
CHAPTER-1

Number Systems

- (1)Every rational number is
 - (a) a natural number
- (b) an integer
- a real number (c)

(d) a whole number

- (2) Between two rational numbers, there is/are
 - (a) no rational number
 - (b) exactly one rational number
 - (c) infinitely many rational numbers.
 - only rational numbers and no irrational numbers. (d)
- (3)Decimal representation of a rational number cannot be
 - (a) terminating (b) non-terminating
 - (c) non-terminating repeating
 - (d)non-terminating non-repeating
- (4) Decimal representation of an irrational number is always
 - (b) terminating repeating (a) terminating
 - non-terminating repeating (c)
 - non-terminating non-repeating (d)
- (5) The product of any two irrational numbers is
 - (a) always an irrational number
 - (b) always a rational number
 - (c) always an integer
 - sometimes rational, sometimes irrationa (d)
- The difference of a rational number and an irrational number is (6) unanging your Tomorrow
 - an integer (a)
 - may be rational number (b)
 - (c) always a rational number
 - always an irrational number (d)
- (7)The square of an irrational number is
 - (a) always an integer
 - always a rational number (b)
 - (c) always an irrational number
 - sometimes rational, sometimes irrational. (d)
- The decimal expansion of the number $\sqrt{2}$ is (8)
 - a finite decimal. (a)
 - (b) 1.41421
 - (c) non-terminating recurring

norrow

(26) Find the value of
$$\sqrt{\frac{2+\sqrt{3}}{2-\sqrt{3}}}$$
, if $\sqrt{3} = 1.73$.

(27) Represent the following numbers on the number line: 7, 7.2, $-\frac{3}{2}$, $-\frac{12}{25}$.

- (28) Find three rational numbers between $\frac{5}{7}$ and $\frac{9}{11}$.
- (29) Represent $3 + \sqrt{5}$ on the number line.
- (30) Find the value of $\sqrt{18} \times \sqrt{6}$.
- (31) What is the simplified value of $(81)^{-\frac{1}{4}} \div (81)^{\frac{1}{4}}$?
- (32) Express 0.3 in the form of $\frac{p}{q}$, where *p* and *q* are integers and $q \neq 0$.
- (33) Represent $\sqrt{10.5}$ on the number line.

(34) If
$$x = 2 + \sqrt{3}$$
, find the value of $x^2 + \frac{1}{x^2}$

(35) Express
$$\frac{1}{1+\sqrt{2}-\sqrt{3}}$$
 with rational denominator.

(36) Simplify:
$$\frac{\sqrt{7}+\sqrt{2}}{1+\sqrt{2}-\sqrt{3}}$$
 with rational denominator.

(37) Evaluate:
$$[8]^{1/2}(64^{1/3} + 125^{1/3})^3]^{1/4}$$

(38) Simplify:
$$\frac{7}{2\sqrt{3}-\sqrt{5}} - \frac{2}{\sqrt{3}+\sqrt{2}} - \frac{3}{\sqrt{5}-\sqrt{2}}$$
.

(39) Express
$$\frac{1}{1+\sqrt{2}-\sqrt{3}}$$
 with rational denominator.

(40) Simplify :
$$\frac{\sqrt{7}+\sqrt{2}}{1+\sqrt{2}-\sqrt{3}}$$
 with rational denominator.

(41) Evaluate:
$$[8]^{1/2}(64^{1/3} + 125^{1/3})^3]^{1/4}$$

(42) Simplify:
$$\frac{2\sqrt{3}}{3} - \frac{\sqrt{3}}{6}$$
.

(43) If x = 3 +
$$2\sqrt{2}$$
, then find whether x + $\frac{1}{r}$ is rational or irrational.

(44) Find the value of
$$\sqrt{\frac{2+\sqrt{3}}{2-\sqrt{3}}}$$
, if $\sqrt{3} = 1.73$.

- (45) Is zero a rational number? Can you write it in the form $\frac{p}{q}$, where p and q are integers and q \neq 0?
- (46) Find six rational numbers between 3 and 4.

- (47) Find three rational numbers between $\frac{1}{3}$ and $\frac{1}{2}$.
- (48) Find five rational numbers between $\frac{3}{5}$ and $\frac{4}{5}$.
- (49) Find eight rational numbers between $\frac{2}{7}$ and $\frac{3}{5}$.
- (50) Insert nine rational numbers between 0 and 0.1.
- (51) Find ten rational numbers between $-\frac{2}{3}$ and $\frac{1}{4}$.
- (52) Find three rational numbers $\frac{1}{5}$ and $\frac{1}{3}$.
- (53) Find three rational numbers between $\frac{3}{7}$ and $-\frac{3}{5}$.
- (54) Find eight rational numbers between 2 and 3.
- (55) Find ten rational numbers between $-\frac{1}{9}$ and $\frac{4}{9}$.
- (56) Find the decimal expansions of $\frac{5}{8}$, $\frac{1}{3}$ and $\frac{1}{7}$.
- (57) What can be the maximum number if digits be in the repeating block of digits in the decimal expansion of $\frac{1}{17}$? Perform the division to check your answer.
- (58) Express each of the following numbers in the form $\frac{p}{q}$, where p and q are integers and q $\neq 0$. (i) 0.575 (ii) 3.125 (iii) -0.052
- (59) Express the following in the $\frac{p}{q}$, where p and q are integers and q $\neq 0$. (i) $0.\overline{6}$ (ii) $1.\overline{27}$ (iii) $0.\overline{001}$
- (60) Express 23.43 in the form $\frac{p}{q}$, where p and q are integers and $q \neq 0$.
- (61) Show that $0.142857142857...=\frac{1}{7}$.
- (62) Simplify : $0.\overline{87} + 0.\overline{6}$
- (63) Simplify: $0.39\overline{285714} \times 0.15\overline{90}$.
- (64) Write three numbers whose decimal expansions are non-terminating non-recurring.

