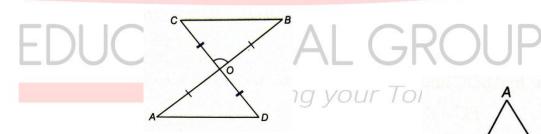
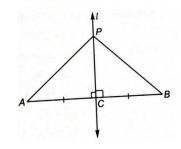
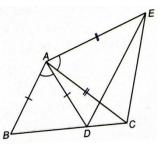

CHAPTER-7

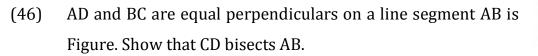

Triangles

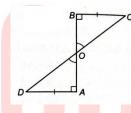

	(c) $\angle B$ and $\angle E$ (d) $\angle A$ and $\angle E$			
(9)	In triangles ABC and PQR, if $\angle A = \angle R$, $\angle B = \angle P$ and AB= RP, then which of			
	of the following congruency criteria can be used?			
	(a) SAS (b) ASA			
	(c) SSS (d) RHS			
(10)	D) In triangles ABC and PQR, AB = QP, $\angle B = \angle P$ and BC= QR. The two trians			
	will be congruent by axiom			
	(a) SAS (b) ASA			
	(c) SSS (d) RHS			
(11)				
	(a) 40° (b) 50° (c) 80° (d) 130°			
(12)	In $\triangle PQR$, $\angle R = \angle P$ and $QR=4$ cm and $PR = 5$ cm. Then the length of PQ is			
(10)	(a) 4cm (b) 5 cm. (c) 2 cm. (d) 2.5 cm.			
(13)	D is a point on the side BC of a \triangle ABC such that AD bisects \angle BAC. Then			
	(a) BD=CD (b) BA > BD (c) BD > BA (d) CD > CA			
(14)	Two sides of a triangle are of lengths 5 cm and 1.5 cm. The length of the			
(II)	third side of the triangle cannot be			
	(a) 3.6 cm (b) 4.1 cm. (c) 3.8 cm (d) 3.4 cm.			
(15)				
	EDUCALCINAL GROUE			
(16)	In \triangle ABC, the altitude AD, BE and CF are equal. Then \triangle ABC is			
	(a) an acute angled triangle			
	(b) a right angled triangle			
	(c) a right angled isosceles triangle			
	(d) an equilateral triangle			
(17)	If Δ ABC is an isosceles triangle, then which of the following is not true.			
	(a) bisector of $\angle BAC \perp BC$			
	(b) altitude AD bisects ∠BAC			
	(c) altitude BE = altitude CF			
	(d) all the three altitudes are equal			
	-			

		[CLASS-IX] MAT	HEMATICS QUESTION BANK 2021-22	
(18)	It is given that $\triangle ABC = \triangle$ FDE and AB = 5 cm, $\angle B = 40^{\circ}$ and $\angle A = \angle 80^{\circ}$. Th			
	which of the following is true?			
	(a) DF = 5 cm, $\angle F = 60^{\circ}$	(b) DF =	= 5 cm, ∠E = 60 ⁰	
	(c) DE = 5 cm, $\angle E = 80^{\circ}$	(d) DE = 5cm, ∠D = 40 ⁰		
(19)	If D, E and F are the mid-po	points of the sides BC, CA and AB respectively of		
	ΔABC , then ΔDEF is congruent to			
	(a) ∆ABC	(b) Δ ΑΕ	F	
	(c) $\triangle BFD$, $\triangle CDE$	(d) ∆AF	E, Δ FBD, Δ EDC	
(20)	In $\triangle ABC$, BC = AB and $\angle B = 80^{\circ}$. Then $\angle A$ is equal to			
	(a) 80 ⁰ (b) 40 ⁰	(c) 50 ⁰	(d) 100 ⁰	
(21)	Two figures are congruent, if they are of the same and of the			
	same			
(22)	Two circles are congruent if their are equal.			
(23)	Two lines segments are congruent, if theirare equal.			
(24)	Sides opposite to equal sides of a triangle are			
(25)	Each angle of an equilateral triangle is of			
(26)	In a \triangle ABC, if $\angle A = \angle$ C, then AB =			
(27)	7) In right triangles ABC and DEF, if hypotenuse AB = EF and side AC = DE			
	$\Delta \operatorname{ABC} \cong \Delta$	0 0 9		
(28)	If altitudes CE and BF of a triangle ABC are equal, then AB =			
(29)	9) In an isosceles triangle ABC with AB = AC, if BD and CE are its altitudes			
	BC isCE.			
(30)	In a \triangle ABC, if AB = AC and $\angle 40^{\circ}$, then $\angle C$ =			
(31)	In a right triangle, the hypotenuse is theside.			
(32)	If two sides of a triangle are unequal, the longer side has the angle			
	opposite to it.			
(33)	In a triangle, the greater angl	e has the	side opposite to it.	
(34)	The sum of any two sides of a	triangle is	than the third side.	
ODM Educational Group Page 3				

