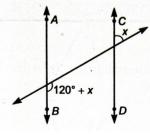
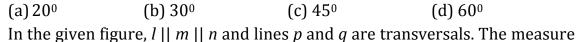

CHAPTER-6

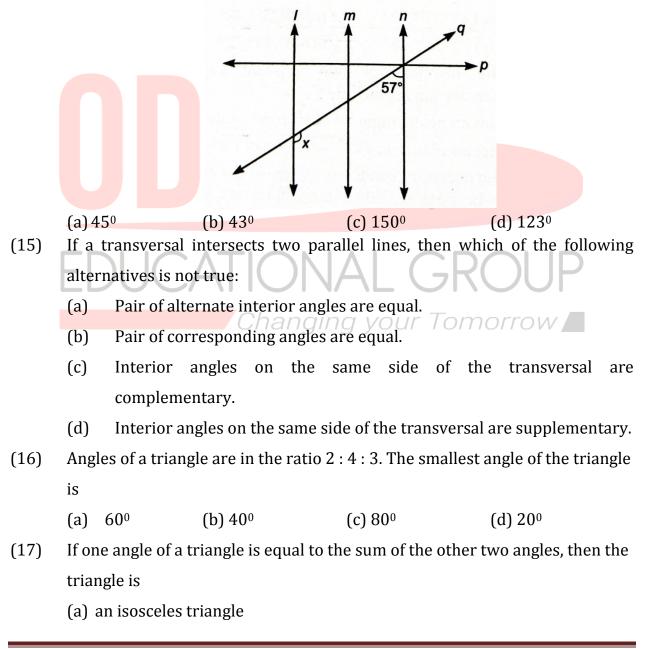
Lines and Angles

QUESTION BANK

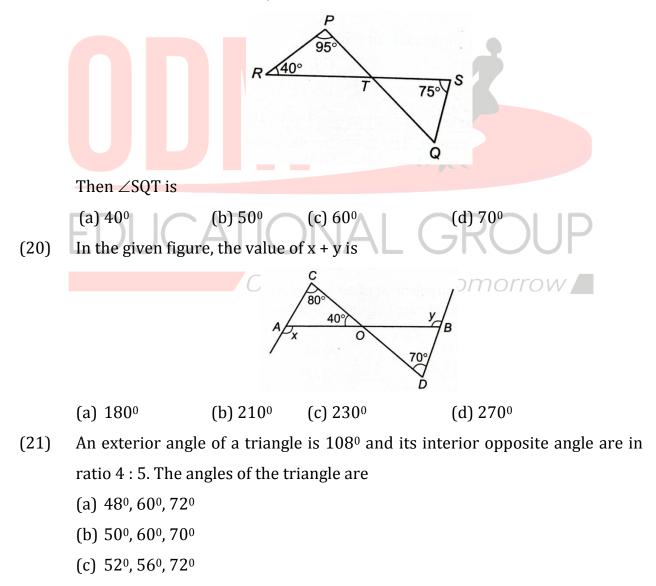


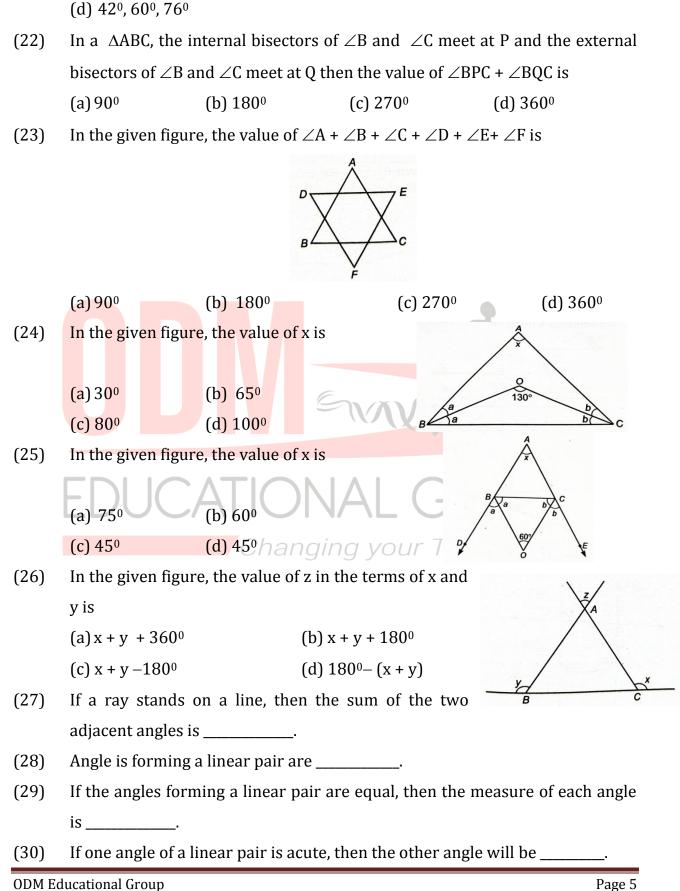


ODM Educational Group


Page 2

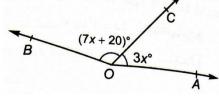
(13) In the given figure, if AB||CD, then the value of x is

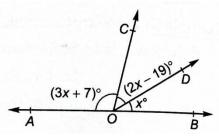




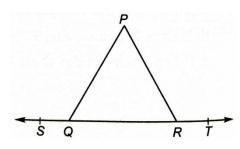
(14) In the given figure, *l* || *m* || *n* and lines *p* and *q* are transversals. The measure of angle *x* is

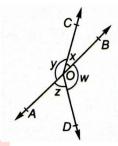
- (b) an obtuse triangle
- (c) an equilateral triangle
- (d) a right triangle
- (18) One angle of a triangle is 65°. The remaining two angles, if there difference is 25°, are
 - (a) $70^{\circ}, 45^{\circ}$ (b) $60^{\circ}, 35^{\circ}$
 - (c) $75^{\circ}, 50^{\circ}$ (d) $65^{\circ}, 40^{\circ}$
- (19) In the given figure, lines PQ and RS intersect at point T, such that $\angle PRT = 40^{\circ}$, $\angle RPT=95^{\circ}$ and $\angle TSQ = 75^{\circ}$




Page 5

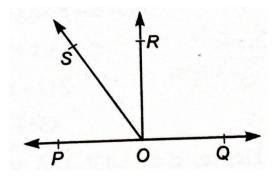
- (31) If one angles of a linear pair are in the ratio 2 :3, then the measure of the acute angle is ______ and the measure of the obtuse angle is ______.
- (32) If one angle of a linear pair is double the other one, then the smaller angle is _____.
- (33) If the sum of the two adjacent angles is 180⁰, then the non-common arms of the two angles are two _____ rays.
- (34) If two lines intersect, then the vertically opposite angles are ______.
- (35) Two line perpendicular to the same line are ______to each other.
- (36) If a transversal intersects two parallel lines, then each pair of corresponding angles is _____.
- (37) If a transversal intersects two parallel lines, then each pair of alternate interior angle is ______.
- (38) If a transversal intersects two parallel lines, then each pair of interior angles on the same side of the transversal is _____.
