$n = 6, {}^{6}C_{3}\left(\frac{\alpha}{2}\right)^{3} = 20 \Rightarrow \alpha = 2$$

(44) (A). {}^{m}C_{m} + {}^{m+1}C_{m} + \dots + {}^{n}C_{m}

$$= {}^{m+1}C_{m+1} + {}^{m+1}C_m + \dots + {}^{n}C_m$$

=

$$= {}^{m+2}C_{m+1} + {}^{m+2}C_m + \dots + {}^{n}C_m$$

$$= \dots$$

$$= {}^{n}C_{m+1} + {}^{n}C_m = {}^{n+1}C_{m+1}$$
(45)
$$= \sum_{r=0}^{50} {}^{50}C_r (2x-3)^r (2-x)^{50-r}$$

$$= ((2-x) + (2x-3))^{50}$$

$$= (x-1)^{50}$$

$$= (1-x)^{50}$$

$$= (1-x)^{50}$$

= ${}^{50}C_0 - {}^{50}C_1 x \dots - {}^{50}C_{25} x^{25} + \dots$
coefficient of x^{25} is $- {}^{50}C_{25}$

(46) **(D).** The general term,
$$T_{r+1} = {}^{10}C_r \left(\sqrt{\frac{x}{3}}\right)^{10-r} \left(\sqrt{\frac{3}{2x^2}}\right)^r$$

$$= {}^{10}C_{r}\left(\frac{1}{3}\right)^{5-\frac{r}{2}}\left(\frac{3}{2}\right)^{\frac{r}{2}}x^{5-\left(\frac{3r}{2}\right)} \qquad (5)$$

For independent term of x

$$5 - \frac{3r}{2} = 0 \Longrightarrow r = \frac{10}{3}$$

which is not a positive integer. So there is no term independent of x.

(47) (A). The $(p+2)^{\text{th}}$ term from the end = The (2n - p + 1)th term from beginning

$$= {}^{2n+1}C_{2n-p}x^{(2n+1)-(2n-p)}\left(-\frac{1}{x}\right)^{2n-p}$$
$$= (-1)^p \frac{(2n+1)!}{x^{2p-2n+1}} x^{2p-2n+1}$$

$$(2n-p)!(p+1)!$$
(2) Sum of coeff = (1+1)! = 400(

(48) **(B).** Sum of coeff. = $(1+1)^n = 4096$, n = 12 ${}^{12}C_6$ = greatest binomial coefficient = 924

(49) (A).
$$n = \frac{(11+1) \cdot \left| 5 \cdot \frac{1}{5} \right|}{\left| 3 \right| + \left| 5 \cdot \frac{1}{5} \right|} = \frac{12 \times 1}{4} = 3$$

T₃, T₄ are numerically greatest = ${}^{11}C_2.(3)^9.(1)^2$

$$=\frac{11\times10}{2}.(3)^9=(55).(3)^9$$

. .

(50) (D).
$$T_{r+1} = {}^{15}C_r x^r$$
. Co-efficient of $x^r = {}^{15}C_{r+3}$,
 \therefore Coefficient of $x^{r+3} = {}^{15}C_{r+3}$.
Given, ${}^{15}C_r = {}^{15}C_{r+3} \Rightarrow r+r+3 = 15 \Rightarrow r=6$

(51) (C).
$${}^{44}C_{20}x^{20} = {}^{44}C_{21}x^{21} \Rightarrow x = \frac{{}^{44}C_{20}}{{}^{44}C_{21}}$$

$$\frac{(44-21)!\,21!}{(44-20)!\,20!} = \frac{23!}{24!} \times \frac{21!}{20!} = \frac{21}{24} = \frac{7}{8}$$

(52) (D). It has 11 terms

:. Middle term =
$$T_6(r=5) = {}^{10}C_5 \left(\frac{10}{x}\right)^5 \times \left(\frac{x}{10}\right)^5 = {}^{10}C_5$$

(53) (A).
$$T_{11} = {}^{14}C_{10}$$

 $x^4 \cdot \frac{1}{x^5} = \frac{{}^{14}C_4}{x} = \frac{1001}{x}$

(54) (C). We know that
$${}^{n}C_{r}|_{max i} = \begin{cases} {}^{n}C_{n/2}, & n = even \\ {}^{n}C_{n-1}, & n = odd \\ \frac{{}^{n}C_{n-1}}{2}, & n = odd \end{cases}$$

$$\Rightarrow {}^{20}C_{r} \Big|_{max\,i} = {}^{20}C_{10}$$
55) (C). $(1+x)^{n} = {}^{n}C_{0} + {}^{n}C_{1}x + {}^{n}C_{2}x^{2} + \dots + {}^{n}C_{n}x^{n}$
 $(1+x)^{n} = 1 + {}^{n}C_{1}x + {}^{n}C_{2}x^{2} + \dots + {}^{n}C_{n}x^{n}$
Put $x = \alpha_{2}$.
 $(1+\alpha_{2})^{n} = 1 + \alpha_{2}({}^{n}C_{1} + {}^{n}C_{2}\alpha_{2} + {}^{n}C_{3}\alpha_{2}{}^{2} + \dots + {}^{n}C_{n}\alpha_{2}{}^{n-1})$
 $(1+\alpha_{2})^{n} = 1 + \alpha_{2}({}^{n}C_{1}\alpha_{1} + {}^{n}C_{2}\alpha_{2} + \dots + {}^{n}C_{n}\alpha_{n})$

$$\alpha_{1} \left[\frac{(1+\alpha_{2})^{n} - 1}{\alpha_{2}} \right] = {}^{n}C_{1} \alpha_{1} + {}^{n}C_{2} \alpha_{2} + \dots + {}^{n}C_{n} \alpha_{n7}$$

- **(D).** $(1+x)^n = C_0 + C_1 x + C_2 x^2 + \ldots + C_n x^n \qquad \ldots$ (i) (56) Differentiating equation (i) w.r.t. x, we have $n(1+x)^{n-1} = C_1 + 2C_2x + 3C_3x^2 + \ldots + nC_nx^{n-1} \ldots (ii)$ Multiplying equation (ii) throughout by x, we have $nx(1+x)^{n-1} = C_1x + 2C_2x^2 + 3C_3x^3 + \dots + nC_nx^n \dots$ (iii) Differentiating equation (iii) w.r.t. x, we have $n(1+x)^{n-1} + n(n-1)(1+x)^{n-2}$ $= C_1 + 2^2 \cdot C_2 x + 3^2 \cdot C_3 x^2 + \dots + n^2 \cdot C_n x^{n-1}$...(iv) Putting x = 1 in equation (iii), we have 1^2 . $C_1 + 2^2$. $C_2 + 3^2$. $C_3 + \ldots + n^2$. $C_n = n$. $2^{n-1} + n(n-1)$. $2^{n-2} = (n^2 + n) 2^{n-2}$ $= n (n+1)2^{n-2}$.
- (C). We get the sum of the coefficients of terms by put-(57) ting x = 1 in the polynomial $(1+x-3x^2)^{2143}$ $\therefore (1+1-3)^{21\overline{43}} = (-1)^{2143} = (-1)^{2142} \cdot (-1)$ $= [(-1)^2]^{1021}$. $(-1) = 1 \times -1 = -1$

(58) (A). Putting
$$x = 1$$
 in the given expansion, we get
 $C_0 + C_1 + C_2 + C_3 + ... + C_n = 2^n$ (1)
Now, differentiating the given expansion with respect to
x and then putting $x = 1$, we get
 $C_1 + 2C_2 + 3C_3 + + nC_n = n \cdot 2^{n-1}$ (2)
Given Exp. = $C_0 + 2C_1 + 3C_2 + + (n+1)C_n$
= $(C_0 + C_1 + C_2 + + C_n) + (C_1 + 2C_2 + 3C_3 + + nC_n)$
= $2^n + n \cdot 2^{n-1}$ [from (1) and (2)]
= $2^{n-1} (n+2)$

Q.B.- SOLUTIONS

 \Rightarrow S = 2ⁿ⁻¹ sin nx

$$(59) \quad (B). \sum_{r=1}^{n} \frac{r^{n}C_{r}}{nC_{r-1}} = \sum_{r=1}^{n} \frac{n-r+1}{r} = (n+1)\sum_{r=1}^{n} -\sum_{r=1}^{n} r \\ = n (n+1) - \frac{n (n+1)}{2} = \frac{n (n+1)}{2} \\ (60) \quad (A). \frac{r.^{n}C_{r}}{nC_{r-1}} = \frac{n.^{n-1}C_{r-1}}{nC_{r-1}} \\ = n. \frac{(n-1)!}{(r-1)!(n-r)!} \times \frac{(r-1)!(n-r+1)!}{n!} = n-r+1 \\ (61) \qquad \dots (1+x)^{n} = C_{0} + C_{1}x + C_{2}x^{2} + \dots + C_{n}x^{n} \\ \frac{(1+x)^{n+1}-1}{n+1} = C_{0}x + C_{1}\frac{x^{2}}{2} + C_{2}\frac{x^{3}}{3} + \dots + C_{n}\frac{x^{n+1}}{n+1} \\ Put x = -2: \\ \frac{(-1)^{n+1}-1}{n+1} = -2C_{0} + C_{1}\frac{2^{2}}{2} - C_{2}\frac{2^{3}}{3} + \dots + C_{n}\frac{(-2)^{n+1}}{(n+1)} \\ If n is odd, then L.H.S. = 0. \\ (62) \quad (D). Let, x-1 = t then \sum_{r=0}^{2n} a_{r}t^{r} = \sum_{r=0}^{2n} b_{r} (t-1)^{r} \\ \therefore a_{n} = coefficient of t^{n} in \sum_{r=0}^{2n} b_{r} (t-1)^{r} \\ = coefficient of t^{n} in \\ (b_{0} + b_{1})(t-1) + \dots + b_{n}(t-1)^{n} + b_{n+1}(t-1)^{n+1} \\ + \dots + b_{2n}(t-1)^{2n}) \\ = b_{n} {}^{n}C_{0} + b_{n+1} {}^{n+1}C_{1}(-1)^{1} + b_{n+2}\frac{n+2}{C_{2}(-1)^{2}} \\ = (-1)^{n} {}^{n}C_{0} + (-1)^{n+1-n+1} {}^{n+1}C_{1} + \dots + (-1)^{2n-n+n-2n}C_{n} \\ = {}^{n}C_{0} + {}^{n+1}C_{1} + {}^{n+2}C_{2} + \dots {}^{2n}C_{n} = {}^{2n+1}C_{n+1} \\ = {}^{2n+1}C_{n} \end{cases}$$

(63) (A). Here sum is given by

$$S = \sum_{r=0}^{n} {}^{n}C_{r} \sin rx \cos (n-r) x$$

$$\Rightarrow S = \sum_{r=0}^{n} {}^{n}C_{n-r} \sin (n-r) x \cos rx \text{ (replacing r by n-r)}$$
$$\Rightarrow 2S = \sum_{r=0}^{n} {}^{n}C_{n} \sin nx = \sin nx \times 2^{n}$$

$$(64) \quad (C). C_{0} + C_{1} + C_{2} + ... + C_{n} = 2^{n}$$

$$\frac{n!}{(n-1)!} + \frac{n!}{(n-1)! 1!} + \frac{n!}{(n-1)! 2!} + + \frac{n!}{0! n!} = \frac{2^{n}}{n!}$$

$$(divide it by n !)$$

$$(65) \quad (C). LHS : {}^{20}C_{r} \ge {}^{20}C_{13} \implies {}^{20}C_{r} \ge {}^{20}C_{7}$$

$$\Rightarrow r = 7, 8, 9, 10, 11, 12, 13$$

$$(66) \quad (B). Expression$$

$$= \left(\frac{nC_{0} + nC_{1}}{nC_{0}}\right) \cdot \left(\frac{nC_{1} + nC_{2}}{nC_{1}}\right) \cdots \left(\frac{nC_{n-1} + nC_{n}}{nC_{n-1}}\right)$$

$$= \left(\frac{n+1C_{1}}{nC_{0}}\right) \cdot \left(\frac{n+1C_{2}}{nC_{1}}\right) \cdots \left(\frac{n+1C_{n}}{nC_{n-1}}\right)$$

$$= \left(\frac{1.^{n+1}C_{1}}{nC_{0}}\right) \cdot \left(\frac{2.^{n+1}C_{2}}{nC_{1}}\right) \cdots \left(\frac{n.^{n+1}C_{n}}{nC_{n-1}}\right) \cdot \frac{1}{n!}$$

$$= \left(\frac{(n+1).^{n}C_{0}}{nC_{0}}\right) \cdot \left(\frac{(n+1).^{n}C_{1}}{nC_{1}}\right) \cdots \left(\frac{(n+1).^{n}C_{n-1}}{nC_{n-1}}\right) \cdot \frac{1}{n!}$$

(67) (C). Expression = $\frac{1}{n!} \{ {}^{n}C_{1} + {}^{n}C_{3} + {}^{n}C_{5} + \} = \frac{1}{n!} .2^{n-1}$ for all $n \in \mathbb{N}$

(68) (D).
$${}^{10}C_1 + {}^{10}C_2 + \dots {}^{10}C_9 = 2^{10} - {}^{10}C_0 - {}^{10}C_1 = 2^{10} - 1 - 1 = 2^{10} - 2$$

(69) (A).
$$aC_0 + (a+d)C_1 + (a+2d)C_2 + \dots + (a+nd)C_n$$

= $(2a+nd)2^{n-1}$
 $a=1, d=1, (2+n)2^{n-1} = 576 \Rightarrow n=7$

(70) (A).
$$(1-2x)^{1/2} = 1 + \frac{1}{2}(-2x) + \frac{\frac{1}{2}(\frac{1}{2}-1)}{2!}(-2x^2) + \dots$$

$$=1-x-\frac{1}{2}x^{2}....$$

(71) (A). The tenth term of the expansion is

$$T_{10} = \frac{(-3)(-4)(-5)...(-3-8)}{9!} (x)^9$$
$$= \frac{-3(-4)(-5)...(-11)}{9!} x^9 = -55 x^9$$

(72) (D). x^5 occurs in T_6 of the expansion, so

$$T_6 = T_{5+1} = \frac{6.7.8.9.10}{5!} x^5 = 252 x^5$$

- \therefore Coefficient of $x^5 = 252$
- (73) (B). $(1+2x)^{-1/2}$ can be expanded if |2x| < 1 i.e. if

(74)
$$|x| < \frac{1}{2}$$
, i.e. $if - \frac{1}{2} < x < \frac{1}{2}$ *i.e.* $if x \in \left(-\frac{1}{2}, \frac{1}{2}\right)$.
 $(r_{r+1}) = {}^{n}C_{r-1} p^{n-r+1} \cdot q^{r-1} = (T_{r+1}) = {}^{n}C_{r} p^{n-r} \cdot q^{r}$ (given)

$$\frac{n!}{(n-r+1)!(r-1)!}p^{n-r+1}.q^{r-1} = \frac{n!}{(n-1)!r!}p^{n-r}.q^{r}$$

$$\frac{p}{(n-r+1)} = \frac{q}{r} \implies pr = nq - rq + q$$
$$(p+q)r = q(n+1); \quad \frac{(n+1)q}{(p+q)r} = 1$$