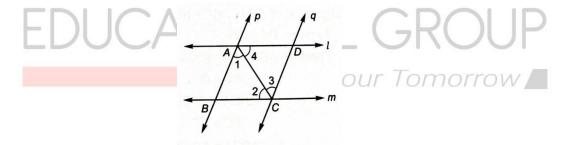
- (35) Of all the segments that can be drawn to a given line from a point not lying on it, the perpendicular segment is the _____.
- (36) The perimeter of a triangle is ______than the sum of its three medians.
- (37) The sum of three altitudes of a triangle _____than the perimeter of the triangle.
- (38) If all the altitudes of a triangle are equal, than the triangle is _____
- (39) In quadrilateral ADBC (figure), AC = AD and AB bisects $\angle A$. Show that $\triangle ABC \cong \triangle ABD$. What can you say about BC and BD?
- (40) ABCD is a quadrilateral in which AD = BC and \angle DAB = \angle CBA (figure). Prove that (i) \triangle ABD = \triangle BAC (ii) BD = AC (iii) \angle ABD = \angle BAC.
- (41) In Figure, OA = OB and OD = OC. Show that (i) $\triangle AOD \cong \triangle BOC$ and (ii) $AD \parallel BC$.


- (42) In figure, it is given that AD = AE and BD = CE, prove that $\triangle ADC = \triangle AEB$.
- (43) AB is a line segment and *l* is its perpendicular **B** bisector. If a point *P* lies on *l*, show that *P* is equidistant from A and B.

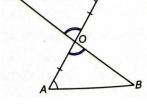

ODM Educational Group

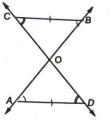

F

(44) In figure AC = AE, AB = AD and \angle BAD = \angle EAC, prove that BC = DE.

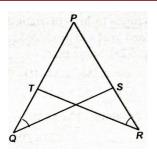


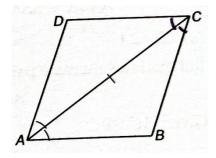
(45) CDE is an equilateral triangle formed on a side CD of a square ABCD (Figure). Show that $\triangle ADE = \triangle BCE$.



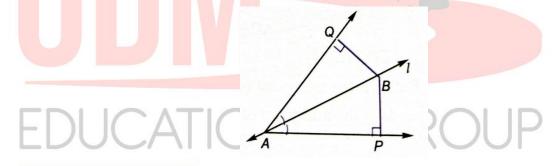


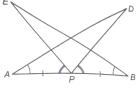
(47) *l* and *m* are two parallel lines intersected by another pair of parallel lines *p* and *q* (figure). Show that $\triangle ABC = \triangle CDA$.


- (48) Line segment AB is parallel to another line segment CD. O is the mid-point of AD (Figure). Shoat that (i) $\triangle AOB = \triangle DOC$ (ii) is the mid-point of BC.
- (49) In figure two line AB and CD intersect each other at the point O such that BC || DA and BC = DA. Show that O is the mid-point of both the line-segments AB and CD.



MATHEMATICS | QUESTION BANK | 2021-22 CLASS-IX

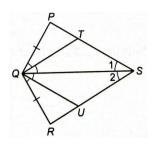

- In Figure, PQ = PR and $\angle Q = \angle R$. Prove that $\triangle PQS =$ (50) $\Delta PRT.$
- ABCD is a quadrilateral such that diagonal AC bisects (51)the angles A and C. Prove that AB = AD and CB = CD.



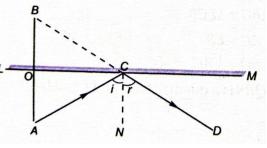
(52) Line *l* is the bisector of an angle $\angle A$ and B is any point on *l*. BP and BQ are perpendicular from B to the arms of $\angle A$. Show that

(ii) BP = BQ or B is equidistant from the arms of $\angle A$. $\Delta APB = \Delta AQB$ (i)

- (53)AB is line segment and P is its mid-point. D and E are points on the same side of AB, such that $\angle BAD = \angle ABE$ and $\angle EPA = \angle DPB$. (Figure). Show that
 - $\Delta DAP = \Delta EBP$ (i) (ii) AD = BE


- (54)In right triangle ABC, right angled at C, M is the midpoint of hypotenuse AB. C is joined to M and produced to a point D such that DM = CM. Point D is joined to the point B (figure). D Show that.
 - (ii) \angle DBC is a right angle. (i) $\Delta AMC = \Delta BMD$
 - (iii) $\triangle DBC = \triangle ACB$ (iv) $CM = \frac{1}{2}AB$.

