

ATOMS AND MOLECULES

SUBJECT-CHEMISTRY

CHAPTER NO-3

Concept of Valency, Variable Valency, Radicals, Symbols and Writing a chemical formula.

PERIOD-4

CHANGING YOUR TOMORROW

Website: www.odmegroup.org

Email: info@odmps.org

Toll Free: **1800 120 2316**

Sishu Vihar, Infocity Road, Patia, Bhubaneswar-751024

LEARNING OBJECTIVE

Students will be able to

- Know about the concept of Valency, Variable Valency.
- Get aware of the Radicals and its types.
- Know about the concept of Electro valency and Covalency
- Know about the steps to write the chemical formula of the compounds.

THE CONCEPT OF VALENCY

Valency

- Valence electrons are those electrons which are present in the outermost orbit of the atom.
- The capacity of an atom to lose, gain or share valence electrons in order to complete its octet determines the valency of the atom.
- Examples: The valency of hydrogen is one
- In hydrogen chloride molecule (HCl) one atom of chlorine combines with one atom of hydrogen, hence valency of chlorine is 1

THE CONCEPT OF VARIABLE VALENCY

Variable Valency

- Some elements show more than one valency or simply variable valency.
- The suffix *ous* are used for the lower valency and the suffix *ic* is used for the higher valency
- For example, IRON (II) is known as Ferrous with valency 2 and IRON (III) is known as Ferric with valency 3.

ELECTROVALENCY

- The property of an element to lose or gain electrons to form positive or negative ions is known as Electro valency.
- An ion with a positive charge is known as Cation, Example, Calcium (Ca2+),
 Sodium (Na+) etc.
- An ion with a negative charge is known as Anion, Example, Chlorine (Cl-) and Oxygen (O2-)
- These elements always form Ionic Bond or Electrovalent Bond.
- The number of electrons present in the outermost shell is known as Valence Electrons.

COVALENCY

- The property of the element to share electrons to form covalent bond is known as Covalency.
- Covalent Compounds have low Melting point.
- For example, carbon share its four electrons with four hydrogen atoms to forms methane (CH4)

SYMBOLS OF ELEMENTS

1 - Hydrogen H	21 - Scandium Sc	41 - Niobium Nb
2 - Helium He	22 - Titanium Ti	42 - Molybdenum Mo
3 - Lithium Li	23 - Vanadium V	43 - Technetium Tc
4 - Beryllium Be	24 - Chromium Cr	44 - Ruthenium Ru
5 - Boron B	25 - Manganese Mn	45 - Rhodium Rh
6 - Carbon C	26 - Iron (Ferrum) Fe	46 - Palladium Pd
7 - Nitrogen N	27 - Cobalt Co	47 - Silver (Argentum) Ag
8 - Oxygen O	28 - Nickel Ni	48 - Cadmium Cd
9 - Fluorine F	29 - Copper (Cuprum) Cu	49 - Indium In
10 - Neon Ne	30 - Zinc Zn	50 - Tin (Stannum) Sn
11 - Sodium (Natrium) Na	31 - Gallium Ga	51 - Antimony (Stibium) Sb
12 - Magnesium Mg	32 - Germanium Ge	52 - Tellurium Te
13 - Aluminium (Aluminum) Al	33 - Arsenic As	53 - Iodine I
14 - Silicon Si	34 - Selenium Se	54 - Xenon Xe
15 - Phosphorus P	35 - Bromine Br	55 - Caesium (Cesium) Cs
16 - Sulfur S	36 - Krypton Kr	56 - Barium Ba
17 - Chlorine Cl	37 - Rubidium Rb	57 - Lanthanum La
18 - Argon Ar	38 - Strontium Sr	58 - Cerium Ce
19 - Potassium (Kalium) K	39 - Y wunEdit with WPS Off	59 - Praseodymium Pr
20 - Calcium Ca	40 - Zirconium Zr	60 - Neodymium Nd

CONCEPT OF RADICALS

Radicals

- A Radical is an atom of an element or a group of atoms of different elements that behaves like a single unit.
- Radicals are of two types: -
- Basic Radical: They have positive charge and are also called Cations.
- Acid Radical: They have negative charge and are also called Anions.