(75) (A). We have,
$$t_{r+1} = {}^{x}C_{r}(x^{2})^{n-r}\left(\frac{2}{x}\right)^{r}$$
; Put $r = 12$,

$$t_{13} = {}^{n}C_{1}(x^{2})^{x-12} \left(\frac{2}{x}\right)^{12} = {}^{x}C_{12}.x^{2x-24}.2^{12}.x^{-12}$$

$$t_{13} = {}^{n}C_{12}2^{12}.x^{2n-36}$$
; $2n-36 = 0 \Longrightarrow n = 18$

$$18 = 2 \times 3^2 \operatorname{S}(18) = \frac{2^{1+1} - 1}{2 - 1} \cdot \frac{3^{2+1} - 1}{3 - 1} = \frac{3}{1} \cdot \frac{26}{2} = 39$$

(76) (A). ::
$$\sqrt{99} = (100 - 1)^{1/2} = 10 \left(1 - \frac{1}{10^2}\right)^{1/2}$$

$$= 10 \left[1 - \frac{1}{2} \cdot \frac{1}{10^2} + \frac{1/2 \cdot \left(\frac{1}{2} - 1\right)}{2!} \left(-\frac{1}{10^2}\right)^2 + \dots \right]$$

$$= 10 [1 - 0.005 - 0.0000125] = 10 [0.9949] = 9.949$$

(77) (C).
$$S = 1 + \frac{1}{5} + \frac{1.3}{5.10} + \frac{1.3.5}{5.10.15} + \dots$$

 $(1+x)^n = 1 + \frac{nx}{1!} + \frac{n(n-1)}{2!}x^2 + \frac{n(n-1)(n-2)}{3!}x^3 + \dots$
 $\Rightarrow nx = \frac{1}{5} \text{ and } \frac{n(n-1)x^2}{2!} = \frac{1.3}{5.10}$
 $\Rightarrow n = -\frac{1}{2} \text{ and } x = \frac{-2}{5}$

$$\therefore S = \left(1 - \frac{2}{5}\right)^{-1/2} = \left(\frac{3}{5}\right)^{-1/2} = \sqrt{\frac{5}{3}}.$$
(78) (A). $\sum_{r=0}^{n} (-1)^{r-n} C_r \left(\frac{1}{2^r} + \frac{3^r}{2^{2r}} + \frac{7^r}{2^{3r}} + \dots \text{ upto } m \text{ terms}\right)$

$$= \sum_{r=0}^{n} (-1)^{r-n} C_r \cdot \frac{1}{2^r} + \sum_{r=0}^{n} (-1)^{r-n} C_r \frac{3^r}{2^{2r}} + \sum_{r=0}^{n} (-1)^{r-n} C_r \frac{7^r}{2^{3r}} + \dots$$

$$= \left(1 - \frac{1}{2}\right)^n + \left(1 - \frac{3}{4}\right)^n + \left(1 - \frac{7}{8}\right)^n + \dots \text{ up to } m \text{ terms}.$$

$$= \frac{1}{2^n} + \frac{1}{4^n} + \frac{1}{8^n} + \dots \text{ upto } m \text{ terms}$$

$$=\frac{\frac{1}{2^{n}}\left(1-\frac{1}{2^{n}}\right)}{\left(1-\frac{1}{2^{n}}\right)}=\frac{2^{mn}-1}{2^{mn}(2^{n}-1)}$$

(79) (C).
$$49^{n} + 16n - 1 = (1 + 48)^{n} + 16n - 1$$

 $1 + {}^{n}C_{1}(48) + {}^{n}C_{2}(48)^{2} + \dots + {}^{n}C_{n}(48)^{n} + 16n - 1$
 $= (48n + 16n) + {}^{n}C_{2}(48)^{2} + {}^{n}C_{3}(48)^{3} + \dots + {}^{n}C_{n}(48)^{n}$
 $= 64n + 8^{2}[{}^{n}C_{2}.6^{2} + {}^{n}C_{3}.6^{3}.8 + {}^{n}C_{4}.6^{4}.8^{2} + \dots + {}^{n}C_{n}.6^{n}.8^{n-2}]$
Hence, $49^{n} + 16n - 1$ is divisible by 64.
(80) (P) Let the number is y

(80) (B). Let the number is x.

Then $x - x^3 = x(1 - x^2) = (1 - x)(x)(1 + x)$ According to Langrange's theorem it is divisible by 3! i.e., 6.

(81) (C).
$$101^{100} - 1 = (100+1)^{100} - 1$$

= $100^{100} + ^{100}C_1 \ 100^{99} + ^{100}C_2 \ 100^{98} + ... + 1 - 1$
= $100^{100} + ^{100}C_1 \ 100^{99} + ^{100}C_2 \ 100^{98} + ... + ^{100}C_{99} \ 100^1$
= $100(100^{99} + ^{100}C_1 \ 100^{98} + ... + ^{100}C_{98} \ 100 + ^{100}C_{99})$
= $100(100^{99} + ^{100}C_1 \ 100^{98} + ... + ^{100}C_{98} \ 100 + 100)$
= $100(100^{99} + ^{100}C_1 \ 100^{98} + ... + ^{100}C_{98} \ 100 + 100)$
= $100^2(100^{98} + ^{100}C_1 \ 100^{97} + ... + ^{100}C_2 + 1)$
 \therefore the greatest integer which divides given number
= $100^2 = 10,000$

(82) (B). Here
$$T_{r+1} = {}^{10}C_r (\sqrt{2}){}^{10-r} (3{}^{1/5})^r$$
,
where $r = 0, 1, 2, ..., 10$.
We observe that in general term T_{r+1} powers of 2 and 3

are
$$\frac{1}{2}(10-r)$$
 and $\frac{1}{5}$ r respectively and $0 \le r \le 10$.

So both these powers will be integers together only when r = 0 or 10

:. Sum of required terms = $T_1 + T_{11}$ = ${}^{10}C_0(\sqrt{2})^{10} + {}^{10}C_{10}(3^{1/5})^{10} = 32 + 9 = 41$

(83) (B).
$$R = (3 + \sqrt{5})^{2n}$$
, $G = (3 - \sqrt{5})^{2n}$
Let $[R] + 1 = I$ (\because [\therefore] greatest integer function)
 $\Rightarrow R + G = I$ (\because 0 < G < 1)
($3 + \sqrt{5}$)²ⁿ + ($3 - \sqrt{5}$)²ⁿ = I
seeing the option put n = 1
I = 28 is divisible by 4 i.e. 2ⁿ⁺¹
(84) (C). 27⁴⁰ = 3¹²⁰
 $3^{119} = (4 - 1)^{119} = {}^{119}C_0 4^{119} - {}^{119}C_1 4^{118}$
 $+ {}^{119}C_2 4^{117} - {}^{119}C_3 4^{116} + + (-1)$
 $\therefore 3^{119} = 4k - 1 \therefore 3^{120} = 12k - 3 = 12(k - 1) + 9$
 \therefore The required remainder is 9
(85) (C). (23)^{14} = (529)^7 = (530 - 1)^7
 $= {}^7C_0(530)^7 - {}^7C_1(530)^6 + + 3710 - 1 = 100m + 3709$
 \therefore last two digits are 09.
(86) (B). $(1 - x - 2x^2)^6 = (1 + x)^6 (1 - 2x)^6$
 $= 1 + a_1x + a_2x^2 + + a_{12}x^{12}$
Putting x = 1/2 we have
 $0 = 1 + \frac{a_1}{2} + \frac{a_2}{2^2} + + \frac{a_{12}}{2^{12}}$ (1)

$$0 = 1 + \frac{\alpha_1}{2} + \frac{\alpha_2}{2^2} + \dots + \frac{\alpha_{12}}{2^{12}} \qquad \dots$$

Putting x = -1/2 we have

Adding eq. (1) and eq. (2)

$$\frac{a_2}{2^2} + \frac{a_4}{2^4} + \dots + \frac{a_{12}}{2^{12}} = -\frac{1}{2}$$

(87) (B).
$$\frac{7^{103}}{25} = \frac{7[49]^{51}}{25} = \frac{7[50-1]^{51}}{25}$$

= $\frac{7[25k-1]}{25} = \frac{25(k^1) - 7 + 25 - 25}{25}$
= $\frac{25(k^1-1) + 18}{25} \Rightarrow \text{Remainder} = 18$

(88) (D). Now,
$$x = (364, 420) = 28$$

 $(49^2 - 4) (49^3 - 49) = (49^2 - 2^2) (49^2 - 1) 49$
 $= 51.47.50.48.49$,
which is the product of five consecutive integers,
and hence divisible by 5!.
(89) (D). $7^2 \equiv -1 \pmod{10}$
 $(7^2)^{85} \equiv -1 \pmod{10}$

 7^{170} . $7 \equiv -7 \pmod{10} \equiv 3 \pmod{10}$ unit digit = 3, but unit digit in (177)! = 0

(91) (A).
$$1! + 2! + 3! = 1 + 2 + 6 = 9$$
; $4! = 24$; $5! = 120$
 \therefore n! is divisible by 12 for $n > 3$.
 \therefore Required remainder is 9

(92) (C).
$$T_{r+1} = {}^{15}C_r (x^{1/3})^{15-r} (-x^{-1/2})^r$$

$$\Rightarrow \frac{15-r}{3} - \frac{r}{2} = 0 \Rightarrow r = 6$$

Hence T₇ is independent of x and T₇ = ${}^{15}C_6 = 5005 = 5m \implies m = 1001$

(93) (C).
$$2^n \left(1 + \frac{x}{6}\right)^n \Rightarrow T_{r+1} = 2^n \cdot {}^nC_r \left(\frac{x}{6}\right)^n$$

$$\Rightarrow 2^{n} \cdot {}^{n}C_{7} \cdot \frac{1}{6^{7}} = 2^{n} \cdot {}^{n}C_{8} \cdot \frac{1}{6^{8}}$$

$$\Rightarrow 6 \cdot {}^{n}C_{7} = {}^{n}C_{8} \Rightarrow n-7 = 48 \Rightarrow n = 55$$

(94) (C). $E = (19-4)^{23} + (19+4)^{23}$

$$= 2 [19^{23} + {}^{23}C_{2} \cdot 19^{21} \cdot 4^{2} + \dots + {}^{23}C_{22} \cdot 19 \cdot 4^{22}]$$

$$= 2 \cdot 19 [19^{22} + {}^{23}C_{2} \cdot 19^{20} \cdot 4^{2} + \dots + {}^{23}C_{22} \cdot 4^{22}]$$

$$\Rightarrow E \text{ is divisible by } 19 \Rightarrow \text{ Remainder } = 0$$

(95) (B).
$${}^{n}C_{r} = \frac{n!}{r!(n-r)!}; \frac{{}^{n}C_{r}}{n!} = \frac{1}{r!(n-r)!};$$

put r = 1, 3, 5, and add

(96) (A).
$${}^{n}C_{1} + {}^{n}C_{2} = 36 \Rightarrow n = 8$$

 $T_{3} = 7 T_{2} \Rightarrow (2^{x})^{3} = 1/2$
 $3x = -1 \Rightarrow x = -1/3$

(97) (A). Put x = 1 and x = -1 and then on addition we get

$$a_0 + a_2 + a_4 + \dots + a_{2n} = \frac{3^n + 1}{2}$$

- (98) (A). $a^n + b^n = (a + b) (Q (a, b))$ if n is odd i.e. $a^n + b^n$ is divisible by a + b if n is odd alternatively: interpret from $(16-5)^{27} + (16+5)^{27}$
- (99) (D). $a_0 + a_1 + a_2 + \dots = 2^{2n}$ and $a_0 + a_2 + a_4 + \dots = 2^{2n-1}$ $a_n = {}^{2n}C_n$ = the greatest coefficient, being the middle coefficient $a_n = {}^{2n}C_n = {}^{2n}C_n = {}^{2n}C_n = {}^{2n}C_n = {}^{2n}C_n$

(100) (C). We have Coefficient of
$$x^4$$
 in $(1 + x + x^2 + x^3)^{11}$
= coefficient of x^4 in $(1 + x)^{11}$ (1 + x)¹¹
= coefficient of x^4 in $(1 + x)^{11}$ + coefficient of x^2 in
11. $(1 + x)^{11}$ + constant term is
 ${}^{11}C_2$. $(1 + x)^{11} = {}^{11}C_4 + 11$. ${}^{11}C_2 + {}^{11}C_2 = 990$.

