OCHAPTER-2

Polynomials

QUESTION BANK

(1)	Degree of the zer (a) 0	ro polynomials is	(b) 1	
	(c) any natura	al number	(d) not defined	
(2)	$\sqrt{2}$ is a polynomial of degree			
	(a) 2	(b) 0	(c) 1	(d) $\frac{1}{2}$
(3)	The value of Polynomial $5x-4x^2+3$, when $x = -1$ is			
	(a)-6	(b) 6	(c) 2	(d) –2
(4)	If $p(x) = x + 3$, then $p(x) + p(-x)$ is equal to			
	(a) 3	(b) 2x	(c) 0	(d)6
(5)	Zero of the zero polynomial is			
	(a) 0		(b) 1	
	(c) any real num	ber	(d) not defined	
(6)	One of the zeros of the polynomial $2x^2+7x-4$ is			
	(a) 2	(b) $\frac{1}{2}$	$(c) -\frac{1}{2}$	(d) –2
(7)	If $x^{51} + 51$ is divided by $x+1$, the remainder is			
	(a)0	(b) 1	(c) 49	(d) 50
(8)	The value of 249 ² –248 ² is			
	(a) 1 ²	(b) 477	(c) 487	(d) 497
(9)	The coefficient of x is the expansion of $(x + 3)^3$ is			
	(a) 1	(b) 9	(c) 18	(d) 27
(10)	When x^3 – ax^2 + $6x$ – a is divided by x – 1, the remainder is			
	(a) 7–a	(b) 7+a	(c) 7 – 2a	(d) 7 + 2a
(11)	If $x+1$ is a factor of $ax^3 + x^2 - 2x + 4a - 9$, then the value of a is			
	(a) 2	(b) –2	(c) 3	(d) –3
(12)	One of the factors of $(25x^2-1) + (1+5x)^2$ is			
	(a) 5 + x	(b) 5 –x	(c) 5x–1	(d) 10x
(13)	If a +b +c =0, then $a^3+b^3+c^3$ is equal to			
	(a)0	(b) abc	(c) 3abc	(d) 2 abc
(14)	The value of $55^3 - 25^3 - 30^3$ is			
	(a) 123750	(b) 125037	(c) 124750	(d) 124760
(15)	If $x+y = -4$, then	the value of		

 $x^3 + y^3 - 12 xy + 64 is$ (a) -4 (b) 0 (c) 64 (d) -64

- (16) The constant polynomial 0 is called _____polynomial.
- (17) The degree of zero polynomial is _____.
- (18) _____may be a zero of the polynomial.
- (19) The only zero of the linear polynomial p(x) = ax + b, $a \neq 0$ is x =_____.
- (20) Every linear polynomial has _____zero.
- (21) Find the degree of the polynomial $3x^4 + 6x^3 + 5x 7$.
- (22) Using suitable identity, find (2 + 3x) (2 3x).
- (23) What is the number of zeroes of a zero polynomial?
- (24) Find the remainder when $x^3 + 2x^2+3x+1$ is divided by x+1.
- (25) Factorise: $125 x^3 + y^3$.
- (26) Find the value of the polynomial $3x^3 4x^2 + 7x 5$, when x=3 and also when x=-3.
- (27) Check whether -2 and 2 are zeroes of the polynomial x+2.
- (28) Find the remainder, when x^3-3x^2+3x-1 is divided by (x-1).
- (29) Using factor theorem, show that (x-1) is a factor of $(x^{20}-1)$.
- (30) Show that (2x+1) is a factor of $2x^3-11x^2-4x+1$.
- (31) Determine if (x+1) is a factor of $x^3-x^2-(2-\sqrt{2})x + \sqrt{2}$.
- (32) If x+y = 8 and xy=15, find $x^2 + y^2$.
- (33) Factorise: 4a²–9b²–2a –3b.
- (34) Factorise: 25x³-121 xy³.
- (35) Without actually calculating the cubes, find the value of $55^3-25^3-30^3$.
- (36) Find if (-2x-5) is a factor of the polynomial $p(x) = 3x^4 + 5x^3 2x^2 4$ or not.
- (37) Show that 2 is not of the polynomial: $p(y) = y^3-y^2-y+1$.
- (38) Find the value of k, if x-3 is a factor of $p(x)=kx^2-x-15$.
- (39) Expand $\left(-\frac{x}{2} + y + \frac{1}{4}\right)^2$ by using an identity.

- (40) If a+b=12 and ab=27, find the value of a^3+b^3 .
- (41) Factorise: $8 p^3-q^3-12 p^2q + 6 pq^2$.
- (42) Factories: 343a³-729b³.
- (43) If $x = -\frac{1}{2}$ is a zero of the polynomial $p(x) = 8x^3 k$, then find the value of k.
- (44) Factorise: a^2+b^2-2 (ab ac +bc).
- (45) Show that 1 is a zero of the polynomial $x^3 6x^2 + 11x 6$.