- (39) If a transversal intersects two lines such that any one pair of alternate interior angles is equal, then the two lines are ______ to each other.
- (40) If the angles forming a linear pair are equal, then the measure of each angle is _____.
- (41) If one angle of a linear pair is acute, then the other angle will be
- (42) If a transversal intersects two lines such that any one pair of interior angles on the same side of transversal is supplementary, then the two lines are ______ to each other.
- (43) The sum of the three angles of a triangle _____.
- (44) If a side of triangle is produced, the exterior angle so formed is equal to______ of the two interior opposite angles.
- (45) The exterior angle of a triangle is _____than either of its interior opposite angles.


- (46) If a transversal intersects two parallel lines, then the bisectors of the interior angles on the same side of the transversal intersect each other at_____.
- (47) An angle is 26° less than its complement. Find its measure.
- (48) Two line perpendicular to the same line are ______to each other.
- (49) The supplement of an angle is one-third of itself. Determine the angle and its supplement.
- (50) Find the measure of an angle, if seven times its complement is 10^o less than three times its supplement.
- (51) Two complementary angles are such that two times the measure of one is equal to three times the measure of the other. Find the measure of the larger angle.
- (52) Two supplementary angles are in the ratio 3 : 7. Find the angles.
- (53) Find the complement of the angle 42° 25' 36".
- (54) Find the supplement of the angle 98°35'20".
- (55) What value of x would make AOB a line in Figure, if $\angle AOC = 4x^0$ and $\angle BOC = (6x + 30)^0$?
- (56) In figure, if $\angle BOC = (7x + 20)^0$ and $\angle COA = 3x^0$, then find the value of x for which AOB becomes a straight line.