(65) Classify the following numbers as rational or irrational:

(i) $\sqrt{23}$ (ii) $\sqrt{225}$ (iii) 0.3796 (iv) 7.478478

- (v) 1.101001000100001.....
- (66) Find an irrational number between $\frac{1}{7}$ and $\frac{2}{7}$.
- (67) Find the three different irrational numbers between the rational numbers $\frac{5}{7}$ and $\frac{9}{11}$.
- (68) Classify the following numbers as rational or irrational with justification.

(i)
$$\sqrt{\frac{9}{27}}$$
 (ii) $\sqrt{\frac{28}{343}}$

(69) Represent $\sqrt{9.3}$ on the number line.

(70) If
$$a = \frac{2+\sqrt{5}}{2-\sqrt{5}}$$
 and $b = \frac{2-\sqrt{5}}{2+\sqrt{5}}$, then find the value of $a^2 - b^2$

(71) Represent $(1 + \sqrt{9.5})$ on the number line.

(72) Simplify:
$$\frac{\sqrt{a^2-b^2}+a}{\sqrt{a^2-b^2}+b} \div \frac{\sqrt{a^2-b^2}-b}{a-\sqrt{a^2-b^2}}$$

(73) Find the product of
$$(x + \sqrt{2})$$
 and $(\sqrt{2}x + 1)$

(74) Evaluate : (i)
$$\sqrt{2 + 2\sqrt{6}}$$
 (ii) $\sqrt{8 - 2\sqrt{15}}$

(75) If
$$a = 2 + \sqrt{3}$$
, then find the value of $a - \frac{1}{a}$.

(76) If a =8 + 3
$$\sqrt{7}$$
, b = $\frac{1}{a}$, then find the value of a² + b².

(77) If a = 7 – 4
$$\sqrt{3}$$
, then find the value of $\sqrt{a} + \frac{1}{\sqrt{a}}$

(78) If a =
$$1 - \sqrt{2}$$
, find the value of $\left(a - \frac{1}{a}\right)^3$.

(79) If
$$a = \frac{2-\sqrt{5}}{2+\sqrt{5}}$$
 and $b = \frac{2+\sqrt{5}}{2-\sqrt{5}}$, then find $(a + b)^3$.

(80) If
$$x = \frac{\sqrt{3} + \sqrt{2}}{\sqrt{3} - \sqrt{2}}$$
 and $y = \frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}}$, then find the value of $x^2 + y^2$.

(81) If
$$x = \frac{\sqrt{2}+1}{\sqrt{2}-1}$$
 and $y = \frac{\sqrt{2}-1}{\sqrt{2}+1}$, find the value of $x^2 + y^2 + xy$.

(82) If
$$a = \frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}}$$
 and $b = \frac{\sqrt{3} + \sqrt{2}}{\sqrt{3} - \sqrt{2}}$, find the value of $a^2 + b^2 - 5ab$.