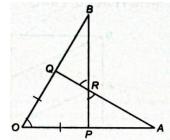
- In a right triangle, prove that the line-segment joining the mid-point of the (55)hypotenuse to the opposite vertex is half the hypotenuse.
- (56)In figure PQRS is a quadrilateral and T and U are respectively points on PS and RS such that PQ = RQ


 $\angle PQT = \angle RQU$ and $\angle TQS = \angle UQS$

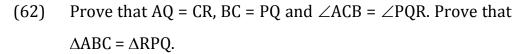
Prove that QT = QU.

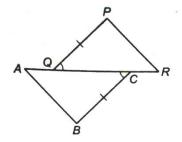
In figure \angle CPD = \angle BPD and AD is the bisector of \angle BAC. (57) Prove that \triangle CAP = \triangle BAP and hence CP = BP.

The image of an object placed A (58)before a plane mirror LM is seen at the point B by an observe at D as shown figure. Prove that the image is as far behind the mirror as the object


is in front of the mirror Changing your Tomorrow

(59) In figure, ABCD is a quadrilateral in which AB || DC and P is the mid-point of BC. On producing, AP and DC meet at Q. prove that

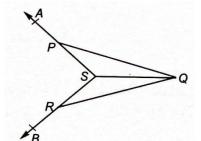


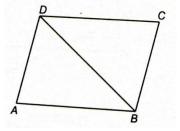


In figure, OA = OB and OP = OQ. Prove that (60)(i) PR = QR (ii) AR = BR.

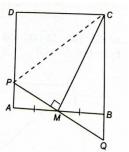
(61) In figure, ABCD is a square, M is the mid-point of AB and PQ \perp CM meets AD at P and CB produced at Q. Prove that (i) PA = BQ and (ii) CP = AB + PA.

(63) In figure ABCD is a square. P and Q are the mid-points of the sides AD and BC responsively. Prove that PB = QD.

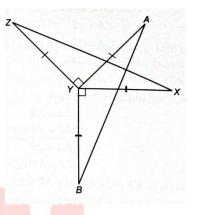

С


Q

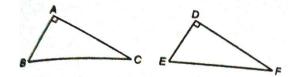
(64) In figure PQ = RQ and $\angle PQS = \angle RQS$, prove that $\angle APQ = \angle BRQ$.

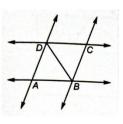

D

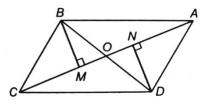
P



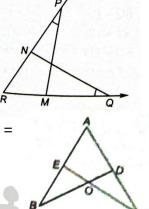
(65) In figure, AB = DC and $\angle ABD = \angle CDB$. Prove that AD = CB.


- (66) In a quadrilateral PQRS, RP bisects $\angle R$ and RQ = RS. Prove that (i) PQ = PS (ii) RP is the perpendicular bisector of QS.
- (67) In figure AY \perp ZY and BY \perp XY such that AY = ZY and BY= XY. Prove AB = ZX.

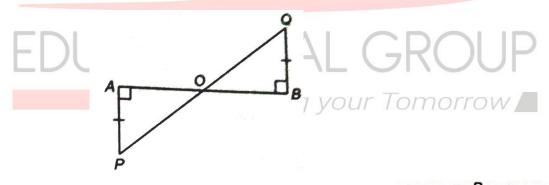

- (68) In figure P and Q are two points inside a parallelogram ABCD such that AP = QC and AP||QC. Prove that
 - (i) $\triangle APC = \triangle AQC$
 - (ii) PC = AQ
 - (iii) PC || AQ

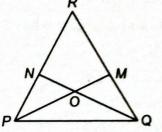

(iv) APCQ is a parallelogram

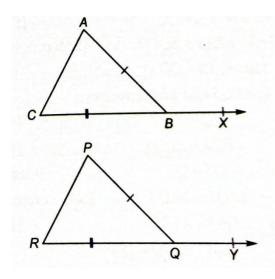
(69) In two right triangle ABC and DEF in Figure, if AB = DE and $\angle C = \angle F$, show that $\triangle ABC = \triangle DEF$.