EXERCISE-2

(1) (A). Coeff.. of x^{49} in this series is

$$-\left[1+\frac{1}{2}+\frac{1}{2^{2}}+\dots+\frac{1}{2^{49}}\right] = -\left[\frac{1-\frac{1}{2^{50}}}{1-\frac{1}{2}}\right]$$

$$= -2 \cdot \left[1 - \frac{1}{2^{50}}\right]$$

(2) (A). $(1+7)^{83} + (7-1)^{83} = (1+7)^{83} - (1-7)^{83}$ = $2[^{83}C_1 \cdot 7 + {}^{83}C_3 \cdot 7^3 + \dots + {}^{83}C_{83} \cdot 7^{83}]$ = $(2 \cdot 7 \cdot 83) + 49I$ where I an integer $\therefore 14 \times 83 = 1162$

$$\frac{1162}{49} = 23\frac{35}{49}$$

$$\therefore \text{ Remainder is } 35$$
(3)
(C). $(16-5)^{27} + (16+5)^{27} = 16^{27} - {}^{27}C_1 16^{26} . 5$
 $+ {}^{27}C_2 16^{25} . 5^2 + ... + {}^{27}C_{26} 16 \times 5^{26} - {}^{27}C_{27} . 5^{27}$
 $+ 16^{27} + {}^{27}C_1 16^{26} . 5 + {}^{27}C_2 16^{25} . 5^2 + ... + {}^{27}C_{26}$
 $16 \times 5^{26} + {}^{27}C_{27} . 5^{27}$
 $= 2 [16^{27} + {}^{27}C_2 16^{25} . 5^2 + ... + {}^{27}C_{26} . 16 . 5^{26}]$
 $\therefore \text{ remainder = 0}$

(4) (A).
$$T_3 = {}^5C_2 x^3 \cdot x^{2t} = 10^6 x^{3+2t} = 10^5 (3+2t) \log_{10} x = 5$$

 $\therefore (3+2t) t = 5 \text{ i.e., } 2t^2 + 3t - 5 = 0 \text{ i.e., } t = 1, -5/2 x = 10^t = 10, 10^{-5/2}$

(5) (C).
$$\left(x + \sqrt{x^3 - 1}\right)^5 + \left(x - \sqrt{x^3 - 1}\right)^5$$

$$= 2 \left[x^5 + {}^5C_2 x^3 (x^3 - 1) + {}^5C_4 x (x^3 - 1)^2\right]$$

$$= 2 \left[x^5 + 10x^3 (x^3 - 1) + 5x (x^6 - 2x^3 + 1)\right]$$

$$= 10x^7 + 20 x^6 + 2x^5 - 20 x^4 - 20x^3 + 10 x$$
 \therefore polynomial has order of 7.
(6) (D). Consider $(5 + 2)^{100} - (5 - 2)^{100}$

$$= 2 \left[{}^{100}C_1 5^{99} \cdot 2 + {}^{100}C_3 5^{97} \cdot 2^3 + \dots + {}^{100}C_{99} 5 \cdot 2^{99}\right]$$

$$= 2 \left[1000 \cdot 5^{98} + {}^{100}C_3 5^{94} + \dots + 1000 \cdot 2^{98}\right]$$

- \Rightarrow minimum 000 as last three digits.
- (7) (A). Sum

$$= \frac{1}{2} \{ (a_0 + a_1 + a_2 + \dots + a_{16}) - (a_0 - a_1 + a_2 - \dots + a_{16}) \}$$
$$= \frac{1}{2} \{ (1 + 1 - 2)^8 - (1 - 1 - 2)^8 \} = \frac{1}{2} (-2^8) = -2^7$$

(8) (B). We have,
$$(1 + x + x^2 + x^3 + x^4)^n (x - 1)^{n+3}$$

$$= \left(\frac{1-x^{5}}{1-x}\right)^{n} (1-x)^{n+3} = \left(1-x^{5}\right)^{n} (1-x)^{3}$$

$$= (-x^{3} + 3x^{2} - 3x + 1) \sum_{r=0}^{n} {}^{n}C_{r} (-1)^{r} x^{5r}$$
$$= -\sum_{r=0}^{n} {}^{n}C_{r} (-1)^{r} x^{5r+3} + 3\sum_{r=0}^{n} {}^{n}C_{r} (-1)^{r} x^{5r+2}$$
$$-3\sum_{r=0}^{n} {}^{n}C_{r} (-1)^{r} x^{5r+1} + 3\sum_{r=0}^{n} {}^{n}C_{r} (-1)^{r} x^{5r}$$

For term containing x^{83} , we have $5r + 3 = 83 \implies r = 16$ whereas 5r + 2 = 83, 5r + 1 = 83 and 5r = 83 give no integral value of r. Hence, their is only one term containing x^{83}

whose coefficient = $-{}^{n}C_{16}$.

(9) (D). Coefficient of
$$x^4$$
 is
 $(1+5x+9x^2+.....)(1+x^2)^{11}$
 $=(1+5x+9x^2+....)(1+x^2+{}^{11}C_2(x^2)^2+.....)^{11}$
 $=(1+5x+9x^2+13x^3+17x^4+....)(1+11x^2+{}^{11}C_2x^4$
......)

Coefficient of $x^4 = {}^{11}C_2 + 9 \times 11 + 17 = 55 + 99 + 17 = 171$ (10) (A). $(17)^{256} = (289)^{128} = (300 - 11)^{128}$

$$= {}^{128}C_0 (-11)^{128} + 100 \text{ m}$$
, for some integer m

$$= 11^{128} + 100 \text{ m} = (10+1)^{128} + 100 \text{ m}$$

 $= {}^{128}C_0 1 {}^{128} + {}^{128}C_1 10 + 100 m_1 + 100 m \text{ for some integer} \\ m_1 = 1 + 1280 + 100 \text{ k}, m + m_1 = \text{k} = 1281 + 100\text{k} \\ \text{Hence the required number is 81.}$

(11) (D). $3^{400} = 81^{100} = (1+80)^{100} = {}^{100}C_0 + {}^{100}C_1 80 + \dots + {}^{100}C_{100} 80^{100}$

(12) (B)
$$T_{r+1} = {}^{n}C_{r} a^{n-r} . b^{r}$$
 where $a = 2^{1/3}$ and $b = 3^{-1/3}$
 T_{7} from beginning = ${}^{n}C_{6} a^{n-6} b^{6}$ and T_{7} from end
 $= {}^{n}C_{6} b^{n-6} a^{6}$

$$\Rightarrow \frac{a^{n-12}}{b^{n-12}} = \frac{1}{6} \Rightarrow 2^{\frac{n-12}{3}} \cdot 3^{\frac{n-12}{3}} = 6^{-1}$$
$$\Rightarrow n - 12 = -3 \Rightarrow n = 9$$

(13) (A). Putting
$$x = 1$$
 and -1 and adding

$$a_{0} + a_{2} + \dots + a_{50} = \frac{3^{25} + 1}{2} = \frac{(1+2)^{25} + 1}{2}$$

$$\left(\frac{\text{odd} + 1}{2} = \frac{\text{even}}{2}\right)$$

$$= \frac{25C_{0} + {}^{25}C_{1} \cdot 2 + {}^{25}C_{2} \cdot 2^{2} + {}^{25}C_{25} \cdot 2^{25} + 1}{2}$$

$$= \frac{2\left[1 + {}^{25}C_{1} + {}^{25}C_{2} \cdot 2 + \dots + {}^{25}C_{25} \cdot 2^{24}\right]}{2}$$

$$= 2\left[13 + {}^{25}C_{2} + \dots + {}^{25}C_{25} \cdot 2^{23}\right] \Rightarrow \text{even}$$

115

Q.B.- SOLUTIONS

(14) **(B).** $E = (2n+1)(2n+3)(2n+5)\dots(4n-1)$ Multiply numerator and denominator by (2n+2)(2n+4)....(4n) & also by (2n)! and n!.

$$E = \frac{(2n)! (2n + 1) (2n + 2) (2n + 3) ... (4n - 1) . 4n}{(2n)! (2n + 2) (2n + 4) ... (2n + 2n)}$$

$$=\frac{(4n)! \times (n)!}{(2n)! 2^{n} [(n+1)(n+2)...(2n)]n!}$$

$$=\frac{(n !) . (4 n) !}{2^{n} . ((2 n) !)^{2}}$$

(D). Coefficient of $\lambda^n \mu^n \Rightarrow (1+\lambda)^n (1+\mu)^n (\lambda+\mu)^n$ (15)

$$\lambda^{n}\mu^{n} = (\lambda^{r}.\mu^{n-r}.\lambda^{n-r}.\mu^{r})$$

- Coefficient of λ^{r} in $(1+\lambda)^{n}$ is ${}^{n}C_{r}$
- Coefficient of μ^{n-r} in $(1+\mu)^n$ is ${}^nC_{n-r}$
- Coefficient of $\lambda^{n-r} \cdot \mu^r$ in $(\lambda + \mu)^n$ is ${}^nC_{n-r}$
- So net coefficient is $\sum_{r=0}^{n} ({}^{n}C_{r})^{3}$

(16) (A). The (r + 1)th term in the expansion of
$$\left(\sqrt{\frac{x}{3}} + \frac{3}{2x^2}\right)^{10}$$

is given by

$$T_{r+1} = {}^{10}C_r \left(\sqrt{\frac{x}{3}}\right)^{10-r} \left(\frac{3}{2x^2}\right)^r = {}^{10}C_r \frac{x^{5-(r/2)}}{3^{5-(r/2)}} \cdot \frac{3^r}{2^r x^{2r}}$$
$$= {}^{10}C_r \frac{3^{(3r/2)-5}}{2^r} x^{5-(5r/2)}.$$

For
$$T_{r+1}$$
 to be independent of x, we must have
 $5-(5r/2)=0$ or $r=2$.
Thus, the 3rd term is independent of x and is equal to

(17) (A).
$$\frac{{}^{n}C_{k}}{{}^{n}C_{k+1}} = \frac{1}{2} \Rightarrow \frac{n!}{k!(n-k)!} \frac{(k+1)!(n-k-1)!}{n!} = \frac{1}{2}$$

or $\frac{k+1}{n-k} = \frac{1}{2}$ or $2k+2 = n-k$ or $n-3k=2$ (1)
Similarly $\frac{{}^{n}C_{k+1}}{{}^{n}C_{k+2}} = \frac{2}{3}$

$$\frac{n!}{(k+1)!(n-k-1)!} \cdot \frac{(k+2)!(n-k-2)!}{n!} = \frac{2}{3}$$

$$\frac{k+2}{n-k-1} = \frac{2}{3}$$

$$3k+6=2n-2k-2$$

$$2n-5k=8$$
From (1) and (2)
n=14 and k=4
∴ n+k=18
.......(2)

(18) (A).
$$\frac{20!}{p!q!r!}(2x)^p(-y)^q(z)^r = \frac{20!}{p!q!r!}2^p(-1)^q x^p y^q z^r$$

$$p+q+r=20, q=0$$

 $p+r=20p$ is even and r is odd.
even + odd = even (never possible)
Coefficient of such power never occur
 \therefore coefficient is zero

(19) (A).
$$T_2 = {}^{n}C_1 \left(a^{1/13} \right)^{n-1} \cdot a\sqrt{a} = 14a^{5/2}$$

or $n \cdot a^{\frac{n-1}{13}} = 14a$
 $\frac{n-14}{2}$ $n-14$

$$n \cdot a^{-13} = 14$$
 hence $\frac{n-14}{13} = 0 \implies n = 14$

Now,
$$\frac{{}^{14}C_3}{{}^{14}C_2} = \frac{14!}{3! \cdot 11!} \frac{2! \cdot 2!}{14!} = \frac{12}{3} = 4$$

(20) (A).
$$(1 + x + x^2)n = a_0 + a_1 x + a_2 x^2 + ... + a_n x^{2n}$$

Put $x = i$
 $i^n = a_0 + a_1 i - a_2 - a_3 i + a_4 ... + a_{2n} (+i)2n$
 $n \in \text{ odd real part} = 0$
 $a_0 - a_2 + a_4 + ... = 0$

(21) (A). The last term =
$${}^{n}C_{n} \cdot \left(-\frac{1}{\sqrt{2}}\right)^{n} = \left(\frac{1}{3 \cdot \sqrt[3]{9}}\right)^{\log_{3} 8}$$

(from the question)

$$(-1)^{n} \cdot \left(\frac{1}{2}\right)^{n/2} = \left(\frac{1}{3^{5/3}}\right)^{\log_3 8}$$
$$= 3^{-5/3 \cdot 3 \log_3 2} = 3^{\log_3 2^{-5}} = 2^{-5} = \left(\frac{1}{2}\right)$$
$$n = 10; \text{ So, } t_5 = {}^{10}C_4 \cdot (2^{1/3})^6 \cdot \left(-\frac{1}{\sqrt{5}}\right)$$

10; So,
$$t_5 = {}^{10}C_4$$
. $(2^{1/3})^6$. $\left(-\frac{1}{\sqrt{2}}\right)^{-10}C_4 = {}^{10}C_4 = {}^{10}C_6$

<u></u>4

(22) (D).
$$\frac{T_{r+1}}{T_r} = \frac{n-r+1}{r} = r \cdot \frac{C_r}{C_{r-1}} = n \cdot r + 1$$

Here in this case n = 15.

So,
$$\frac{C_1}{C_0} + \frac{{}^2C_2}{C_1} + \frac{{}^3C_3}{C_2} + \dots + \frac{{}^{15}C_{15}}{C_{14}}$$

= $\sum_{r=1}^{15} (n-r+1) = n + (n-1) + (n-2) + \dots + 1 = \frac{n(n+1)}{2}$

(23) (B). Let $(2x^2 - 3x + 1)^{11} = a_0 + a_1 x + a_2 x^2 + \dots + a_{22} x^{22}$ $S_E + S_0 = P(1) = 0 \qquad \dots \dots (1)$ when $P(x) = (2x^2 - 3x + 1)^{11}$ $S_E - S_0 = P(-1) = 6^{11} \qquad \dots \dots (2)$ $\Rightarrow 2S_E = 6^{11} \Rightarrow S_E = 3 \cdot 6^{10}$ (24) (B). $E = (\alpha + p)^{m-1}$

$$\left[1 + \frac{\alpha + q}{\alpha + p} + \left(\frac{\alpha + q}{\alpha + p}\right)^2 + \dots + \left(\frac{\alpha + q}{\alpha + p}\right)^m\right]$$

$$\Rightarrow \text{ Coefficient of } \alpha^{t} = \frac{(\alpha + p)^{m} - (\alpha + q)^{m}}{p - q}$$

$$=\frac{\left(p+\alpha\right)^{m}-\left(q+\alpha\right)^{m}}{p-q}=\frac{{}^{m}C_{t}\left(p^{m-t}-q^{m-t}\right)}{p-q}$$

(25) (B). Clearly
$$a_r = {}^nC_r$$

$$\Rightarrow \frac{a_r}{a_{r-1}} = \frac{{}^nC_r}{{}^nC_{r-1}} = \frac{\left(n-r+1\right)}{r} \Rightarrow 1 + \frac{a_r}{a_{r-1}} = \frac{n+1}{r}$$

$$\Rightarrow \prod_{r=1}^{n} \left(1 + \frac{a_r}{a_{r-1}} \right) = \prod_{r=1}^{n} \frac{(n+1)}{r} = \frac{(n+1)}{n!}$$

(26) (C). $3^{2003} = 3^{2001}$. $3^2 = 9(27)^{667} = 9(28-1)^{667}$ = $9(^{667}C_0 28^{667} - {}^{667}C_1 (28)^{666} + \dots + {}^{667}C_{667} (-1)^{667})$ that means if we divide 3^{2003} by 28, remainder is 19.

Thus,
$$\left\{\frac{3^{2003}}{28}\right\} = \frac{19}{28}$$

(27) (B). Highest exponent in the product of first two is 3 = 1 + 2

Highest exponent in the product of first three is 6 = 1 + 2 + 3

Similarly, Highest exponent in the product of first hundred = 1+2+....+100=5050

(28) (D).
$$T_{r+1} = {}^{18}C_r (9x)^{18-r} \left(-\frac{1}{3\sqrt{x}}\right)^r = a {}^{18}C_r$$

is independent of x provided r = 12 and then a = 1.

(29) (D).
$$(1+\sqrt{2}x^2)^9 = 1+9\sqrt{2}x^2+36.2x^4$$

 $+^9C_3 2\sqrt{2}x^6+...$
 $(1+\sqrt{2}x^2)^{-9} = 1-9\sqrt{2}x^2-70x^4-2x^4$
 $+^9C_3 2\sqrt{2}x^6+...$
 The expression is divisible by x, x², x³, x⁴ only.
(30) (B). $a(C_0+C_1+C_2+....+C_n)+b(C_1+2C_2+....+^nC_n)$

$$= a.2^{n} + b.n2^{n-1} = 2^{n} \left(\frac{2a+nb}{2}\right) = (2a+nb) 2^{n-1}$$

(31) (D).
$$T_{p+1} = {}^{n}C_{p} (x^{3})^{n-p} (x^{-4})^{p} = {}^{n}C_{p} x^{3n-7p}$$
 and x^{n} occurs provided $p = \frac{3n-r}{7}$ is an integer.