(46) Factories:
$$\frac{a}{b}x^2 + \left(\frac{a}{b} + \frac{c}{d}\right)x + \frac{c}{d}$$
, $b \neq 0$, $d \neq 0$.

- (47) Find the value of *k* for which 3x + 2 is a factor of $x^3 + kx^2 7x + 5$.
- (48) Find the value of $k (k \neq 0)$ if (x-3) is a factor of $k^2x^3 kx^2 + 3kx k$.
- (49) Find the value of a, if x + a is a factor of the polynomial, $p(x) = x^3 + ax^2 2x + a + 4$.
- (50) If $x^2 bx + c = (x + p) (x q)$, then factorise $x^2 bxy + cy^2$.
- (51) If (x a) is a factor of the polynomial $(x^3 ax^2 + 2x + a 1)$, find a.
- (52) Prove that $(x^2 + x 2) (x^2 4x + 3) (x^2 x 6)$ is a perfect square.
- (53) Factorise: $x^4 + 2x^3y 2xy^3 y^4$.
- (54) Factorise: $x^2 + \frac{1}{x^2} + 1$.
- (55) Find the value of q if x^3 + qx^2 -4x-12 has a factor x+3. Also write the given expression as the product of its factors.
- (56) Factorise: $8x^4 + 2x^2 1$.
- (57) Factories: x¹²–1.
- (58) Expand: $\left(x \frac{1}{2}y + \frac{1}{3}z\right)^2$
- (59) Find the zeroes of the polynomial: $p(x) = (x-2)^2 - (x+2)^2.$
- (60) Simplify: $\left(\frac{x}{3} + \frac{y}{5}\right)^3 \left(\frac{x}{3} \frac{y}{5}\right)^3$.
- (61) If $x + \frac{1}{x} = 7$, then find the value of $x^3 + \frac{1}{x^3}$.

- (62) Factorise : $16a^4 + 54a$.
- (63) Factorise: $2\sqrt{2}a^3 + 16\sqrt{2}b^3 + c^3 12$ abc.
- (64) Factorise: $8x^3 + 27y^3 + 36x^2y + 54xy^2$.
- (65) If $x^2 + y^2 = 90$ and xy=27, then find the value of $x^3 y^3$, when x > y.
- (66) What are the possible expression for dimensions of a cuboid whose volume is $15y^2-100y + 125$.
- (67) Divide the polynomial $x^4 + x^3 2x^2 x + 1$ by (x + 1) and verify remainder by using Remainder Theorem.
- (68) The polynomial $p(x) = kx^3 + 9x^2 + 4x 8$, when divided by (x + 30, leaves a remainder 10 (1 k). Find the value of k.
- (69) The polynomial $ax^3 + 3x^2 26$ and $2x^3 5x + a$, when divided by (x 4), leave the remainder R₁ and R₂ respectively. Find the value of a, if R₁ + R₂=0.
- (70) When the polynomial $kx^4 + 3x^4 + 6$ is divided by x–2, it leaves the remainder R₁. When the polynomial $2x^3 + 17x + k$ is divided by x–2, it leaves the remainder R₂. If R₁= 2R₂, find the value of k.
- (71) When the polynomial $4x^3 + 3x^2 12ax 5$ is divided by x-1, the remainder R₁. And when the polynomial $2x^3 + ax^2 - 6x + 2$ is divided by x+2, the remainder is R₂. If $3R_1 + R_2 + 28 = 0$, find the value of a.
- (72) If (x-3) and $\left(x-\frac{1}{3}\right)$ are both factors of $ax^2 + 5x + b$, then show that a = b.
- (73) Find the values of a and b so that the polynomials x³- ax²- 13x + b has (x-1) and (x+3) as factors.
- (74) Find the values of a and b so that (x+1) and (x-1) are factors of $x^4 + ax^3-3x^2$ +2x +b.
- (75) If t^2-1 is factor of $at^3-t^2-2t + b$, find the values of a and b.
- (76) If (x+1) and (x+2) are the factors of $x^3 + 3x^2+\beta$.
- (77) Factorise: $x^3 3x^2 10x + 24$.
- (78) Factorise: $2x^3 x^2 13x 6$.

- (79) Factorise: $2x^3 3x^2 17x + 30$.
- (80) Factorise: $a^7 ab^6$.
- (81) If a+b+c=6, find the value of $(2-a)^3 + (2-b)^3 + (2-c)^3 - 3(2-a)(2-b)(2-c)$.
- (82) If x+y+z=1, xy+yz+zx=1 and xyz=-1, find the value of $x^3 + y^3 + z^3$.
- (83) Factorise:

 $27p^{3}(4q-2r)^{3} + 64q^{3}(2r-3p)^{3} + 8r^{3}(3p-4q)^{3}$.