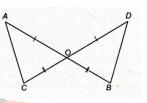


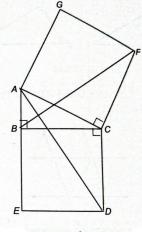
- (70) In figure AB || CD and AD||BC. Prove that \triangle ADB = \triangle CBD.
- (71) In figure BM and DN are both perpendiculars to the segments AC and BM=DN. Prove that AC bisects BD.

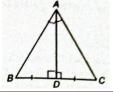



- (72) Refers to figure. On the arms PR and QR of an \angle PRQ, points N and M are taken respectively such that \angle MPR = \angle NQR. If PR = QR, then prove that RM= RN.
- (73) In figure, $\angle B = \angle C$ and AB = AC. Prove that $\triangle ABD = \triangle ACE$.

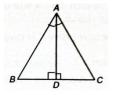

- (74) In a right angled triangle, one acute angle is double the other. Prove that the hypotenuse is double the smallest side
- In figure, AP and BQ are perpendicular to the line -segment AB and AP = BQ.
 Prove that O is the mid-point of line segments AB and PQ.


(76) In figure, $\angle QPR = \angle PQR$ and M and N are respectively points on side QR and PR of $\triangle PQR$, such that QM = PN. Prove that OP= OQ, where O is the point of intersection of PM and QN.

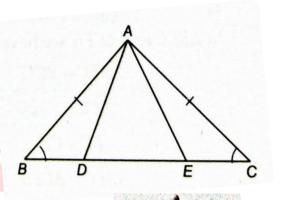

(77) In Δ s ABC and PQR of figure AB = PQ, BC =QR and CB and RQ are extended to X and Y respectively such that \angle ABX = \angle PQY. Prove that \triangle ABC = \triangle PQR.

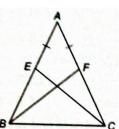


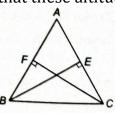
(78) As shown in figure the line segments AB and CD intersect at O in such a way that OA = OD and OB = OC. Prove that AC = BD but AC may not be parallel to BD.



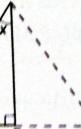
- (79) If the external bisector of the vertical angle of a triangle is parallel to its base, then the triangle is isosceles.
- (80) Find all the angles of an equilateral triangle.
- (81) AB is a segment. AX and BY are two equal segments drawn on opposite sides of line AB such that AX || BY. If line segments AB and XY intersect each other at the point P, prove that
 - (i) $\triangle APX \cong \triangle BPY$, and
 - (ii) line segments AB and XY bisect each other at P.
- (82) In figure ABC is a triangle, right angled at B. If BCDE is a square on side BC and ACFG is a square on AC, prove that AD = BF.
- (83) ABC and DBC are two triangle on the same base BC such that AB= AC and BD = CD. Prove that $\angle ABD = \angle ACD$.
- (84) In \triangle ABC, AD is the perpendicular bisector of BC (Figure). Show that \triangle ABC is an isosceles triangle in which AB = AC.


(85) In \triangle ABC, the bisector of \angle A is perpendicular to base BC (figure). Show that AB = AC and \triangle ABC is isosceles.

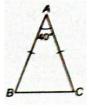

- (86) If the bisector of an angle of a triangle also bisects the opposite side, prove that the triangle is isosceles.
- (87) O is a point in the interior of a square ABCD such that OAB is an equilateral triangle. Show that $\triangle OCD$ is an isosceles triangle.
- (88) In an isosceles $\triangle ABC$, with AB = AC, the bisectors of $\angle B$ and $\angle C$ intersect each other at 0. Joint A to 0. Show that :

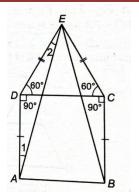

(i) OB = OC (ii) AO bisects $\angle A$

(89) In an isosceles triangle ABC with AB =AC, D and E are points on BC such thatBE = CD (Figure). Show that AD = AE.

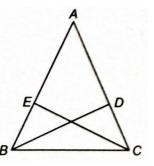


- (90) In figure D and E are points on side BC of a \triangle ABC such that BD = CE and AD = AE. Show that \triangle ABD = \triangle ACE.
- (91) E and F are respectively the midpoints of equal sides AB and AC and \triangle ABC (Figure). Show that BF = CE.
- (92) ABC is an isosceles triangle in which BE and CF are altitudes drawn to equal sides AB and AC (figure). Show that these altitude are equal.