(32) (B). Given :
$$\left(\sqrt[3]{\frac{a}{b}} + \sqrt[3]{\frac{b}{\sqrt{a}}}\right)^{21}$$

$$t_{r+1} = {}^{21}C_r \left(\frac{a}{b}\right)^{\frac{21-r}{3}} \frac{b^{r/3}}{a^{r/6}} = {}^{21}C_r a^{\frac{42-3r}{6}} b^{\frac{2r-21}{3}}$$

 $\therefore 42 - 3r = 4r - 42$ i.e. r = 12

 \therefore 13th term contains same power of a and b.

(33) (C).
$$\left(1+\frac{1}{x^2}\right)^n$$
 $(1+x^2)^n = \frac{\left(1+z^2\right)^{2n}}{x^{2n}}$

numerator has (2n + 1) terms.

The middle terms is
$$\frac{1}{x^{2n}} x^{(2n)}C_n (x^2)^n = {}^{(2n)}C_n$$

(34) (A). If n is even, the greatest coefficient is ${}^{n}C_{n/2}$ \therefore the greatest term = ${}^{n}C_{n/2} x^{n/2}$ $\therefore {}^{n}C_{n/2} > {}^{n}C_{n/2-1} x^{n/2-1}$

and
$${}^{n}C_{n/2} x^{n/2} > {}^{n}C_{n/2+1} x^{n/2+1}$$

$$\Rightarrow \frac{n - \frac{n}{2} + 1}{\frac{n}{2}} x > 1 \text{ and } \frac{n - \left(\frac{n}{2} + 1\right) + 1}{\frac{n}{2} + 1} x < 1$$

$$\Rightarrow x > \frac{\frac{n}{2}}{\frac{n}{2}+1} \& x < \frac{\frac{n}{2}+1}{\frac{n}{2}} \Rightarrow x > \frac{n}{n+2} \text{ and } x < \frac{n+2}{n}$$

Hence $\frac{n}{n+2} < x < \frac{n+2}{n}$

(35) (B).
$$E = (x - \alpha_1) (x - \alpha_1) (x - \alpha_3) + \dots (x - \alpha_n)$$

where
$$\alpha_1 = 1, \alpha_2 = 2$$
 etc.

$$= x^{n} - (\Sigma \alpha_{1}) x^{n-1} + (\Sigma \alpha_{1} \alpha_{2}) x^{n-2} + \dots$$

Hence coefficient of x^{n-2} = sum of the product of the first 'n' natural numbers taken two at a time

 $= 1 \times 2 + 2 \times 3 + 3 \times 4$ n terms

$$=\frac{(1+2+3+.....+n)^2-(1^2+2^2+....+n^2)}{2}$$

(36) (A). $2^{60} = 8^{20} = (1+7)^{20} = 1+7n_1$ \therefore remainder is 1.

(37) (B).
$$(1+n)^n = C_0 + C_1 x + C_2 x^2 + ... + C_n x^n$$
 ... (1)
Put $x = -1$
 $C_0 - C_1 + C_2 - C_3 + ... (-1)^n C_n = 0$
also $(x+1)^n = C_0 x^n + C_1 x^{n-1} + ... + C_n x^6$... (2)
multiplying (1) and (2) and comp. coeff. of x^n

$$C_0^2 + C_1^2 + ... + C_n^2 = {}^{2n}C_n = \frac{n2!}{(n!)^2}$$

(38) (A). Statement – II is true (can be checked easily) and that's why

 $2^{n}C_{0} < 2^{n}C_{1} < 2^{n}C_{2} < \ldots < 2^{n}C_{n-1} < 2^{n}C_{n} \ldots 2^{n}C_{2n}$ Hence statement – I is true

- (39) (A). Obviously statement II is true and the correct reasoning of statement – I.
- (40) (C). Statement-1 is true but statement-2 s false. $2^{2000} = (2^4)^{500} = (16)^{500} = (15+1)^{500} = 15 \text{ m} + 1, \text{ m} \in \text{I}^+.$ $\therefore 2^{2003} = 2^3 \cdot (15m + 1) = 15.8m + 8$

 \therefore Remainder = 8

(41) (C). Given expression

$$= x. x^{2} . x^{3} ... x^{20} \left(1 - \frac{1}{x}\right) \left(1 - \frac{2}{x^{2}}\right) ... \left(1 - \frac{20}{x^{20}}\right) = x^{210}. P$$

where, $P = \left(1 - \frac{1}{x}\right) \left(1 - \frac{2}{x^{2}}\right) \left(1 - \frac{3}{x^{3}}\right) ... \left(1 - \frac{20}{x^{20}}\right)$

Now, coefficient of x^{203} in original expression = coefficient of x^{-7} in P. But,

$$P = 1 - \left(\frac{1}{x} + \frac{2}{x^2} + \frac{3}{x^3} + \dots\right) + \left(\frac{1}{x} \cdot \frac{6}{x^6} + \frac{2}{x^2} \cdot \frac{5}{x^3} + \frac{3}{x^3} \cdot \frac{4}{x^4}\right)$$
$$- \left(\frac{1}{x} \cdot \frac{2}{x^2} \cdot \frac{4}{x^4} + \dots\right);$$

Coefficient of $x^{-7} = -7 + 6 + 10 + 12 - 8 = 13$. The expression $(2+x)^2 (3+x)^3 (4+x)^4$ $=x^{9}+(2+2+3+3+3+3+4+4+4+4)x^{8}+...$ \Rightarrow coefficient of $x^8 = 29$.

(a)
$$T_{r+1} = \frac{\frac{7}{2} \left(\frac{7}{2} - 1\right) \left(\frac{7}{2} - 2\right) \dots \left(\frac{7}{2} - r + 1\right) x^r}{r!}$$

First negative term if $\frac{7}{2} - r + 1 + < 0$ i.e. $r > \frac{9}{2}$.

Hence r = 5

(b)
$$T_{r+1} = {}^{5}C_{r}(y^{2})^{5-r} \left(\frac{1}{y}\right)^{r} = {}^{5}C_{r}y^{10-3r}$$

$$10-3r = 1 \implies r = 3$$

So, coefficient of x y = ${}^{5}C_{3} = 10$
(c) T₂ = $14a^{5/2} \implies {}^{n}C_{1}(a^{1/13})^{n-1}(a^{3/2})^{1} = 14a^{5/2}$
 $\implies na^{\frac{n-1}{13}+\frac{3}{2}} = 14a^{5/2} \implies n = 14$
(d) $(1 + 2x + 3x^{2} + 4x^{3} +)^{1/2}$
= $[(1 - x)^{-2}]^{1/2} = (1 - x)^{-1} = 1 + x + x^{2} + + x^{n} +$

Hence coefficient of
$$x^4 = 1$$

 $\therefore c = 1$, so $c + 1 = 2$

(43) **(B)**.

(a)
$$({}^{m}C_{1} {}^{n}C_{m} - {}^{m}C_{2} {}^{2n}C_{m} + {}^{m}C_{3} {}^{3n}C_{m} - ...$$

 $(-1)^{m-1} {}^{m}C_{m} {}^{mn}C_{m})$
= Coefficient of x^{m} in the expansion of

Coefficient of x^m in the expa

$$({}^{m}C_{1}(1+x)^{n} - {}^{m}C_{2}(1+x)^{2n} + {}^{m}C_{3}(1+x)^{3n} \dots + (-1)^{m-1}{}^{m}C_{m}(1+x)^{mn})$$

= Coefficient of x^m in the expansion of

$$({}^{m}C_{0} - [{}^{m}C_{0} - {}^{m}C_{1}(1+x)^{n} + {}^{m}C_{2}(1+x)^{2n} - {}^{m}C_{3}(1+x)^{3m} + + (-1)^{m}{}^{m}C_{m}(1+x)^{mn}]) = Coefficient of x^{m} in the expansion of (1 - (1 - (1+x)^{n})^{m}) = Coefficient of x^{m} in the expansion of (1 - (1+x)^{n})^{m}.$$

(b) ${}^{n}C_{m} + {}^{n-1}C_{m} + {}^{n-2}C_{m} + \dots + {}^{m}C_{m}$ is the coeffi-

cient of x^m in the expnasion of

$$(1+x)^n + (1+x)^{n-1} + (1+x)^{n-2} + \dots + (1+x)^m$$

 $= (1+x)^m [1+(1+x)+(1+x)^2 + \dots + (1+x)^{n-m}]$

$$= (1+x)^m \left(\frac{1-(1+x)^{n-m+1}}{1-(1+x)}\right) = \frac{(1+x)^{n-1}-(1+x)^m}{x}$$

The the given expression is equal to the coefficient of x^m

in the expansion of
$$\frac{(1+x)^{n+1}}{x}$$

(c) $(1+x)^n = {}^nC_0 + {}^nC_1 x + {}^nC_2 x^2 + {}^nC_3 x^3 + \dots + {}^nC_n x^n - A$
 $(1+x)^n = {}^nC_0 + {}^nC_1 x + {}^nC_2 x^2 + {}^nC_3 x^3 + \dots + {}^nC_n x^n$
multiplying eq. A and B and equating coefficients of x^n

on both the sides. Coefficient of xⁿ in the expansion of $(1 + x)^n (x + x)^n = {}^nC_0$ ${}^{n}C_{1} + {}^{n}C_{1} {}^{n}C_{n-1} + {}^{n}C_{2} {}^{n}C_{n-2} + \dots + {}^{n}C_{n} {}^{n}C_{0}.$ Coefficient of of xn in the expansion of $(1 + x)^{n} = {}^{2n}C_{n}$ (d) $2^{m} {}^{n}C_{m} = \text{Coefficient of } x^{m}$ in the expansion of $(1+x)^{2n}$ 2^{m-1} $\overset{n-1}{\sim} C_{m-1} = Coefficient of x^{m-1}$ in the expansion of $(1+x)^{2n-1}$ = Coefficient of x^m in the expansion of $x (1 + 2x)^{n-1}$ Given expression = Coefficient of x^m in the expansion of ${}^{n}C_{0}(1+2x)^{n}-{}^{n}C_{1}x(1+2x)^{n-1}+{}^{n}C_{2}x^{2}(1+2x)^{n-2}-....$ = Coefficient of xm in the expansion of $(1 + 2x - x)^n = {}^nC_m$ (44) (A). (a) We know that, $(a-1)^n = {}^nC_0.a^n - {}^nC_1.a^{n-1} + {}^nC_2a^{n-2} (-1)^{n-1} \cdot nC_{n-1}a + (-1)^{n}C_{n}$

$$\therefore \quad \frac{(a-1)^{n}}{a} = {}^{n}C_{0}a^{n-1} - {}^{n}C_{1}a^{n-2} + {}^{n}C_{2}a^{n-3} - \dots + (-1)^{n-1} \cdot {}^{n}C_{n-1} + \frac{(-1)^{n}}{a} {}^{n}C_{n}$$

Hence,
$$f(n) = \frac{(a-1)^n - (-1)^n}{a}$$

Now, $f(2007) + f(2008) = \frac{(a-1)^{2007} + 1}{a} + \frac{(a-1)^{2008} - 1}{a}$
 $= \frac{(a-1)^{2007}(1+a-1)}{a} = (a-1)^{2007}$
 $= \left(3^{\frac{1}{223}}\right)^{2007} = 3^9 = 3^2 \cdot 3^7 = 9 (2187)$

Hence, k = 9

Alternatively,
$$f(n) = \frac{1}{a} [{}^{n}C_{0}.a^{n} - {}^{n}C_{1}.a^{n-1} + {}^{n}C_{2}a^{n-2}]$$

$$-\dots + (-1)^{n-1} \cdot {}^{n}C_{n-1}a + (-1)^{n}C_{n}] - \frac{(-1)^{n}}{a}$$

:.
$$f(n) = \frac{1}{a} [a-1]^n - \frac{(-1)^n}{a}$$
(1)

Now given, $a = 3^{\frac{1}{223}} + 1$ or $a - 1 = 3^{\frac{1}{223}}$

Hence,
$$f(n) = \frac{1}{a} \left(3^{\frac{1}{223}} \right)^n - \frac{(-1)^n}{a}$$
(2)

$$\therefore f(2007) = \frac{1}{a} \left(3^{\frac{1}{223}} \right)^{2007} - \frac{(-1)^{2007}}{a}$$

or
$$f(2007) = \frac{1}{a}(3^9) + \frac{1}{a}\left(\frac{2007}{223} = 9\right)$$

$$f(2007) = -(3^{2} + 1) \qquad \dots \dots (3)$$

$$f(2008) = \frac{1}{a} \left(\frac{3^{\frac{2008}{223}}}{3^{\frac{2008}{223}}} \right) - \frac{1}{a} = \frac{1}{a} \left(3^{\frac{9}{23}} - \frac{1}{3^{\frac{1}{223}}} \right) - \frac{1}{a}$$

or f(2008) =
$$\frac{1}{a} \left(3^9 \cdot 3^{\frac{1}{223}} - 1 \right)$$
(4)

Hence,
$$f(2007) + f(2008) = \frac{1}{a}(3^9 + 1) + \frac{1}{a}\left(3^9 \cdot 3^{\frac{1}{223}} - 1\right)$$

$$= \frac{1}{a} \left(3^9 + 3^9 \cdot 3^{\frac{1}{223}} \right)$$

$$= \frac{3^9}{a} \left(1 + 3^{\frac{1}{223}} \right) = \frac{3^9}{a} \cdot a = 3^9 = 9 \cdot 3^7 = 9 \cdot (2187) \Rightarrow k = 9$$

(b) $T_{r+1} = {}^{10}C_r \frac{x^r}{2^r}$
For $r = 2$; ${}^{10}C_2 \frac{x^2}{2^2} \Rightarrow \text{ coefficient of } x^2 = \frac{45}{4} = 11\frac{1}{4}$
For $r = 3$; ${}^{10}C_3 \frac{x^3}{2^3} \Rightarrow \text{ coefficient of } x^3 = 15$
For $r = 4$; ${}^{10}C_4 \frac{x^x}{2^4}$
 $\Rightarrow \text{ coefficient of } x^4 = \frac{210}{16} = \frac{105}{8} = 13\frac{1}{8} \Rightarrow r = 3$

(c)
$$T_4 = {}^{n}C_3 x^{n-3} \left(\frac{\alpha}{2x}\right)^3 \Rightarrow {}^{n}C_3 x^{n-3} \left(\frac{\alpha}{2}\right)^3 = 20$$

Q.B.- SOLUTIONS

$$n=6$$
, ${}^{6}C_{3}\left(\frac{\alpha}{2}\right)^{3}=20 \Rightarrow \alpha=2$

- (45) (B). Total number of terms is ${}^{10+3-1}C_{10} = {}^{12}C_{10} = 66$
- (46) (D). Coefficient of $a^8bc = \frac{10!}{8!1!1!} = 90$
- (47) (D). Coefficient of $a^4b^5c^3$ is $0 \quad \because \quad 4+5+3=12>10$ (48) (C), (49) (B), (50) (D).