(57) In figure, AOB is a straight line. Find the value of x. Hence, find $\angle AOC$, $\angle COD$ and $\angle BOD$.

(58) In figure $\angle PQR = \angle PRQ$, then prove that $\angle PQS = \angle PRT$.

(59) In figure, if x + y = w + z, then prove that AOB is a straight line.

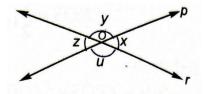


(60) In figure, lines XY and MN intersect at O. If $\angle POY = 90^{\circ}$ and a : b = 2 :3, find c.

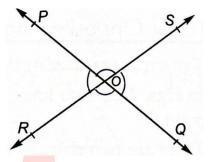
(62) Find the supplement of the angle 98°35'20".

Find the complement of the angle 42° 25' 36".

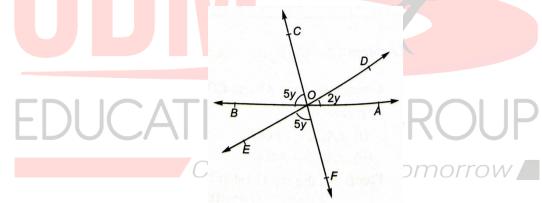
(63) In figure, POQ is a line. Ray OR is perpendicular to line PQ. OS is another ray lying between rays OP and OR. Prove that $\angle ROS = \frac{1}{2} [\angle QOS - \angle POS]$

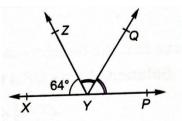


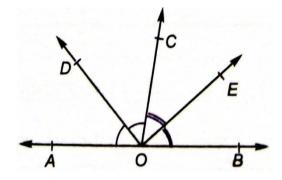
(64) If two lines intersect each other, then the vertically opposite angles are equal.

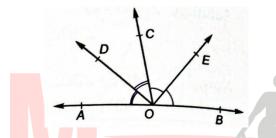

ODM Educational Group

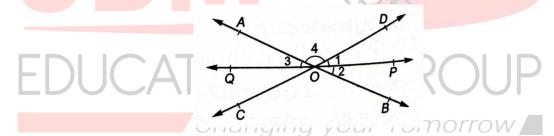
(61)


(65) In figure, lines p and r intersect at 0. If $x = 45^{\circ}$, find y, z and u.


(66) In figure, determine the value of y and hence find \angle EOB, \angle FOA and \angle COD.


(67) In figure, lines AB and CD intersect at 0. If $\angle AOC + \angle BOE = 70^{\circ}$ and $\angle BOD = 40^{\circ}$, find $\angle BOE$ and reflex $\angle COE$.


(68) It is given that $\angle XYZ = 64^{\circ}$ and XY is produced to point P. Draw a figure from the given information. If ray YQ bisects $\angle ZYP$, find $\angle XYQ$ and reflex $\angle QYP$.


- (69) Two supplementary angles are in the ratio 3 : 7. Find the angles.
- (70) In figure, AOB is a line, OD bisects \angle AOC and OE bisects \angle BOC. Show that \angle DOE is a right angle.

(71) In figure, OD is the bisector of $\angle AOC$, OE is the bisector of $\angle BOC$ and OD \perp OE. Show that the points A, O and B are collinear.

(72) In figure, AB and CD are two intersecting lines. OP and OQ are respectively bisectors of \angle BOD and \angle AOC. Show that OP and OQ are opposite rays.

- (73) An angle is equal to its complement. Find its measure.
- (74) An angle is equal to five times its complement. Find its measure.
- (75) An angle is 28⁰ less than its complement. Find its measure.
- (76) Find the measure of an angle which is 24⁰ more than its complement.
- (77) Find the measure of an angle with 25^o less than its supplement.
- (78) An angle is half of its complementary angle. Find the angle.
- (79) Two supplementary angles differ by 48^o. Find the angles.
- (80) Two complementary angles are in the ratio 4:5. Find the angles.
- (81) An angle is equal to one-third of its supplement. Find its measure.