(83) If
$$x = 3 - 2\sqrt{2}$$
, find the value of $x^4 + \frac{1}{x^4}$.
(84) If $x = \frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}}$ and $y = \frac{\sqrt{3} + \sqrt{2}}{\sqrt{3} - \sqrt{2}}$, find the $x^3 + y^3$.
(85) If $x = (2 + \sqrt{5})^{1/2} + (2 - \sqrt{5})^{1/2}$ and $y = (2 + \sqrt{5})^{1/2} - (2 - \sqrt{5})^{1/2}$.
(86) If $x = \frac{\sqrt{4 + 2b} - \sqrt{a - 2b}}{\sqrt{a + 2b} - \sqrt{a - 2b}}$, show that $bx^2 - ax + b = 0$.
(87) If $a = \frac{\sqrt{5} + 1}{\sqrt{5} - 1}$ and $b = \frac{\sqrt{5} - 1}{\sqrt{5} + 1}$, find the value of $\frac{a^2 + ab + b^2}{a^2 - ab + b^2}$.
(88) Simplify: $\frac{7\sqrt{3}}{\sqrt{10} + \sqrt{3}} - \frac{2\sqrt{5}}{\sqrt{2} + \sqrt{3}} - \frac{3\sqrt{2}}{\sqrt{15} + 3\sqrt{2}}$.
(89) Simplify: $\frac{\sqrt{5} + \sqrt{3}}{\sqrt{36} + \sqrt{48} - \sqrt{45} - \sqrt{27}}$.
(90) If $x = 3 + 2\sqrt{2}$, find the value of $x^2 + \frac{1}{x^4}$.
(91) If $x = 7 + 4\sqrt{3}$, find the value of $x^2 - \frac{1}{x^2}$.
(92) If $\sqrt{2} = 1.4142$ and $\sqrt{6} = 2.4495$, then evaluate upto three places of decimal,
 $\frac{1}{\sqrt{3} - \sqrt{2} - 1}$.
(93) $x^2 = 5 \Rightarrow x = \pm \sqrt{5} = an$ irrational number.
(94) $\omega^3 = 27 \Rightarrow \omega = \sqrt[3]{3 \times 3 \times 3} = 3 = a$ rational number.
(95) Find $64^{\frac{1}{2}}$.
(97) Simplify: $\left[\left(625^{-\frac{1}{2}} \right)^{-\frac{1}{4}} \right]^2$.
(98) Find the value of $\frac{4}{(216)^{-\frac{2}{3}}} + \frac{1}{(256)^{-\frac{2}{4}}} + \frac{2}{(243)^{-\frac{1}{5}}}$.
(99) Express the following radical as powers:
(1) $\sqrt[4]{a}$ (1i) $\sqrt[5]{a^3}$ (1ii) $\sqrt[7]{a^{-14}}$.
(100) Arrange the following in ascending order of their magnitudes: $\sqrt{3}$, $\sqrt[3]{4}$, $\sqrt[4]{4}$.

(101) Arrange the following in descending order of their magnitudes: $\sqrt[3]{18}$, $\sqrt[6]{144}$, $\sqrt{6}$.

(102) Prove that $: \left(\frac{x^a}{x^b}\right)^{a+b} \cdot \left(\frac{x^b}{x^a}\right)^{b+c} \cdot \left(\frac{x^c}{x^a}\right)^{c+a} = 1.$

- (103) Prove that : $\left(\frac{x^a}{x^b}\right)^{a^2+ab+b^2} \cdot \left(\frac{x^b}{x^c}\right)^{b^2+bc+b^2} \cdot \left(\frac{x^c}{x^a}\right)^{c^2+ca+a^2} = 1.$
- (104) Prove that : $\sqrt{x^{-1}y} \cdot \sqrt{y^{-1}z} \cdot \sqrt{z^{-1}x} = 1$
- (105) Solve the equation : $2^{2x+1} = 2^{3x-1}$

(106) If $\sqrt[5]{\sqrt[4]{x^{20}}} = x^p$ find 'p'.

- (107) If $a^x = b^y = c^z$ and $b^2 = ac$, prove that $\frac{1}{x} + \frac{1}{z} = \frac{2}{y}$
- (108) A rational number between $\sqrt{2}$ and $\sqrt{3}$.
- (109) If a = 7 $4\sqrt{3}$, then find the value of $\sqrt{a} + \frac{1}{\sqrt{a}}$.

(110) If
$$a = 1 - \sqrt{2}$$
, find the value of $\left(a = \frac{1}{a}\right)^3$

- (111) Express the following radicals as powers : $\sqrt[7]{a^{-14}}$
- (112) Simplify: $0.\overline{6} \times 0.00\overline{27}$
- (113) If $\sqrt{2} = 1.4142$ and $\sqrt{6} = 2.4495$, then evaluate upto three places of decimal, $\frac{1}{\sqrt{3}-\sqrt{2}-1}$.

(114) If x = 7+4
$$\sqrt{3}$$
, find the value of $x^2 - \frac{1}{x^2}$ your Tomorrow

(115) Show that
$$\frac{1}{2+\sqrt{3}} + \frac{2}{\sqrt{5}-\sqrt{3}} - \frac{1}{2-\sqrt{5}} = 0$$
.

(116) Simplify:
$$\frac{\sqrt{a+x} + \sqrt{a-x}}{\sqrt{a+x} - \sqrt{a-x}}$$
 and find its value when $x = \frac{2ab}{1+b^2}$.

(117) If
$$x = \frac{5-\sqrt{21}}{2}$$
, prove that $\left(x^3 + \frac{1}{x^3}\right) - 5\left(x^2 + \frac{1}{x^2}\right) + \left(x + \frac{1}{x}\right) = 0$.

(118) If
$$x = \frac{1}{2-\sqrt{3}}$$
, find the value of $x^3 - 2x^2 - 7x + 5$.

(119) Show that
$$\frac{1}{\sqrt{2}-\sqrt{3}-\sqrt{5}} + \frac{1}{\sqrt{2}+\sqrt{3}-\sqrt{5}} = \frac{1}{\sqrt{2}}$$

(120) Find a and b from the following: $\frac{1+\sqrt{48}}{5\sqrt{3}+4\sqrt{2}-\sqrt{72}-\sqrt{108}+\sqrt{8}+2} = a + b\sqrt{3}$