 $R = (1 + 2x)^n$ Put x = 1 to get sum of all coefficients

 $\therefore 3^{n} = 6561 = 3^{8} \Longrightarrow n = 8$

(i) For
$$x = \frac{1}{\sqrt{2}}$$
, $R = (\sqrt{2} + 1)^8$

Consider

$$\underbrace{(\sqrt{2}+1)^8 + (\sqrt{2}-1)^8}_{l+f+f'} = 2 \left[{}^8C_0(\sqrt{2})^8 + \dots \right] = \text{even integer}$$

Since I is integer \Rightarrow f+f' must be an integer but $0 < f+f' < 2 \Rightarrow f+f'=1 \Rightarrow f'=1-f$ Now, n+R-Rf

$$\begin{split} & \mathsf{n} + \mathsf{R} \, (1-\mathsf{f}) = \mathsf{8} + (\sqrt{2} + 1)^{\mathsf{n}} \, (\sqrt{2} - 1)^{\mathsf{n}} = \mathsf{8} + 1 = \mathsf{9} \\ & (\mathsf{ii}) \, \mathsf{T}_{\mathsf{r}+1} \, \mathsf{in} \, (1 + 2\mathsf{x})^{\mathsf{8}} = {}^{\mathsf{8}}\mathsf{C}_{\mathsf{r}} \, (2\mathsf{x})^{\mathsf{r}} = {}^{\mathsf{8}}\mathsf{C}_{\mathsf{r}} \, \mathsf{when} \, \mathsf{x} = 1/2 \\ & \mathsf{Now} \, \mathsf{T}_{\mathsf{r}+1} \geq \mathsf{T}_{\mathsf{r}} \\ & \frac{\mathsf{T}_{\mathsf{r}+1}}{\mathsf{T}_{\mathsf{r}}} \geq \mathsf{1} \Rightarrow \frac{\mathsf{8}\mathsf{C}_{\mathsf{r}}}{\mathsf{8}\mathsf{C}_{\mathsf{r}-1}} \geq \mathsf{1} \\ & \mathsf{T}_{\mathsf{r}+1} \geq \mathsf{T}_{\mathsf{r}} \ ; \ \frac{\mathsf{8}!}{\mathsf{r}! \, (\mathsf{8} - \mathsf{r})!} \cdot \frac{(\mathsf{r} - 1)! (9 - \mathsf{r})!}{\mathsf{8}!} \geq \mathsf{1} \\ & (9 - \mathsf{r}) \geq \mathsf{r} \Rightarrow \mathsf{9} \geq \mathsf{2}\mathsf{r} \\ & \mathsf{For} \, \mathsf{r} = \mathsf{1}, \mathsf{2}, \mathsf{3}, \mathsf{4} \, \mathsf{this} \, \mathsf{is} \, \mathsf{true} \\ & \mathsf{i.e.} \, \mathsf{T}_{\mathsf{5}} > \mathsf{T}_{\mathsf{4}} \\ & \mathsf{but} \, \mathsf{for} \, \mathsf{r} = \mathsf{5}, \, \mathsf{T}_{\mathsf{6}} < \mathsf{T}_{\mathsf{5}} \Rightarrow \mathsf{T}_{\mathsf{5}} \, \mathsf{is} \, \mathsf{the} \, \mathsf{greatest} \, \mathsf{term} \Rightarrow (\mathsf{B}) \\ & (\mathsf{iii}) \, \mathsf{Again}, \, \mathsf{T}_{\mathsf{k}+1} = {}^{\mathsf{8}}\mathsf{C}_{\mathsf{k}}, {2^{\mathsf{k}}}.{\mathsf{x}^{\mathsf{k}}} \, ; \, \mathsf{T}_{\mathsf{k}} = {}^{\mathsf{8}}\mathsf{C}_{\mathsf{k}-1}.2^{\mathsf{k}-1}.\mathsf{x}^{\mathsf{k}-1} \\ & \mathsf{T}_{\mathsf{k}-1} = {}^{\mathsf{8}}\mathsf{C}_{\mathsf{k}-2}.2^{\mathsf{k}-2}.\mathsf{x}^{\mathsf{k}-2} \\ & \mathsf{We want to find the term having the greatest coefficient \\ & \therefore \, 2^{\mathsf{k}-1} \cdot {}^{\mathsf{8}}\mathsf{C}_{\mathsf{k}-1} > 2^{\mathsf{k}}.{}^{\mathsf{8}}\mathsf{C}_{\mathsf{k}-2} & \dots \dots (1) \\ & \mathsf{and} \, 2^{\mathsf{k}-1} \cdot {}^{\mathsf{8}}\mathsf{C}_{\mathsf{k}-1} > 2^{\mathsf{k}-2}.{}^{\mathsf{8}}\mathsf{C}_{\mathsf{k}-2} & \dots \dots (2) \\ & \mathsf{From} \, (1), \, \frac{\mathsf{8}!2^{\mathsf{k}-1}}{(\mathsf{k}-1)!(\mathsf{9}-\mathsf{k})!} > \frac{2^{\mathsf{k}-2}.{}^{\mathsf{8}}}{\mathsf{k}!(\mathsf{8}-\mathsf{k})!} \Rightarrow \frac{\mathsf{1}}{(\mathsf{9}-\mathsf{k})} > \frac{\mathsf{2}}{\mathsf{k}} \\ & \mathsf{Again} \, 2^{\mathsf{k}-1} \cdot {}^{\mathsf{8}}\mathsf{C}_{\mathsf{k}-1} > 2^{\mathsf{k}-2}.{}^{\mathsf{8}}\mathsf{C}_{\mathsf{k}-2} \\ & \frac{\mathsf{8}!.2^{\mathsf{k}-1}}{(\mathsf{k}-1)!(\mathsf{9}-\mathsf{k})!} > \frac{2^{\mathsf{k}-2}.{}^{\mathsf{8}}}{(\mathsf{k}-2)!(\mathsf{10}-\mathsf{k})!} \Rightarrow \frac{\mathsf{2}}{\mathsf{k}-1} > \frac{\mathsf{1}}{\mathsf{10}-\mathsf{k}} \\ & \Rightarrow 20 - 2\mathsf{k} > \mathsf{k} - 1 \Rightarrow 21 > 3\mathsf{k} \Rightarrow \mathsf{k} < 7 \\ & \Rightarrow \mathsf{6} < \mathsf{k} < 7 \Rightarrow \mathsf{T}_{\mathsf{6}} \, \mathsf{and} \mathsf{T}_{\mathsf{7}} \, \mathsf{term} \, \mathsf{has the greatest coefficient} \\ & \Rightarrow \mathsf{k} = \mathsf{6} \, \mathsf{or} \, \mathsf{7} \Rightarrow \mathsf{Sum} = \mathsf{6} + \mathsf{7} = \mathsf{13}. \end{split} \end{cases}$$

(51) (B), (52) (C), (53) (D).

$$x^{3-1}$$

 $x = 1, \omega, \omega^{2} \text{ or } x = \omega, \omega^{2}, \omega^{3}$
 $x = 1: C_{0} + C_{1} + C_{2} + C_{3} + C_{4} + \dots = 2^{n}$
 $x = \omega: C_{0} + C_{1} \omega^{2} + C_{2} \omega^{4} + C_{3} \omega^{5} + \dots = (1 + \omega^{2})^{n}$
 $\overline{3(C_{0} + 0 + 0 + C_{3} + 0 + 0 + C_{6} + \dots) = 2^{n} + (-\omega^{2})^{n} + (-\omega)^{n}}$
 $= 2^{n} + (-1)^{n} + (-1)^{n}$
 $\therefore C_{0} + C_{3} + C_{6} + \dots = \frac{2^{n} + 2(-1)^{n}}{3}$
 $x^{4} - 1 = 0 \Rightarrow x = \pm 1, \pm i$
 \therefore Sum of values $x = 1 + (-1) + i + (-i) = 0$
(54) (C). $\sum_{r=0}^{6m} 6^{m}C_{r} 2^{r/2}$ put $x = \sqrt{2}$
 $= (1 + \sqrt{2})^{6m} = (3 + 2\sqrt{2})^{3m}$
(55) (B). $\sum_{r=0}^{3m} (-1)^{r} 6^{m}C_{2r}$
 $= (\sqrt{2})^{6m} (\frac{1}{\sqrt{2}} + i\frac{1}{\sqrt{2}})^{6m} + (\sqrt{2})^{6m} (\frac{1}{\sqrt{2}} - i\frac{1}{\sqrt{2}})^{6m}$
 $= 2^{3m} \cdot 2 \cos \frac{3m\pi}{2} = \begin{cases} 0 \\ (-1)^{m/2} \cdot 2^{3m+1} \end{cases}$ if m is odd
if m is even
(56) (A). $\sum_{r=0}^{3m} (-3)^{r-1} \cdot 6^{m}C_{2r-1}$
 $= \frac{1}{\sqrt{3i}} [\sqrt{3i} \cdot 6^{m}C_{1} + (\sqrt{3i})^{3} \cdot 6^{m}C_{3} + (\sqrt{3i})^{5} \cdot 6^{m}C_{5}]$
 $(1 + \sqrt{3i})^{6m} = 6^{m}C_{0} + \sqrt{3i} \cdot 6^{m}C_{1} + (\sqrt{3i})^{2} \cdot 6^{m}C_{2} + (\sqrt{3i})^{3} \cdot 6^{m}C_{3} + \dots$
 $(1 - \sqrt{3i})^{6m} = 6^{m}C_{0} - \sqrt{3i} \cdot 6^{m}C_{1} + (\sqrt{3i})^{2} \cdot 6^{m}C_{2} - (\sqrt{3i})^{3} \cdot 6^{m}C_{3} + \dots$
 $(1 + \sqrt{3i})^{6m} - (1 - \sqrt{3i})^{6m}$
 $= 2[\sqrt{3i} \cdot 6^{m}C_{1} + (\sqrt{3i})^{3} \cdot 6^{m}C_{3} + \dots$
 $(1 + \sqrt{3i})^{6m} - (1 - \sqrt{3i})^{6m}$
 $= 2[\sqrt{3i} \cdot 6^{m}C_{1} + (\sqrt{3i})^{3} \cdot 6^{m}C_{3} + \dots$

$$= \frac{2^{6m}}{2\sqrt{3i}}(\cos 2m\pi + i\sin 2m\pi - \cos 2m\pi + i\sin 2m\pi) = 0$$

BINOMIAL THEOREM

Q.B.- SOLUTIONS

 $4\frac{1}{2}$

(4)

(57) (B). Sum of the coefficient in the expansion of

$$(1+2x)^n = 6561$$

 $\Rightarrow (1+2x)^n = 6561$, when $x = 1$
 $\Rightarrow 3^n = 6561 \Rightarrow 3^n = 3^8 \Rightarrow n = 8$
Now, $\frac{T_{r+1}}{T_r} = \frac{{}^8C_r(2x)^r}{{}^8C_{r-1}(2x)^{r-1}} = \frac{9-r}{r} \times 2x$
 $\Rightarrow \frac{T_{r+1}}{T_r} = \frac{9-r}{r} [\because x = 1/2]$
 $\therefore \frac{T_{r+1}}{T_r} > 1 \Rightarrow \frac{9-r}{r} > 1 \Rightarrow 9-r > r \Rightarrow 2r < 9 \Rightarrow r < r$

Hence, 5th term is the greatest term.

(58) **(B).**
$${}^{n}C_{7}\frac{2^{n-7}}{3^{7}} = {}^{n}C_{8}\frac{2^{n-8}}{3^{8}} \Rightarrow n = 55$$

(59) (A). Coefficient of $(3r)^{\text{th}}$ and $(r+2)^{\text{th}}$ terms will be ${}^{2n}C_{3r-1}$ and ${}^{2n}C_{r+1}$. These are equal $\Rightarrow (3r-1) + (r+1) = 2n \Rightarrow n = 2r$

EXERCISE-3

(1) 3.
$${}^{n}C_{m} \cdot {}^{m}C_{p} = \frac{n!}{(n-m)!m!} \times \frac{m!}{(m-p)!p!}$$

$$= \frac{n!}{(n-p)!p!} \times \frac{(n-p)!}{(n-m)!(m-p)!} = {}^{n}C_{p}. {}^{n-p}C_{m-p}$$

Now,
$$\sum_{p=1}^{n} \sum_{m=p}^{n} C_{p} C_{p}^{n-p} C_{m-p} =$$
$$\sum_{m=p}^{n} C_{p} C_{0}^{n-p} C_{0}^{n-p} C_{1}^{n-p} C_{2}^{n-p} C_{1-p}^{n-p} C_$$

$$= \sum_{p=1}^{n} {}^{n}C_{p}.2^{n-p} = \sum_{p=0}^{n} {}^{n}C_{p}.2^{n-p} - 2^{n} = 3^{n} - 2^{n}$$

further $3^n - 2^n = 19 \implies n = 3$

(2) 6.
$$(1-2x+5x^2+10x^3)$$
 [$C_0+C_1x+C_2x^2+...$]
= $1+a_1x+a_2x^2+...$

$$a_{1} = n - 2 \text{ and } a_{2} = \frac{n(n-1)}{2} - 2n + 5$$

put $a_{1}^{2} = 2a_{2}$
 $(n-2)^{2} = n(n-1) - 4n + 10$
 $n^{2} - 4n + 4 = n^{2} - 5n + 10$
 $n = 6$
3. Put $x = -1$; $(-3)^{2145} = a_{0} - a_{1} + a_{2} - a_{3} + \dots$

(3) 3. Put
$$x = -1$$
; $(-3)^{2145} = a_0 - a_1 + a_2 - a_3 + \dots - (3)^{2145} = -(3^4)^{536} \cdot 3 \implies \text{ ends in } 3$

0.
$$\frac{1(2^{2000} - 1)}{1} = 2^{2000} - 1$$

(5-1)¹⁰⁰⁰ - 1 = (1-5)¹⁰⁰⁰ - 1
1 - ¹⁰⁰⁰C₁ · 5 + ¹⁰⁰⁰C₂ · 5² ++ ¹⁰⁰⁰C₁₀₀₀ · 5¹⁰⁰⁰ - 1
which is divisible by 5
283 T = = ¹²C (3^{1/4})^{12-r} · (4)^{r/3}