- (82) Find the measure of an angle, if six times its complement is 20⁰ less than twice is supplement.
- (83) Prove that the sum of the angles of a hexagon is 720° .
- (84) An angle is 28° less than its complement. Find its measure.
- (85) Find the measure of an angle which is 24⁰ more than its complement.
- (86) If a transversal intersects two parallel lines, then each pair of alternate interior angles is equal.
- (87) Find the measure of an angle with 25^o less than its supplement.
- (88) If a transversal intersects two lines such that a pair of alternate interior angles is equal, then the two lines are parallel.
- (89) Lines which are parallel to the same line are parallel to each other.
- (90) Prove that two lines perpendicular to the same line are parallel to each other.
- (91) If a transversal intersects two parallel lines, then prove that the bisectors of the corresponding angles are also parallel.
- (92) If a transversal intersects two lines such that the bisectors of a pair of corresponding angles are parallel, then prove that the two lines are parallel.
- (93) Two complementary angles are in the ratio 4:5. Find the angles.
- (94) An angle is equal to one-third of its supplement. Find its measure.
- (95) If a transversal intersects two parallel lines, then prove that the bisectors of any pair of alternate interior angles are parallel.
- (96) If the arms of an angle are respectively parallel to the arms of another angle, show that the two angles are either equal or supplementary.
- (97) Prove that if the two arms of an angle are \perp to the two arms of another angle, then angle are either equal or supplementary.
- (98) The sum of the three angles of a triangle is 180° .
- (99) If a side of a triangle is produced, then the exterior angle so formed is equal to the sum of the two interview opposite angles.

- (100) Prove that sum of all angles of a quadrilateral is 360^o.
- (101) Prove that the sum of the angles of a pentagon is 540° .
- (102) Prove that the sum of the angles of a hexagon is 720° .
- (103) If a transversal intersects two parallel lines, prove that the bisectors of the interior angles on the same side of the transversal intersect each other at right angles.
- (104) If two parallel lines are intersected by a transversal, prove that the bisectors of two pairs of interior angles from a rectangle.
- (105) Prove that sum of all angles of a quadrilateral is 360^o.
- (106) Show that the bisectors of the base angles of a triangle can never enclose a right angle.
- (107) In \triangle PQR, $\angle Q > \angle R$, PA is the bisector $\angle QPR$ and PM $\perp QR$. Prove that $\angle APM = \frac{1}{2}(\angle Q + \angle R)$
- (108) ABCD is a quadrilateral and bisectors of $\angle A$ and $\angle D$ meet at 0. Prove that $\angle AOD = \frac{1}{2} (\angle B + \angle C)$
- (109) If a transversal intersects two parallel lines, then prove that the bisectors of any pair of alternate interior angles are parallel.
- (110) Prove that the angle between the angle bisector of one base angle and the external bisector of the other is equal to one half of the vertical angle.
- (111) The side BC of \triangle ABC is produced to D. If the bisector of \angle A meets BC in L, prove that \angle ABC + \angle ACD = 2 \angle ALC.
- (112) The angles of a triangle are in the ratio 2 : 3 : 4. Find the angles of the triangle.
- (113) In a triangle ABC, if $2 \angle A = 3 \angle B = 6 \angle C$, find $\angle A$, $\angle B$ and $\angle C$.
- (114) If one angle of a triangle is equal to the sum of the other two angles of the triangle, show that the triangle is a right triangle.

- (115) One of the angles of a triangle is 65°. Find the remaining two angles, if their difference is 25°.
- (116) The angle of a triangle are $(x 40)^0$, $(x 20)^0$ and $(\frac{x}{2} 10)^0$. Find the value of x and then find the angles of the triangle.
- (117) Three angles of a quadrilateral are 110⁰, 40⁰ and 50⁰. Find the fourth angle.
- (118) If each angle of a triangle is less than the sum of the other two, show that the triangle is acute angled.
- (119) If one of the angle of a triangle is greater than the sum of the other two, show that the triangle is obtuse angled.
- (120) ABCD is a quadrilateral and bisectors of $\angle A$ and $\angle D$ meet at 0. Prove that $\angle AOD = \frac{1}{2} (\angle B + \angle C)$

Changing your Tomorrow 🖊

)[