NEGATIVE RADICAL

- A RADICAL IS A GROUP OF ATOMS WITH A CHARGE.
- A GROUP OF NEGATIVE RADICALS AND SOME OF THE CATIONS ARE GIVEN BELOW.

Name of Radical	Representation	Valency
Chloride	CI-	1
Bromide	Br-	1
Hydroxide	OH-	1
Acetate	CH₃COO⁻	1
Nitrate	NO ₃ -	1
Nitrite	NO ₂ -	1
Bisulphate	HSO4⁻	1
Bisulphite	HSO₃⁻	1
Bicarbonate	HCO₃⁻	1
Oxide	O ²⁻	2
Carbonate	CO3 ²⁻	2
Sulphate	SO ₄ 2-	2
Sulphite	SO ₃ 2-	2
Dichromate	Cr ₂ O ₇ ²⁻	2
Nitrite	W Edit with WPS Off	ce ³
Phosphate	PO ₄ 3-	3

POSITIVE RADICALS

Valency	Symbol	Name
Monovalent (1)	Hydrogen	H ⁺
	Sodium	Na⁺
	Potassium	K ⁺
	Ammonium	NH ₄ ⁺
	Copper (I) / Cuprous	Cu⁺
	Silver (I) / Argentous	Ag⁺
	Mercury (I) / Mercurous	Hg⁺
Bivalent (2)	Magnesium	Mg ²⁺
	Calcium	Ca ²⁺
	Barium	Ba ²⁺
	Zinc	Zn ²⁺
	Nickel	Zn ²⁺
	Copper (II) / Cupric	Cu ²⁺
	Iron (II) / Ferrous	Fe ²⁺
	Lead (II) / Plumbous	Pb ²⁺
	Tin (II) / Stannous	Sn ²⁺
	Silver (II) / Argentite	Ag ²⁺
	Mercury (II) / Mercuric	Hg ²⁺
	Manganese (II) / Manganous ion	Mn ²⁺
Trivalent (3)	Aluminium	Al3+
	Iron (III) / Ferric	Fe ³⁺
	Edit with WPS Office	Cr ³⁺

STEPS FOR WRITING A CHEMICAL FORMULA

To write the chemical formula, the following steps must be followed.

- 1. Write the Symbols
- 2. Interchange the valence number
- 3. Write the valency of the symbols.
- 4. Write the interchanged numbers at the base.
- 5. Write the formula of the compound

For example, the step wise method for writing the formula of CALCIUM OXIDE is given below

CALCIUM OXIDE

Step 1: Write the symbols and valencies.

Sym	bols
Calcium	Oxide
Ca	0

Valer	ncies
Calcium	Oxide
2+	2-

Step 2: Ca2+ O2-

Step 3: Ca2+ O2

Step 4: Ca₂O₂

Step 5: Reduce the valency numbers to the lowest ratio, if possible.

HOME ASSIGNMENT

WRITE THE CHEMICAL FORMULA OF THE FOLLOWING BY CRISS-CROSS METHOD.

- 1)MAGNESIUM CHLORIDE
- 2) AMMONIUM NITRATE
- 3) CALCIUM PHOSPHATE
- 4) SODIUM SULPHATE
- 5) CALCIUM BICARBONATE
- 6)POTTASIUM HYDROXIDE
- 7) HYDROGEN PEROXIDE
- 8) ALUMINIUM CHLORIDE
- 9) AMMONIUM CHLORIDE
- 10) HYDROGEN SULPHIDE
- 11)Exercise-1 Q7 & Q8 Exercise-1 Q4 & Q5

THANKING YOU

ODM EDUCATIONAL GROU