(5) **283.**
$$T_{r+1} = {}^{12}C_r (3^{1/4}){}^{12-r.} (4)^{r/3}$$

= ${}^{12}C_r \cdot 3^{(3-r/4)} \cdot (4)^{r/3}$
For rational term $r = 0$ or 12
 \therefore Sum = $T_1 + T_{13} = {}^{12}C_0 \cdot 3^3 + {}^{12}C_{12} \cdot 4^4 = 3^3 + 4^4$
= 27 + 256 = 283

(6) 8. Coefficient of
$$x^2$$
 in $(1 - x)^{-n}$, $n \in N$ is ${}^{n+r-1}C_r$
now coefficient of x^n in $(1 + x)^2 (1 - x)^{-2}$
or coefficient of x^n in $(1 + 2x + x^2)(1 - x)^{-2}$
or coeff. of x^n in $(1 - x)^{-2} + 2 \cdot \text{coeff. of } x^{n-1}$ in
 $(1 - x)^{-2} + \text{coeff. of } x^{n-2}$ in $(1 - x)^{-2}$
 $= {}^{n+1}C_n + 2 \cdot {}^{n}C_{n-1} + {}^{n-1}C_{n-2}$
 $= (n+1) + 2n + n - 1 = 4n$
hence $4n = 32 \Rightarrow n = 8$

(7) **2.** r = 3 or 5; r = 0 is not possible

(8) 26.
$$T_{r+1} = {}^{100}C_r 2^{\frac{100-r}{2}} . 3^{r/4}$$

 \Rightarrow r must be even and divisible by 4
 \Rightarrow r=0, 4, 8,, 100

(9)
$$\mathbf{1.}(21)^{100} = (1+20)^{100} = 1 + {}^{100}C_1 \cdot 20 + {}^{100}C_2 \cdot 20^2 + \dots + {}^{100}C_{100} \cdot 20^{100}$$

hence last two digit are 01

(10) 99.
$$\left(\frac{x^2}{4} + \frac{2}{x}\right)^{12}$$
 general term

$$\Gamma_{r+1} = {}^{12}C_r \frac{x^{2(12-r)}}{4^{12-r}} \times \frac{2^r}{x^r} \Longrightarrow 24 - 3r = 3 \Longrightarrow r = 7$$

Coefficient =
$${}^{12}C_7 \times \frac{2^7}{4^5} = \frac{12 \times 11 \times 10 \times 9 \times 8}{120} \times \frac{1}{2^3} = 99$$

(11) 352.
$$(1 + x + x^2)^{12} = [1 + (x + x^2)]^{12}$$

 $T_{r+1} = {}^{12}C_r \cdot x^r (1 + x)^r$
coefficient of $x^3 \Rightarrow r=2, 3$
 ${}^{12}C_2 \cdot 2 + {}^{12}C_3 = 132 + 220 = 352$
(12) 9. Given expression = $1 + (1 + x) + (1 + x)^2 + \dots + (1 + x)^{19}$

$$(1+z)^{20} = 1$$
 (1) (1) (1) (1) (1)

$$=\frac{(1+x)^{20}-1}{(1+x)-1}=\frac{(1+x)^{20}-1}{x}$$

(It is a G.P. with first term = 1 + x, common ratio = 1 + x)

Now coefficient of x^{p} in $\frac{(1+x)^{20}-1}{x}$ = coefficient of x^{p+1} in $\{(1+x)^{20}-1\}$ $T_{r+1} = {}^{20}C_{r} x^{20-r} \quad \because n = 20$ even $\Rightarrow T_{(n/2)+1}$ is the term with greatest coefficient

121

$$\therefore T_{(20/2)+1} = T_{11} = {}^{20}C_r x^{20-10}$$

$$\therefore p+1=10 \Rightarrow p=9$$
(13) 12. $(1+x)^m (1-x)^n = \left[1+mx + \frac{m(m-1)}{2}x^2 +\right]$

$$\left[1-nx + \frac{n(n-1)}{2}x^2 -\right]$$

$$= 1+(m-n)x + \left[\frac{m(m-1)}{2} + \frac{n(n-1)}{2} - mn\right]x^2 +$$

Term containing power of $x \ge 3$.
Now, $m-n=3$ (1)
[\because coefficient of $x = 3$ given]
and $\frac{1}{2}m(m-1) + \frac{1}{2}n(n-1) - mn = -6$
 $\Rightarrow m(m-1) + n(n-1) - 2mn = -12$
 $\Rightarrow m^2 - m + n^2 - n - 2mn = -12$
 $\Rightarrow m^2 - m + n^2 - n - 2mn = -12$
 $\Rightarrow m^2 - m + n^2 - n - 2mn = -12$
 $\Rightarrow m + n = 9 + 12 = 21$ (2)
On solving eqs. (1) and (2), we get $m = 12$.
(14) 15. $\sum_{i=0}^{m} {}^{10}C_i {}^{20}C_{m-i} = {}^{10}C_0 {}^{20}C_m + {}^{10}C_1 {}^{20}C_{m-1}$
 $+ {}^{10}C_2 {}^{20}C_{m-2} + ... + {}^{10}C_m {}^{20}C_0$
 $= Coefficient of x^m in the expansion of product$
 $(1 + x){}^{10}(x + 1){}^{20}$
 $= Coefficient of x^m in the expansion of product$
 $(1 + x){}^{10}x^{-1}T_r T_r T_r + 1$ are three consecutive terms of
 $(1 + x){}^{30} = {}^{30}C_m$
Hence, the maximum value ${}^{30}C_m is {}^{30}C_{15}$.
(15) 6. Let $T_{r-1}, T_r T_r T_r + 1$ are three consecutive terms of
 $(1 + x){}^{n+5}$
 $T_{r-1} = {}^{n+5}C_{r-2} : {}^{n+5}C_{r-1} : {}^{n+5}C_r = 5 : 10 : 14$.
So, ${}^{n+5}C_{r-2} : {}^{n+5}C_{r-1} : {}^{n+5}C_r = 5 : 10 : 14$.
So, ${}^{n+5}C_{r-2} : {}^{n+5}C_{r-1} : {}^{n+5}C_r = 5 : 10 : 14$.
So, ${}^{n+5}C_{r-2} = {}^{n+5}C_{r-1} : {}^{n+5}C_r = 5 : 10 : 14$.
So, ${}^{n+5}C_{r-2} = {}^{n+5}C_{r-1} : {}^{n+5}C_r = 3 :(1)$
 ${}^{n+5}C_{r-1} = {}^{n+5}C_{r-1} : {}^{n+5}C_r = -30 :(2)$

From eq. (1) and (2), n = 6

(16) 10. According to the question,

$${}^{n}C_{r-2}: {}^{n}C_{r-1}: {}^{n}C_{r} = 1:3:5$$

$$\frac{{}^{n}C_{r-2}}{1} = \frac{{}^{n}C_{r-1}}{3} = \frac{{}^{n}C_{r}}{5}$$

$$\Rightarrow \quad \frac{{}^{n}C_{r}}{{}^{n}C_{r-1}} = \frac{5}{3} \text{ and } \frac{{}^{n}C_{r-1}}{{}^{n}C_{r-2}} = \frac{3}{1}$$

$$\Rightarrow \quad \frac{n-r+1}{r} = \frac{5}{3} \text{ and } \frac{n-r+2}{r-1} = \frac{3}{1}$$

$$\left[\because \quad \frac{{}^{n}C_{r}}{{}^{n}C_{r-1}} = \frac{n-r+1}{r} \right]$$

 $\Rightarrow 3n-8r+3=0 \text{ and } n-4r+5=0$ Solving these for n and r, we get n = 7 and r = 3.

(17) 4. T_{r+1} of $(1+x)^m = {}^mC_r x^r$ Here, r=2

Coefficient of
$$x^2 = {}^{m}C_2 = \frac{m(m-1)}{2}$$

$$\Rightarrow 6 = \frac{m (m-1)}{2} \Rightarrow m^2 - m = 12$$

$$\Rightarrow m^2 - m - 12 = 0 \Rightarrow (m-4) (m+3) = 0$$

$$\Rightarrow m = 4 \text{ or } m = -3$$

Positive value of m = 4.

(18) 10. We have,
$$\left(\frac{4\sqrt{2}}{4\sqrt{3}} + \frac{1}{4\sqrt{3}}\right)^n$$

5th term from the beginning =
$${}^{n}C_4 \left(\sqrt[4]{2}\right)^{n-4} \left(\frac{1}{\sqrt[4]{3}}\right)^4$$

 5^{th} term from the end = $(n + 1 - 5 + 1)^{\text{th}}$ term from beginning = $(n - 3)^{\text{th}}$ term from beginning

$$= {}^{n}C_{n-4} \left(\sqrt[4]{2}\right)^{4} \left(\frac{1}{\sqrt[4]{3}}\right)^{n-4}$$

Now,
$$\frac{{}^{n}C_{4} \left(\sqrt[4]{2}\right)^{n-4} \left(\frac{1}{\sqrt[4]{3}}\right)^{4}}{{}^{n}C_{n-4} \left(\sqrt[4]{2}\right)^{4} \left(\frac{1}{\sqrt[4]{3}}\right)^{n-4}} = \frac{\sqrt{6}}{1}$$

$$\Rightarrow (2)^{\frac{n-8}{4}} . (3)^{\frac{n-8}{4}} = 2^{\frac{1}{2}} \times 3^{\frac{1}{2}}$$
$$\Rightarrow \frac{n-8}{4} = \frac{1}{2} \Rightarrow n-8 = 2 \Rightarrow n = 10$$

(1) (C).
$$(1 + x)^{2n} = {}^{2n}C_0 + {}^{2n}C_1 x + {}^{2n}C_2 x^2 + {}^{2n}C_3 x^3 + \dots + {}^{2n}C_{2n} x^{2n}$$

Coefficient of $(r + 2)^{th}$ term is ${}^{2n}C_{r+1}$
Coefficient of $(3r)^{th}$ term is ${}^{2n}C_{3r-1}$
According to question
 ${}^{2n}C_{r+1} + {}^{2n}C_{3r-1}$
 $\Rightarrow r + 1 + 3r - 1 = 2n$
 $\Rightarrow 4r = 2n \Rightarrow 2r = n$
(2) (D). $(1 + x)^n = C_0 + C_1 x + C_2 x^2 + \dots + C_n x^n$
 $\frac{C_1}{C_0} + \frac{2C_2}{C_1} + \frac{3C_3}{C_2} + \dots + \frac{nC_n}{C_{n-1}} = ?$
 $T_r = \frac{r \cdot {}^nC_r}{nC_{r-1}} = r \cdot \frac{n - r + 1}{r}$
 $T_2 = (n - 1)$
 $T_3 = (n - 2)$
 \dots
 $T_n = 1$
On adding, $T_1 + T_2 + T_3 + \dots + T_n$
 $= n + (n - 1) + (n - 2) + \dots + 1 = \frac{n(n + 1)}{2}$

(3) (A). Let x^{39} comes in $(r + 1)^{th}$ no. of term in the expansion

of
$$\left(x^4 - \frac{1}{x^3}\right)^{15}$$
 : $r = \frac{15 \times 4 - 39}{4 + 3} = \frac{21}{7} = 3 \implies r = 3$

 $\therefore x^{39}$ comes in 4th term

$$\therefore T_{3+1} = {}^{15}C_3 (x^4) {}^{15-3} \left(-\frac{1}{x^3} \right)^5 = -{}^{15}C_3 x^{39}$$

$$\therefore \text{ Coefficient of } x^{39} \text{ is } -{}^{15}\text{C}_3 = -\frac{15}{3} \times \frac{14}{2} \times \frac{13}{1} = -455$$

$$\therefore \text{ If } x^{\text{m}} \text{ comes in } (r+1)^{\text{th}} \text{ no. of term in expansion of}$$

$$\left(ax^{\alpha} \pm \frac{b}{x^{\beta}}\right)^n$$
 then $r = \frac{n\alpha - m}{\alpha + \beta}$

(4) (B). \because x is nearly equal to 1 \therefore x = 1 + h, where h is very small \Rightarrow h = x - 1

Now,
$$\frac{ax^b - bx^a}{x^b - x^a} = \frac{a(1+h)^b - b(1+h)^a}{(1+h)^b - (1+h)^a}$$

= $\frac{a(1+bh) - b(1+ah)}{(1+bh) - (1+ah)}$

$$=\frac{a-b}{h(b-a)}=\frac{-1}{h}=\frac{-1}{x-1}=\frac{1}{1-x}$$

[If x is very very small then $(1 + x)^n = 1 + nx$]

(5) (C).
$$(\sqrt{3} + \sqrt[8]{5})^{256}$$

Let T_{r+1} term is integeral term

$$T_{r+1} = {}^{256}C_r (\sqrt{3})^{256-r} (\sqrt[8]{5})^r$$
$$= {}^{25}C_r 3 {}^{\frac{256-r}{2}} 5^{r/8} \dots \dots (1)$$

256-r

In (1), ${}^{25}C_r$ is integral and for 3 $\overline{2}$ to be integral

256 − r must be multiple of 2. ∴ r=0, 2, 4, 6 256(2) and for $5^{r/8}$ to be integral r must be multiple of 8 ∴ r=0, 8, 16, 24 256(3) From (2) and (3) common values of r are r=0, 8, 16, 24 33 values

1 0, 0, 10, 24 55 values

$$\therefore$$
 33 integral terms in expansion of $(\sqrt{3} + \sqrt[8]{5})^{256}$

(6) (C).
$$(1 + \alpha x)^4$$
 total no. of term are 5
 \therefore middle term is 3rd
 \therefore T₂₊₁ = ⁴C₂ (1)⁴⁻² (αx)²
 \therefore Coeff. is ⁴C₂ α^2
and in $(1 - \alpha x)^6$ total no. of term are 7
 \therefore middle term is 4th
 \therefore T₃₊₁ = ⁶C₃ ($-\alpha x$)³
 \therefore Coefficient of ($-\alpha$)³ ⁶C₃
according to question, ⁴C₂ $\alpha^2 = -\alpha^3$ ⁶C₃
 $\Rightarrow 6\alpha^2 = -\alpha^3$ (20) $\Rightarrow -\alpha = 3/10 \Rightarrow \alpha = -3/10$
(7) (B). (1+x) (1-x)ⁿ = (1+x) (ⁿC₀ - ⁿC₁ x - ⁿC₂ x² - ⁿC₃ x³
 $+ \dots + ^nC_{n-1} + (-x)^{n-1} + ^nC_n (-x)^n)$
 $= (1+x) (^nC_0 - ^nC_1 x + ^nC_2 x^2 - ^nC_3 x^3)$
 $+ \dots + (-1)^{n-1} n^nC_{n-1} x^{n-1} + (-1)^{n-1} n^nC_n x^n)$
 \therefore Coefficient of xⁿ is (-1)ⁿ nⁿC_n + (-1)ⁿ⁻¹ nⁿC_{n-1} = n}

