

## **ELECTRICITY**

## CHAPTER NO.12

**SUB: PHYSICS** 

CHANGING YOUR TOMORROW

Website: www.odmegroup.org

Email: info@odmps.org

Toll Free: **1800 120 2316** 

Sishu Vihar, Infocity Road, Patia, Bhubaneswar-751024



## LEARNING OUTCOMES

- •Students will be able to :
- Define Ohm's law
- Experimentally verify Ohm's law.
- Solve numerical problems on Ohm's law.
- Define resistance.
- Define resistivity.
- Solve numerical problems on resistance and

CHANGING YOUR TOMORROW

Website: www.odmegroup.org Toll Free: 1800 120 2316

Email: info@odmps.org Sishu Vihar, Infocity Road, Patia, Bhubaneswar- 751024



### POINTS TO BE COVERED

Ohm's Law

Solve numerical problems on Ohm's Law.

Resistance.

Resistivity.

#### CHANGING YOUR TOMORROW

Website: www.odmegroup.org

Email: info@odmps.org

Toll Free: **1800 120 2316** 

Sishu Vihar, Infocity Road, Patia, Bhubaneswar- 751024

## OHMS LAW.

The electric current flowing through a conductor is directly proportional to the potential difference applied across its ends providing the physical conditions such as temperature remains unchanged.

 $V \alpha I$ 

V = IR. Where R is a constant called resistance.

#### **Ohmic conductors**

The conductors which obey ohms law are known as Ohmic conductor.

#### Non ohmic conductors

The conductors which do not obey Ohms law are known as non ohmic conductors. <a href="https://youtu.be/ldNPl67x-E8">https://youtu.be/ldNPl67x-E8</a>

## **RESISTANCE**

https://youtu.be/4UAe\_sXFH4A

# FACTORS ON WHICH THE RESISTANCE OF A CONDUCTOR DEPENDS

The resistance of a conductor depends upon its:-

- i) Length
- ii) Area of cross section
- iii) Material of the conductor.

Resistance is directly proportional to the length of the conductor and inversely proportional to the area of cross section of the conductor.

$$R \alpha I$$
 $R \alpha I / A$ 
or  $R \alpha I$ 
 $A$ 
or  $R = \rho I$ 

Where  $\rho$  (rho) is a constant of proportionality called Resistivity of the material of the conductor.

The SI unit of resistivity is ohm meter ( $\Omega$ m).

## **NUMERICALS**

Q1. The pd between the terminals of an electric heater is 75 volt when it draws a current of 5A from the source. What current will the heater draw, if the pd is increased to 150 V.

```
Answer: V = 75 \text{ V}.

I = 5A \quad R = V/I = 75 / 5 = 15\Omega

R = 15\Omega. V2 = 150 \text{ V}. I2 = V2/R = 150 / 15 = 10A.
```

Q2. A wire of given material having length I and area of cross-section A has a resistance of 10  $\Omega$ . What would be the resistance of another wire of the same material having length I/4 and area of cross-section 2.5 A?

```
Answer: Length = I

Area of cross section = A.

R1 = p I/A = 10\Omega.

P = 10 \text{ A/I}.

For second wire length = I/4.

A = 2.5 \text{ A}.

R2 = p I/4 ÷2.5 \text{A} = 10 \text{ A/I} \times \text{I/} 4 \times 2.5 \text{ A} = 10 \text{ A/I} \times \text{I/} 4 \times 2.5 \text{ A} = 10 \text{ A/I} \times \text{I/} 4 \times 2.5 \text{ A} = 10 \text{ A/I} \times \text{I/} 4 \times 2.5 \text{ A} = 10 \text{ A/I} \times \text{I/} 4 \times 2.5 \text{ A} = 10 \text{ A/I} \times \text{I/} 4 \times 2.5 \text{ A} = 10 \text{ A/I} \times \text{I/} 4 \times 2.5 \text{ A} = 10 \text{ A/I} \times \text{I/} 4 \times 2.5 \text{ A} = 10 \text{ A/I} \times \text{I/} 4 \times 2.5 \text{ A} = 10 \text{ A/I} \times \text{I/} 4 \times 2.5 \text{ A} = 10 \text{ A/I} \times \text{I/} 4 \times 2.5 \text{ A} = 10 \text{ A/I} \times \text{I/} 4 \times 2.5 \text{ A} = 10 \text{ A/I} \times \text{I/} 4 \times 2.5 \text{ A} = 10 \text{ A/I} \times \text{I/} 4 \times 2.5 \text{ A} = 10 \text{ A/I} \times \text{I/} 4 \times 2.5 \text{ A} = 10 \text{ A/I} \times \text{I/} 4 \times 2.5 \text{ A} = 10 \text{ A/I} \times \text{I/} 4 \times 2.5 \text{ A} = 10 \text{ A/I} \times \text{I/} 4 \times 2.5 \text{ A} = 10 \text{ A/I} \times \text{I/} 4 \times 2.5 \text{ A} = 10 \text{ A/I} \times \text{I/} 4 \times 2.5 \text{ A} = 10 \text{ A/I} \times \text{I/} 4 \times 2.5 \text{ A} = 10 \text{ A/I} \times \text{I/} 4 \times 2.5 \text{ A} = 10 \text{ A/I} \times \text{I/} 4 \times 2.5 \text{ A} = 10 \text{ A/I} \times \text{I/} 4 \times 2.5 \text{ A} = 10 \text{ A/I} \times \text{I/} 4 \times 2.5 \text{ A} = 10 \text{ A/I} \times \text{I/} 4 \times 2.5 \text{ A} = 10 \text{ A/I} \times \text{I/} 4 \times 2.5 \text{ A} = 10 \text{ A/I} \times \text{I/} 4 \times 2.5 \text{ A} = 10 \text{ A/I} \times \text{I/} 4 \times 2.5 \text{ A} = 10 \text{ A/I} \times \text{I/} 4 \times 2.5 \text{ A} = 10 \text{ A/I} \times \text{I/} 4 \times 2.5 \text{ A} = 10 \text{ A/I} \times \text{I/} 4 \times 2.5 \text{ A} = 10 \text{ A/I} \times \text{I/} 4 \times 2.5 \text{ A} = 10 \text{ A/I} \times \text{I/} 4 \times 2.5 \text{ A} = 10 \text{ A/I} \times \text{I/} 4 \times 2.5 \text{ A} = 10 \text{ A/I} \times \text{I/} 4 \times 2.5 \text{ A} = 10 \text{ A/I} \times \text{I/} 4 \times 2.5 \text{ A} = 10 \text{ A/I} \times \text{I/} 4 \times 2.5 \text{ A} = 10 \text{ A/I} \times \text{I/} 4 \times 2.5 \text{ A} = 10 \text{ A/I} \times \text{I/} 4 \times 2.5 \text{ A} = 10 \text{ A/I} \times 10 \times 4 \times 2.5 \text{ A} = 10 \text{ A/I} \times 10 \times 4 \times 2.5 \text{ A} = 10 \text{ A/I} \times 10 \times 2.5 \text{ A}
```

## **SERIES COMBINATION**

https://youtu.be/pd3RkGs1Tsg

# THANKING YOU ODM EDUCATIONAL GROUP