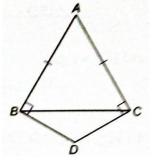




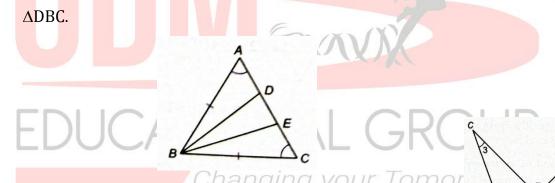
- (93) ABC is triangle in which altitudes BE and CF to side AC and AB are equal (figure). Show that
 - (i) $\triangle ABE \cong \triangle ACF$
 - (ii) AB = AC, i.e. $\triangle ABC$ is an isosceles triangle
- (94) ABC is a right angled triangle in which $\angle A = 90^{\circ}$ and AB = AC. Find $\angle B$ and $\angle C$.
- (95) Prove that each angle of an equilateral triangle is 60° .
- (96) Angles A, B and C of a \triangle ABC are equal. Prove that the triangle ABC is equilateral.
- (97) \triangle ABC is an isosceles triangle in which AB = AC. Side BA is produced to D such that AD = AB (Figure). Show that \angle BCD is a right angle.
- (98) In a triangle ABC, D is mid-point of side AC such that $BD = \frac{1}{2}AC$. Show that $\angle ABC$ is a right angle.
- (99) ABC is a right triangle with AB = AC. Bisector of $\angle A$ meets BC at D. Prove that BC = 2 AD.
- (100) In figure, ABC is a right triangle and right angled at B such that \angle BCA =2 \angle BAC. Show that hypotenuse AC = 2BC.
- (101) ABC is a right triangle such that AB = AC and bisector of angle C intersects the side AB at D. Prove that AC + AD = BC.
- (102) P is a point on the bisector of \angle ABC. If the line through P, parallel to BA meet BC at Q, prove that BPQ is an isosceles triangle.
- (103) Bisector of the angles B and C of an isosceles triangle with AB = AC intersect each other at O. BO is produced to a point M. Prove that \angle MOC = \angle ABC.
- (104) Bisectors of the angles B and C of an isosceles triangle ABC with AB = AC intersect each other at O. Show that external angle adjacent of \angle ABC is equal \angle BOC.



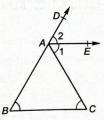
- (105) In figure, ABCD is a square and \triangle ABCD is a square and \triangle DEC is an equilateral triangle. Prove that (i) \triangle ADE = \triangle BCE (ii) AE =BE (iii) \angle DAE = 15°.
- (106) In figure AB = AC, and $\angle A = 40^{\circ}$. Verify that $\angle C = 70^{\circ}$



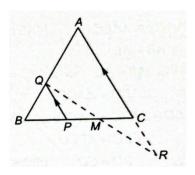
- (107) In an isosceles triangle, if the vertex angle is twice the sum of the base angles, calculate the angles of the triangle.
- (108) If in $\triangle ABC$, AB = AC and $\angle B = 55^{\circ}$, find $\angle A$ and $\angle C$.
- (109) In figure AB = AC and DB = DC, then show that $\frac{\angle ABD}{\angle ACD} = 1$.
- (110) PQR is a triangle in which PQ = PR and S is any point on the side PQ. Through S, a line ST is drawn parallel to QR and intersecting PR at T. Prove that PS= PT.
- (111) In figure, BD and CE are the bisectors of $\angle B$ and $\angle C$ of an isosceles triangle ABC with AB = AC. Prove that BD = CE.
- (112) If the external bisector of the vertical angle of a triangle is parallel to its base, then the triangle is isosceles.
- (113) In a \triangle ABC, median AD is perpendicular to BC. Prove that the \triangle ABC is an isosceles triangle.



- (114) In figure D and E are points on side BC of a \triangle ABC such that BD = CE and AD = AE. Prove that AB = AC.
- $\mathbf{D} = \mathbf{B} = \mathbf{C}$
- (115) In figure $\triangle ABC$ is isosceles with AB = AC, $AB \perp BD$ and $AC \perp CD$. Prove that BD = CD.



- x x y c
- (116) In figure X and Y are the points on equal sides AB and AC of a \triangle ABC such that AX = AY. Prove that XY= YB.


(117) In given figure AB = BC, AD = EC, prove that $\triangle ABE \cong$

- (118) In figure AE = BE and $\angle C = \angle D$, prove that AD = BC.
- (119) In figure, AE is the bisector of \angle CAD and AE ||BC. Prove that \triangle ABC is isosceles.

(120) In figure ABC is an equilateral triangle PQ ||AC and AC is produced to R such that CR = BP. Prove that QR bisects PC.