(A).
$$S_n = \sum_{r=0}^n \frac{1}{{}^nC_r}$$
 and $t_n = \sum_{r=0}^n \frac{r}{{}^nC_r}$ (given)
 $S_n = \sum_{r=0}^n \frac{1}{{}^nC_r} = \frac{1}{{}^nC_0} + \frac{1}{{}^nC_1} + \frac{1}{{}^nC_2} + \frac{1}{{}^nC_3} + \dots + \frac{1}{{}^nC_n}$
.....(1)

and
$$t_n = \sum_{r=0}^n \frac{r}{{}^nC_r}$$

= $\frac{0}{{}^nC_0} + \frac{1}{{}^nC_1} + \frac{2}{{}^nC_2} + \frac{3}{{}^nC_3} + \dots + \frac{n}{{}^nC_n}$

(8)

$$= \frac{n}{{}^{n}C_{n}} + \frac{n-1}{{}^{n}C_{n-1}} + \frac{n-2}{{}^{n}C_{n-2}} + \dots + \frac{2}{{}^{n}C_{2}} + \frac{2}{{}^{n}C_{1}} + \frac{0}{{}^{n}C_{0}}$$

in reverse order}

$$= \frac{n-0}{{}^{n}C_{n}} + \frac{n-1}{{}^{n}C_{n-1}} + \frac{n-2}{{}^{n}C_{n-2}} + \dots$$
$$+ \frac{n-(n-2)}{{}^{n}C_{2}} + \frac{n-(n-1)}{{}^{n}C_{1}} + \frac{n-n}{{}^{n}C_{0}}$$

$$= \left(\frac{n}{{}^{n}C_{n}} - \frac{0}{{}^{n}C_{n}}\right) + \left(\frac{n}{{}^{n}C_{n-1}} - \frac{1}{{}^{n}C_{n-1}}\right) + \dots + \left(\frac{n}{{}^{n}C_{1}} - \frac{n-1}{{}^{n}C_{1}}\right) + \left(\frac{n}{{}^{n}C_{0}} - \frac{n}{{}^{n}C_{0}}\right)$$

$$= n \left[\frac{1}{{}^{n}C_{n}} + \frac{1}{{}^{n}C_{n-1}} + \frac{1}{{}^{n}C_{n-2}} + \dots + \frac{1}{{}^{n}C_{0}} \right]$$
$$- \left[\frac{0}{{}^{n}C_{n}} + \frac{1}{{}^{n}C_{n-1}} + \frac{2}{{}^{n}C_{n-2}} + \dots + \frac{n}{{}^{n}C_{0}} \right]$$

$$= nS_{n} - \left[\frac{0}{{}^{n}C_{0}} + \frac{1}{{}^{n}C_{1}} + \frac{2}{{}^{n}C_{2}} + \dots + \frac{n}{{}^{n}C_{n}}\right]$$
$$\left\{ \vdots {}^{n}C_{0} = {}^{n}C_{n} \text{ or } {}^{n}C_{r} = {}^{n}C_{n-r} \right\}$$

$$t_n = nS_n - t_n \Longrightarrow 2t_n = nS_n \Longrightarrow \frac{t_n}{S_n} = \frac{n}{2}$$

(9) (C). $(1+y)^{m} = C_{0} + C_{1}y + C_{2}y^{2} + \dots + C_{m}y^{m}$ Coefficient of rth term is ${}^{m}C_{r-1}$ and Coefficient of $(r+1)^{th}$ term is ${}^{m}C_{r}$ and coefficient of $(r+2)^{th}$ term is ${}^{m}C_{r+1}$ According to question they are in A.P. $\therefore 2 {}^{m}C_{r} = {}^{m}C_{r-1} + {}^{m}C_{r+1}$ $\Rightarrow \frac{2.m!}{(m-r)! r!} = \frac{m!}{(r-1)! (m-r+1)!} + \frac{m!}{(m-r-1)! (r+1)!}$ $= \frac{2.1}{(m-r) (m-r-1)! r (r-1)!}$ $= \frac{1}{(r-1)! (m-r+1) (m-r) (m-r-1)!}$ $+ \frac{1}{(m-r-1)! (r+1) r (r-1)!}$

$$= \frac{2}{(m-r)r} = \frac{1}{(m-r+1)(m-r)} + \frac{1}{(r+1)r}$$
$$= \frac{2}{(m-r)r} = \frac{(r+1)r + (m-r+1)(m-r)}{(m-r+1)(m-r)(r+1)(r)}$$
$$\Rightarrow 2(m-r+1)(r+1) = r^2 + r + m^2 + r^2 - 2mr + m - r$$
$$\Rightarrow 2[mr - r^2 + r + m - r + 1] = m^2 + 2r^2 - 2mr + m$$
$$\Rightarrow m^2 - 4mr - m + 4r^2 - 1 = 0$$
$$\Rightarrow m^2 - m(4r+1) + 4r^2 - 2 = 0$$

(10) (D). If
$$x^m$$
 comes in $(r+1)^{th}$ term in expansion of

$$\left(ax^{\alpha} \pm \frac{b}{x^{\beta}}\right)^n$$
 then $r = \frac{n\alpha - m}{\alpha + \beta}$

$$\therefore$$
 Let x⁷ comes in (r + 1)th term in expansion of

and let x^{-7} comes in $(r\,+\,1)^{th}$ no. term in expansion of

$$\left(ax - \frac{1}{bx^2}\right)^{11} \qquad \therefore \quad r = \frac{11 \times 1 - (-7)}{1 + 2} = \frac{18}{3} = 6$$

Now, $T_{6+1} = {}^{11}C_6 (ax)^{11-6} \left(\frac{-1}{bx}\right)^6$
$$\therefore \text{ Coefficient is } {}^{11}C_6 \left(\frac{a^5}{b^6}\right) \qquad \dots \dots (2)$$

According to question,

$${}^{11}C_5 \frac{a^6}{b^5} = {}^{11}C_6 \frac{a^5}{b^6} \Rightarrow a = 1/b \Rightarrow ab = 1$$

(11) (C). x is so small that
$$x^3$$
 and higher power of x may be
neglected $\therefore (1+x)^n = 1 + nx + \frac{n(n-1)}{2!}x^2$

Now,
$$\frac{(1+x)^{3/2} - \left(1 + \frac{1}{2}x\right)^3}{(1-x)^{1/2}}$$

(12)

Q.B.- SOLUTIONS

$$= \frac{\left[1 + \frac{3}{2}x + \frac{3/2}{2!}(\frac{3}{2} - 1)}{2!}x^{2}\right] - \left[1 + \frac{x^{3}}{8} + 3 \cdot 1^{2}\frac{x}{2} + 3 \cdot 1\left(\frac{x}{2}\right)^{2}\right]}{(1 - x)^{1/2}}$$

$$= \left[\frac{\left(1 + \frac{3}{2}x + \frac{3}{8}x^{2}\right) - \left(1 + \frac{3}{2}x + \frac{3}{4}x^{2}\right)}{(1 - x)^{1/2}}\right]$$

$$= (-3/8x^{2})(1 - x)^{-1/2}$$

$$= \left(-3/8x^{2}\right)\left[1 + \frac{x}{2} + \frac{-\frac{1}{2}\left(-\frac{1}{2} - 1\right)}{2!}(-x)^{2}\right]$$

$$= \left(\frac{-3}{8}x^{2}\right)\left[1 + \frac{x}{2} + \frac{3}{8}x^{2}\right] = -\frac{3}{8}x^{2} - \frac{3}{16}x^{3} - \frac{9}{64}x^{4}$$

$$= -\frac{3}{8}x^{2} \text{ {term containing } x^{3} and higher power are neglected}}$$

$$= \frac{1}{(1 - ax)(1 - bx)} \text{ is } a_{0} + a_{1}x + a_{2}x^{2} + a_{3}x^{3} + \dots + a_{n}x^{n}$$

$$+ \dots \infty \qquad \dots (1)$$
Now, $\frac{1}{(1 - ax)(1 - bx)} = (1 - ax)^{-1}(1 - bx)^{-1}$

$$= [1 + ax + (ax)^{2} + (ax)^{3} + \dots + (bx)^{2} + (bx)^{3} + \dots + bx^{n} + bx^{n}$$

$$= \frac{1 + ax + (ax)^{2} + (ax)^{3} + \dots \left[1 + (bx)^{2} + (bx)^{2} + (bx)^{3} + \dots \right]}{Now, coefficient of x^{n} is}$$

$$b^{n} + a^{1}b^{n-1} + a^{2}b^{n-2} + a^{3}b^{n-3} + \dots + a^{n} \qquad \dots \dots (2)$$

$$= \frac{b^{n} \left[1 - \left(\frac{a}{b}\right)^{n+1}\right]}{1 - \frac{a}{b}} = \frac{b^{n} \left[\frac{b^{n+1} - a^{n+1}}{b^{n+1}}\right]}{\left(\frac{b-a}{b}\right)} = \frac{b^{n+1} - a^{n+1}}{b-a}$$

$$\{ :: (1) \text{ is GP. and sum of } (n+1) \text{ term of GP. is } \frac{a(1-r^{n+1})}{1-r} \}$$

(13) (C). $(1-y)^{m}(1+y)^{n}$ $[({}^{m}C_{0} - {}^{m}C_{1}y + {}^{m}C_{2}y^{2} - {}^{m}C_{3}y^{3} + \dots + {}^{m}C_{m}(-y)^{m})$ $({}^{n}C_{0} + {}^{n}C_{1}y + {}^{n}C_{2}y^{2} + {}^{n}C_{3}y^{3} + \dots + {}^{n}C_{n}(y)^{n})]$ $\dots (1)$ but $(1-y)^{m}(1+y)^{n} = 1 + a_{1}y + a_{2}y^{2} + \dots (given)$ and $a_{1} = a_{2} = 10$ (2) \therefore RHS of (1) and (2) are same On comparing

$$\label{eq:constraint} \begin{array}{l} {}^{m}C_{0}\times{}^{n}C_{1}-{}^{m}C_{1}\times{}^{n}C_{0}=10 \\ \Rightarrow n-m=10 \\ and {}^{m}C_{0}\times{}^{n}C_{2}-{}^{m}C_{1}\times{}^{n}C_{1}+{}^{m}C_{2}\times{}^{n}C_{0}=10 \end{array} \\ \\ \frac{n\left(n-1\right)}{2}-mn+\frac{m\left(m-1\right)}{2}=10 \\ \Rightarrow n^{2}-n-2mn+m^{2}-m=20 \\ mn(4) \\ Put value of n from (3) in (4) \\ (m+10)^{2}-(m+10)-2m\left(m+10\right)+m^{2}-m=20 \\ \Rightarrow m^{2}+100+20m-m-10-2m^{2}-20m+m^{2}-m=20 \\ \Rightarrow -2m+70=0 \Rightarrow m=35 \\ \therefore n=45 \Rightarrow (m,n)=(35,45) \\ \mbox{(14)} \quad \mbox{(D).} (a-b)^{n}={}^{n}C_{0}a^{n}+{}^{n}C_{1}a^{n-1} (-b)+{}^{n}C_{2}a^{n-2} (-b)^{2} \\ +\dots +{}^{n}C_{n} (-b)^{n} \\ Now, T_{5}={}^{n}C_{4}a^{n-4} (-b)^{4}={}^{n}C_{4}a^{n-4}b^{4} \\ T_{6}={}^{n}C_{5}a^{n-5} (-b)^{5}=-{}^{n}C_{5}a^{n-5}b^{5} \\ According to question, T_{5}+T_{6}=0 \\ \Rightarrow {}^{n}C_{4}a^{n-4}b^{4}-{}^{n}C_{5}a^{n-5}b^{5} =0 \\ \Rightarrow {}^{n}C_{4}a^{n-4}b^{4}={}^{n}C_{5}a^{n-5}b^{5} \end{array}$$

$$\Rightarrow \frac{a}{b} = \frac{{}^{n}C_{5}}{{}^{n}C_{4}} = \frac{\frac{n!}{(n-5)!5!}}{\frac{n!}{(n-4)!4!}}; \quad \frac{a}{b} = \frac{n-4}{5}$$

(15) (B).
$${}^{20}C_0 - {}^{20}C_1 + {}^{20}C_2 - {}^{20}C_3 + \dots + {}^{20}C_{10}$$

 \therefore We know that
 ${}^{20}C_0 - {}^{20}C_1 + {}^{20}C_2 - {}^{20}C_3 + {}^{20}C_4 - {}^{20}C_5 + \dots + {}^{20}C_{17} + {}^{20}C_{18} - {}^{20}C_{19} + {}^{20}C_{20} = 0$
 $\Rightarrow 2 ({}^{20}C_0 - {}^{20}C_1 + {}^{20}C_2 - {}^{20}C_3 + \dots - {}^{20}C_9) + {}^{20}C_{10} = 0$
 $\Rightarrow 2 ({}^{20}C_0 - {}^{20}C_1 + {}^{20}C_2 - {}^{20}C_3 + \dots + {}^{20}C_{10}) - {}^{20}C_{10} = 0$
 $\Rightarrow ({}^{20}C_0 - {}^{20}C_1 + {}^{20}C_2 - {}^{20}C_3 + \dots + {}^{20}C_{10}) = \frac{1}{2} {}^{20}C_{10}$
 $\therefore {}^{n}C_r = {}^{n}C_{n-r} \qquad \therefore {}^{20}C_0 = {}^{20}C_{20}$
 ${}^{20}C_1 = {}^{20}C_{19}; \qquad {}^{20}C_2 = {}^{20}C_{18}$

(16) (A). Statement 1 :
$$\sum_{r=0}^{n} (r+1)^{n} C_{r} = (n+2) 2^{n-1}$$

L.H.S. =
$$\sum_{r=0}^{n} (r+1) {}^{n}C_{r} = \sum_{r=0}^{n} (r^{n} \cdot {}^{n}C_{r} + {}^{n}C_{r})$$

$$\sum_{r=0}^{n} r \cdot \frac{n}{r} \, {}^{n-1}C_{r-1} + \sum_{r=0}^{n} {}^{n}C_{r}$$

$$n \sum_{r=0}^{n} {}^{n-1}C_{r-1} + 2^n = n \cdot 2^{n-1} + 2^n = 2^{n-1} (n+2) = R \cdot H \cdot S.$$

 \therefore Statement (1) is correct.