- (84) The volume of a cube is given by the polynomial: $p(x) = 8x^3 + 36x^2+54x+27$. Find the possible expression for the sides of the cube. Verify your answer when the length of the cube is 5 cm.
- (85) Without actually calculating the cubes, find the value of $(-1)^3 + (-2)^3 + (-3)^3 + (-4)^3 + 2(5)^3$.

Also write the identify used.

- (86) Find the value of a if x + a is a factor of : $x^3 + ax^2 2x + a + 4$.
- (87) Without actual division, prove that $2x^4-5x^3 + 2x^2-x + 2$ is divisible by $x^2 3x + 2$.
- (88) If ax³ + bx² + x − 6 has x +2 as a factor and leaves a remainder 4 when divided by (x −2), find the values of a and b.
- (89) Factories the following by splitting the middle term: $3x^2-x-4$.
- (90) Find the integral zeros of the polynomial $p(y) = y^3 2y^2 + y + 4$.
- (91) Find the values of a and b so that 1 and 2 are the zeroes of the polynomial $x^3 10x^2 + ax + b$.
- (92) If -1 is a zero of the polynomial $2x^2 + kx$, then find the value of k.
- (93) Find the remainder obtained by dividing $p(x) = x^3 + 2x^2 9x 20$ by x+3. Also find the remainder without actual division.
- (94) By actual division, find the quotient and remainder when the first polynomial is divided by the second polynomial.

 $P(x) = x^4 + 1$; q(x) = x - 1

(95) Find the reminder when $x^3 + 3x^2 + 3x + 1$ is divided by

(i) x + 1 (ii) $x - \frac{1}{2}$ (iii) x (iv) $x + \pi$ (v) 5 + 2x

- (96) If $kx^3 + 9x^2 + 4x 10$ is divided by x + 3, it leaves the remainder 5. Find the value of k.
- (97) Check whether the polynomial : $q(f) = 4t^3 + 4t^2 t 1$ is a multiple of 2t + 1.
- (98) If the polynomials $2x + bx^2 + 3x 5$ and $x^3 + x^2 4x + b$ leave the same remainder when divided by x-2, find the value of b.
- (99) If the polynomials az³ + 4z² + 3z 4 and z³ 4z + a leave the same remainder when divided by z-3, find the value of a.
- (100) The polynomials $ax^3 + 3x^2-3$ and $2x^3 5x + a$, when divided by (x-4), leave remainders R_1 and R_2 respectively. Find the value a if $2R_1 R_2 = 0$.
- (101) Using remainder theorem, prove that a + b, b + c and c + a are the factors of the polynomial (a + b + c)³ ($a^3 + b^3 + c^3$).
- (102) Factories : $(x + y)^2 10(x + y) z + 25 x^2$.
- (103) Factories : $9y^2 66yz + 121z^2$.
- (104) Using a suitable identity, evaluate : 195 x 195 105 x 105
- (105) Write the following cubes in expanding form: UT TOMOTOW
 - (i) $(2x + 1)^3$ (ii) $(2a 3b)^3$
- (106) Simplify: $(2x-5y)^3 (2x+5y)^3$
- (107) If $a^2 + b^2 = 5$ and ab = 2, find $a^3 b^3$.
- (108) If $x + \frac{1}{x} = 5$, find $x^3 + \frac{1}{x^3}$.
- (109) Verify: $x^3 + y^3 = (x + y) (x^2 xy + y^2)$
- (110) Find the following products:

 $(x^2-1)(x^4+x^2+1)$

- (111) If a + b = 8 and ab=6, find $a^3 + b^3$.
- (112) If a + b + c = 6, abc = 6 and ab + bc + ca = 11, find the value of $a^3 + b^3 + c^3$.

- (113) If a + b + c=9, $a^2 + b^2 + c^2 = 27$ and $a^3 + b^3 + c^3 = 81$, then find the value of abc.
- (114) Prove that:

 $(a + b)^3 + (b + c)^3 + (c + a)^3 - 3 (a+b) (b+c) (c+a) = 2 (a^3 + b^3 + c^3 - 3abc)$

- (115) If x + y + z=0, show that $x^3 + y^3 + z^3 = 3xyz$.
- (116) Without actually calculating the cubs, find the values of each of the following: $(-12)^3 + (7)^3 + (5)^3$.
- (117) If a, b, c are non-zero and a + b + c =0, then prove that

$$\frac{(b+c)^2}{3bc} + \frac{(c+a)^2}{3ac} + \frac{(a+b)^2}{3ab} = 1$$

- (118) It is given that 3a + 2b = 5c, then find the value of $27a^2 + 8b^3 125c^3$, if abc=0.
- (119) Factorise : $x^{12} 1$.
- (120) Find the values of a and b so that (x+1) and (x-1) are factors of x^{4} + ax^{3}

SNA

Changing your Tomorrow 📕

 $-3x^{2}+2x+b$.