

PERIOD 2

MATHEMATICS

CHAPTER NUMBER:~8

CHAPTER NAME:~QUADRILATERALS

CHANGING YOUR TOMORROW

Website: www.odmegroup.org

Email: info@odmps.org

Toll Free: **1800 120 2316**

Sishu Vihar, Infocity Road, Patia, Bhubaneswar- 751024

PREVIOUS KNOWLEDGE TEST

1. Prove that the sum of all angles of a quadrilateral is 360°.

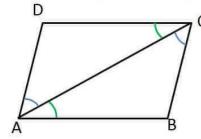
LEARNING OUTCOME:~

1.Students will be able to learn the properties of parallelogram.

Theorem 8.1:

A diagonal of a parallelogram divides it into two congruent triangles

<u>Given:</u> A parallelogram ABCD with AC as its diagonal



To prove: $\triangle ABC \cong \triangle ADC$

Proof:

Opposite sides of parallelogram is parallel So, AB || DC and AD || BC

Since AB || DC

& AC is the transversal

$$\angle$$
 BAC = \angle DCA (Alternate ...(1) angles)

Since AD || BC

& AC is the transversal

$$\angle$$
 DAC = \angle BCA (Alternate ...(2) angles)

In △ ABC & △ ADC

$$\angle$$
 BAC = \angle DCA (From (1))

$$AC = AC$$
 (Common)

$$\angle$$
 DAC = \angle BCA (From (2))

∴
$$\triangle$$
ABC \cong \triangle ADC (ASA congruency)

A

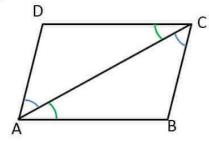
D

Hence proved

Theorem 8.2:

In a parallelogram, opposite sides are equal.

<u>Given:</u> A parallelogram ABCD with AC as its diagonal



To prove: $\triangle ABC \cong \triangle ADC$

Proof:

Opposite sides of parallelogram is parallel

So, AB || DC and AD || BC

Since AB || DC

& AC is the transversal

$$\angle$$
 BAC = \angle DCA (Alternate ...(1) angles)

Since AD || BC

& AC is the transversal

$$\angle$$
 DAC = \angle BCA (Alternate ...(2) angles)

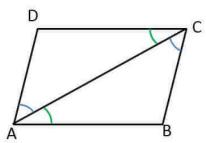
In Δ ABC & Δ ADC

$$\angle$$
 BAC = \angle DCA (From (1))

$$AC = AC$$
 (Common)

$$\angle$$
 DAC = \angle BCA (From (2))

∴
$$\triangle$$
ABC \cong \triangle ADC (ASA congruency)



Hence,

$$AB = CD & AD = BC$$
 (CPCT)

Hence proved

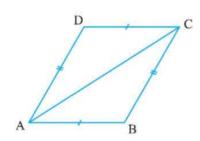
Theorem 8.3

If each pair of opposite sides of a quadrilateral is equal, then it is a parallelogram.

Given: ABCD is a quadrilateral,

where AB = CD & AD = BC

 $\underline{\text{To Prove}}: \mathsf{ABCD} \mathsf{\ is\ a\ Parallelogram}.$



Construction: Join AC, AC is the diagonal

Proof:

In Δ ABC & Δ CDA

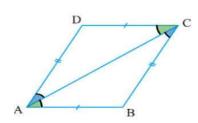
AB = CD (Given)

BC = DA (Given)

AC = CA (Common)

$$\Delta ABC \cong \Delta CDA$$

Hence,



For lines **AB and CD** with transversal AC,

∠ BAC & ∠DCA are alternate

angles and are equal.

∴ Lines are parallel i.e. AB || CD

For lines **AD** and **BC** with transversal AC,

∠ BCA & ∠DAC are alternate angles and are equal.

∴ Lines are parallel i.e. AD || BC

Thus, In ABCD,

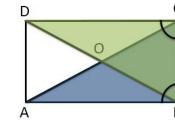
Both pairs of opposite sides are parallel,

∴ ABCD is a parallelogram

Ex 8.1, 2

If the diagonals of a parallelogram are equal, then show that it is a rectangle.

<u>Given:</u> Let ABCD be a parallelogram where AC = BD

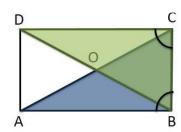


To prove: ABCD is a rectangle

<u>Proof</u>: Rectangle is a parallelogram with one angle 90° We prove that one of its interior angles is 90°.

In $\triangle ABC$ and $\triangle DCB$, AB = DC BC = BC AC = DB $ABC \cong \triangle DCB$ $AC = \triangle DCB$ CPCT) ...(1)

Now,



& BC is a transversal

$$\angle B + \angle B = 180^{\circ}$$

$$(Fr \cup m (1): \angle B = \angle C)$$

$$\angle B = \frac{180^{\circ}}{2} = 90^{\circ}$$

So, ABCD is a parallelogram with one angle 90°

∴ ABCD is a rectangle

Ex .8.1,3 (Method 1)

Show that if the diagonals of a quadrilateral bisect each other at right angles, then it is a rhombus.

<u>Given:</u> Let ABCD be a quadrilateral, where diagonals bisect each other

$$\therefore$$
 OA = OC,

...(1)

and

$$OB = OD$$
,

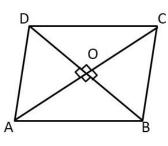
...(2)

And they bisect at right angles

So,
$$\angle AOB = \angle BOC = \angle COD = \angle AOD = 90^{\circ}$$

To prove : ABCD a rhombus,

<u>Proof</u>: Rhombus is a parallelogram with all sides equal We will first prove ABCD is a parallelogram and then prove all the sides of ABCD are equal.



...(3)

In $\triangle AOD$ and $\triangle COB$, $OA = OC \qquad (From (1))$ $\angle AOD = \angle COB \qquad (From (3))$ $OD = OB \qquad (From (2))$ $\therefore \triangle AOD \cong \triangle COB \qquad (SAS congruence rule)$

$$\Rightarrow$$
 \angle OAD = \angle OCB (CPCT)

For sides AD & BC

with transversal AC,
∠OAD & ∠ OCB are alternate angles, and they are equal,
So, AD || BC

Similarly, AB || DC

⇒ ABCD is a parallelogram

Now, In ABCD, AD || BC & AB || DC Since opposites sides of ABCD are parallel,

HOMEWORK ASSIGNMENT

Exercise 8.1 Question number 2,3

AHA

1. Show that the bisectors of angles of a parallelogram form a rectangle.

THANKING YOU ODM EDUCATIONAL GROUP