125

=

Q.B.- SOLUTIONS

Statement 2 :

$$\sum_{r=0}^{n} (r+1) {}^{n}C_{r}x^{r} = (1+x)^{n} + nx (1+x)^{n-1}$$

$$L.H.S. = \sum_{r=0}^{n} (r+1) {}^{n}C_{r}x^{r} = \sum_{r=0}^{n} (r. {}^{n}C_{r}x^{r} + {}^{n}C_{r}x^{r})$$

$$= \sum_{r=0}^{n} r.\frac{n}{r} {}^{n-1}C_{r-1}x^{r} + \sum_{r=0}^{n} {}^{n}C_{r}x^{r}$$

$$n\sum_{r=0}^{n} {}^{n-1}C_{r-1}x^{r} + (1+x)^{n} = nx\sum_{r=0}^{n} {}^{n-1}C_{r-1}x^{r-1} + (1+x)^{n}$$

$$= nx (1+x)^{n-1} + (1+x)^{n} = RHS. \quad \therefore \text{ Statement (2) is true}$$

$$\therefore \text{ If we put } x = 1 \text{ in statement (2) we get statement (1)}$$

(17) (B).
$$8^{2n} - (62)^{2n+1}$$

 $\Rightarrow (9-1)^{2n} - (63-1)^{2n+1}$
 $\Rightarrow ({}^{2n}C_09^{2n} - {}^{2n}C_19^{2n-1} + \dots + 1)$
 $- ({}^{2n+1}C_063^{2n+1} - {}^{2n+1}C_163^{2n} + \dots - 1)$
 $\Rightarrow 9K+2$. So remainder is 2.

(18) (B).
$$S_1 = \sum_{j=1}^{10} j(j-1) \frac{10!}{j(j-1)(j-2)!(10-j)!}$$

$$= 90 \sum_{j=2}^{10} \frac{8!}{(j-2)! (8-(j-2))!} = 90.2^8$$

$$S_{2} = \sum_{j=1}^{10} j \frac{10!}{j (j-1)! (9-(j-1))!}$$

= $10 \sum_{j=1}^{10} \frac{9!}{(j-1)! (9-(j-1))!} = 10.2^{9}$
$$S_{3} = \sum_{j=1}^{10} [j (j-1)+j] \frac{10!}{j! (10-j)!} = \sum_{j=1}^{10} j (j-1)^{10} C_{j}$$

= $\sum_{j=1}^{10} j^{10} C_{j} = 90.2^{8} + 10.2^{9}$
= $90.2^{8} + 20.2^{9} = 110.2^{8} = 55.2^{9}$

$$\begin{array}{l} (1-x-x^2+x^3)^6 \\ (1-x)^6 (1-x^2)^6 \\ (^6C_0-^6C_1x^1+^6C_2x^2-^6C_3x^3+^6C_4x^4-^6C_5x^5+^6C_6x^6) \\ (^6C_0-^6C_1x^2+^6C_2x^4-^6C_3x^6+^6C_4x^8+\ldots\ldots+^6C_6x^{12}) \\ \text{Now coefficient of } x^7=^6C_1\,^6C_3-^6C_3\,^6C_2+^6C_5\,^6C_1 \\ = 6\times 20-20\times 15+36=120-300+36=156-300=-144 \end{array} \right.$$

(20) (A).
$$(\sqrt{3}+1)^{2n} - (\sqrt{3}-1)^{2n}$$

= $2 [^{2n} C_1 (\sqrt{3})^{2n-1} + {}^{2n} C_3 (\sqrt{3})^{2n-3} + {}^{2n} C_5 (\sqrt{3})^{2n-5} + \dots]$
which is an irrational number.

(21) (C).
$$\left((x^{1/3} + 1) - \left(\frac{\sqrt{x} + 1}{\sqrt{x}} \right) \right)^{10}$$
; $(x^{1/3} - x^{-1/2})^{10}$
 $T_{r+1} = {}^{10}C_r (x^{1/3})^{10-r} (-x^{-1/2})^r$
 $\frac{10-r}{3} - \frac{r}{2} = 0 \Rightarrow 20 - 2r - 3r = 0 \Rightarrow r = 4$
 $T_5 = {}^{10}C_4 = \frac{10 \times 9 \times 8 \times 7}{4 \times 3 \times 2 \times 1} = 210$
(22) (D). 1 $(1 - 2x)^{18} + ax (1 - 2x)^{18} + bx^2(1 - 2x)^{18}$
Coefficient of x^3 :
 $(-2)^{3} {}^{18}C_3 + a (-2)^{2} {}^{18}C_2 + b (-2) {}^{18}C_1 = 0$
 $\frac{4 \times (17 \times 16)}{(3 \times 2)} - 2a \cdot \frac{17}{2} + b = 0$ (1)
Coefficient of x^4 :
 $(-2)^4 {}^{18}C_4 + a (-2)^3 {}^{18}C_3 + b (-2)^2 {}^{18}C_2 = 0$
 $(4 \times 20) - 2a \cdot \frac{16}{3} + b = 0$ (2)
From eq. (1) and (2), we get
 $4\left(\frac{17 \times 8 - 60}{3}\right) + \frac{2a (-19)}{6} = 0$
 $a = \frac{4 \times 76 \times 6}{3 \times 2 \times 19} = 16$; $b = \frac{2 \times 16 \times 16}{3} - 80 = \frac{272}{3}$
(23) (D). $(1 - 2\sqrt{x})^{50} = {}^{50}C_0 - {}^{50}C_1(2\sqrt{x})^1 + {}^{50}C_2(2\sqrt{x})^2 + \dots + {}^{50}C_{50}(-2\sqrt{x})^{50}$
Sum of coefficient of integral power of x
 $= {}^{50}C_0 2^0 + {}^{50}C_2 2^2 + {}^{50}C_4 2^4 + \dots + {}^{50}C_{50} 2^{50}$
We know that
 $(1 + 2)^{50} = {}^{50}C_0 + {}^{50}C_1 2 + \dots + {}^{50}C_{50} \cdot 2^{50}$

(24) (C). $\left(1-\frac{2}{x}+\frac{4}{x^2}\right)^n$

Assuming all dissimilar terms ${}^{n+2}C_2 = 28$; n = 6Sum of all coefficients = $3^6 = 729$

Then, ${}^{50}C_0 + {}^{50}C_2 \cdot 2^2 + \dots + {}^{50}C_{50} \cdot 2^{50} = \frac{3^{50} + 1}{2}$

BINOMIAL THEOREM

Q.B.- SOLUTIONS

(25) (B).
$$({}^{21}C_{1} + {}^{21}C_{2} + {}^{21}C_{3} + \dots {}^{21}C_{10})$$

 $- ({}^{10}C_{1} + {}^{10}C_{2} + {}^{10}C_{3} + \dots {}^{10}C_{10}) = S_{1} - S_{2}$ (31)
 $S_{1} = {}^{21}C_{1} + {}^{21}C_{2} + {}^{21}C_{3} + \dots {}^{21}C_{10}$
 $S_{1} = \frac{1}{2} ({}^{21}C_{1} + {}^{21}C_{2} + \dots + {}^{21}C_{20})$
 $= \frac{1}{2} ({}^{21}C_{0} + {}^{21}C_{1} + {}^{21}C_{2} + \dots + {}^{21}C_{20} + {}^{21}C_{21} - 2)$
 $S_{1} = {}^{20} - 1$
 $S_{2} = ({}^{10}C_{1} + {}^{10}C_{2} + {}^{10}C_{3} + \dots {}^{10}C_{10}) = {}^{210} - 1$ (32)
 Therefore, $S_{1} - S_{2} = {}^{20} - {}^{10}$

(26) (B). Let
$$\sqrt{x^3 - 1} = y$$

 $(x + y)^5 + (x - y)^5$
 $= ({}^5C_0 x^5 + {}^5C_1 x^4 y + \dots + {}^5C_5 y^5)$
 $+ ({}^5C_0 x^5 - {}^5C_1 x^4 y + \dots - {}^5C_5 y^5)$
 $= 2 [{}^5C_0 x^5 + {}^5C_2 x^3 y^2 + {}^5C_4 x y^4]$
 $= 2 [C_0 x^5 + {}^5C_2 x^3 y^2 + {}^5C_4 x y^4]$
 $= 2 [x^5 + 10 x^3 (x^3 - 1) + 5x (x^3 - 1)^2]$
 $= 2 [x^5 + 10 x^6 - 10 x^3 + 5x^7 + 5x - 10x^4]$
 $= 2 [1 - 10 + 5 + 5] = 2$

(27) **(D).**
$$\frac{2^{403}}{15} = \frac{2^3 \cdot (2^4)^{100}}{15} = \frac{8}{15} (15+1)^{100}$$

$$=\frac{8}{15}(15\lambda+1)=8\lambda+\frac{8}{15}$$
 : 8\lambda is integer

$$\Rightarrow$$
 Fractional part of $\frac{2^{403}}{15}$ is $\frac{8}{15} \Rightarrow k = 8$

(28) (B).
$$(1 - t^6)^3 (1 - t)^{-3}$$

 $(1 - t^{18} - 3t^6 + 3t^{12}) (1 - t)^{-3}$
Cofficient of t⁴ in $(1 - t)^{-3}$ is ³⁺⁴⁻¹C₄ = ⁶C₂ = 15
(29) (B). $2.^{20}C_0 + 5.^{20}C_1 + 8.^{20}C_2 + 11.^{20}C_3 + ... + 62.^{20}C_{20}$

$$= \sum_{r=0}^{20} (3r+2)^{20} C_r = 3 \sum_{r=0}^{20} r \cdot {}^{20} C_r + 2 \sum_{r=0}^{20} {}^{20} C_r$$
$$= 3 \sum_{r=0}^{20} r \left(\frac{20}{r}\right)^{19} C_{r-1} + 2 \cdot 2^{20} = 60.2^{19} + 2.2^{20} = 2^{25}$$

(30) (D).
$$(x + \sqrt{x^3 - 1})^6 + (x - \sqrt{x^3 - 1})^6$$

$$= 2 [{}^{6}C_0 x^6 + {}^{6}C_2 x^4 (x^3 - 1) + {}^{6}C_4 x^2 (x^3 - 1)^2 + {}^{6}C_6 (x^3 - 1)^3]$$

$$= 2 [{}^{6}C_0 x^6 + {}^{6}C_2 x^7 - {}^{6}C_2 x^4 + {}^{6}C_4 x^8 + {}^{6}C_4 x^2 - {}^{2^6}C_4 x^5 + (x^9 - 1 - 3x^6 + 3x^3)]$$

$$\Rightarrow \text{ Sum of coefficient of even powers of } x$$

$$= 2 [1 - 15 + 15 + 15 - 1 - 3] = 24$$
(3)

(D).
$$200 = {}^{6}C_{3} \left(\frac{1}{x^{1+\log_{10} x}}\right)^{3/2} \times x^{1/4}$$

 $\Rightarrow 10 = x^{\frac{3}{2(1+\log_{10} x)} + \frac{1}{4}} \Rightarrow 1 = \left(\frac{3}{2(1+t)} + \frac{1}{4}\right) t$
where $t = \log_{10} x$
 $\Rightarrow t^{2} + 3t - 4 = 0 \Rightarrow t = 1, -4 \Rightarrow x = 10, 10^{-4}$
 $\Rightarrow x = 10 (As x > 1)$

2) **(D).**
$$\frac{{}^{n}C_{r-1}}{{}^{n}C_{r}} = \frac{2}{15}; \frac{\frac{n!}{(r-1)!(n-r+1)!}}{\frac{n!}{r!(n-r)!}} = \frac{2}{15}; \frac{r}{n-r+1} = \frac{2}{15}$$

$$15r = 2n - 2r + 2$$
; $17r = 2n + 2$

$$\frac{{}^{n}C_{r}}{{}^{n}C_{r+1}} = \frac{15}{70} ; \frac{\frac{n!}{r!(n-r)!}}{\frac{n!}{(r+1)!(n-r-1)!}} = \frac{3}{14} ; \frac{r+1}{n-r} = \frac{3}{14}$$

$$\frac{680+16}{3} = \frac{696}{3} = 232$$

(33) (A). Coefficient of
$$x^2 = {}^{15}C_2 \times 9 - 3a ({}^{15}C_1) + b = 0$$

 $-45a + b + {}^{15}C_2 \times 9 = 0$...(i)
 $-27 \times {}^{15}C_3 + 9a \times {}^{15}C_2 - 3b \times {}^{15}C_1 = 0$
 $\Rightarrow 9 \times {}^{15}C_2 a - 45 b - 27 \times {}^{15}C_3 = 0$
 $\Rightarrow 21a - b - 273 = 0$...(ii)
(i) + (ii) : $-24 a + 672 = 0 \Rightarrow a = 28$
So, b = 315

(34) (B).
$$T_r = \sum_{r=0}^{n} {}^nC_r x^{2n-2r} \cdot x^{-3r}$$

$$2n-5r=1 \Rightarrow 2n=5r+1$$

for $r=15$. $n=38$
Smallest value of n is 38

(35) (B).
$$(1+x)(1-x)^{10}(1+x+x^2)^9$$

 $(1-x^2)(1-x^3)^9$
 ${}^{9}C_6 = 84$
(36) (A). $(1+x)^n = {}^{n}C_0 + {}^{n}C_1x + {}^{n}C_2x^2 + + {}^{n}C_nx^n$
Diff. w.r.t. x

 $n (1+x)^{n-1} = {}^{n}C_{1} + {}^{n}C_{2} (2x) + \dots + {}^{n}C_{n} n(x)^{n-1}$ Multiply by x both side

Q.B.- SOLUTIONS

1) (D).
$$T_{r+1} = {}^{16}C_r \left(\frac{x}{\cos\theta}\right)^{16-r} \left(\frac{1}{x\sin\theta}\right)^r$$

 $= {}^{16}C_r(x)^{16-2r} \times \frac{1}{(\cos\theta)^{16-r}(\sin\theta)^r}$
For independent of x; $16 - 2r = 0 \Rightarrow r = 8$
 $\Rightarrow T_9 = {}^{16}C_8 \frac{1}{\cos^8 \theta \sin^8 \theta} = {}^{16}C_8 \frac{2^8}{(\sin 2\theta)^8}$
For $\theta \in \left[\frac{\pi}{8}, \frac{\pi}{4}\right] \ell_1$ is least for $\theta_1 = \frac{\pi}{4}$
For $\theta \in \left[\frac{\pi}{16}, \frac{\pi}{8}\right] \ell_2$ is least for $\theta_2 = \frac{\pi}{8}$
 $\frac{\ell_2}{\ell_1} = \frac{(\sin 2\theta_1)^8}{(\sin 2\theta_2)^8} = (\sqrt{2})^8 = \frac{16}{1}$
2) (51)
 $S = 1.{}^{25}C_0 + 5.{}^{25}C_1 + 9.{}^{25}C_2 + + (101)^{25}C_{25}$
 $S = 101 {}^{25}C_{25} + 97 {}^{25}C_1 + + 1 {}^{25}C_{25}$
 $\overline{2S} = (102) (2^{25})$
 $S = 51 (2^{25})$
3) (A). $\frac{(1+x)^{10} \left[1 - \left(\frac{x}{1+x}\right)^{11}\right]}{(1-\frac{x}{1+x})}$

$$=\frac{(1+x)^{10}\left[(1+x)^{11}-x^{11}\right]}{(1+x)^{11}\times\frac{1}{(1+x)}}=(1+x)^{11}-x^{11}$$

Coefficient of x^7 is ${}^{11}C_7 = {}^{11}C_4 = 330$