

GRAVITATION SUBJECT-PHYSICS CHAPTER NUMBER-10

CHANGING YOUR TOMORROW

Website: www.odmegroup.org Email: info@odmps.org

Toll Free: 1800 120 2316

Sishu Vihar, Infocity Road, Patia, Bhubaneswar- 751024

LEARNING OBJECTIVE

Students will be able

- Define acceleration due to gravity.
- Calculate value of acceleration due to gravity.

Recapitulation

- State the universal law of gravitation.
- What are Important Characteristics of Gravitational forces?
- Write the importance of universal law of gravitation.
- What is the difference between gravity and gravitation?

Acceleration Due to Gravity

- When an object falls towards the earth there is a change in its acceleration due to the gravitational force of the earth. So this acceleration is called acceleration due to gravity.
- The acceleration due to gravity is denoted by g.
- The unit of g is same as the unit of acceleration, i.e., ms⁻²

Mathematical Expression for g

From the second law of motion, force is the product of mass and acceleration.

F = ma

For free fall, acceleration is replaced by acceleration due to gravity.

Therefore, force becomes:

F = mg(i)

But from Universal Law of Gravitation,

 $F = \frac{GMm}{d^2}$ (ii)

From equations (i) and (ii), we get:

$$mg = \frac{GMm}{d^2}$$
$$\Rightarrow \qquad g = \frac{GM}{d^2}$$

Where M is the mass of the earth and d is the distance between the object and the earth.

For objects near or on the surface of the earth distance d is equal to the radius of the earth R.

Thus,
$$g = \frac{GM}{R^2}$$
(iii)

Value of acceleration due to gravity

Mass of the earth, $M = 6 \times 10^{24}$ kg

Radius of the Earth, $R = 6.4 \times 10^6$ m

Gravitational constant, G = $6.67 \times 10^{-11} \text{ Nm}^2/\text{kg}^2$

Therefore value of g on Earth,

$$\therefore g = \frac{GM}{R^2}$$

$$= \frac{6.67 \times 10^{-11} \times 6 \times 10^{24}}{6.4 \times 10^6 \times 6.4 \times 10^6} \text{m/s}^2$$

$$= 9.8 \text{ m/s}^2$$

Q.A cricket ball thrown vertically upwards, reaches a maximum height of 5 meters. Find the initial speed of the ball.

HOME ASSIGNMENT

- Calculate the value of g on the surface of earth.
- What do you mean by acceleration due to gravity?

THANKING YOU ODM EDUCATIONAL GROUP

