

#### PERIOD 3

# **MATHEMATICS**

**CHAPTER NUMBER:~8** 

**CHAPTER NAME:~QUADRILATERALS** 

### **CHANGING YOUR TOMORROW**

Website: www.odmegroup.org

Email: info@odmps.org

Toll Free: **1800 120 2316** 

Sishu Vihar, Infocity Road, Patia, Bhubaneswar- 751024

# PREVIOUS KNOWLEDGE TEST

1. Prove that each angle of a rectangle is 90°.

## **LEARNING OUTCOME:**~

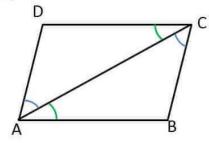
- 1. Students will be able to learn more properties of parallelogram.
- 2. Students will be able to solve sums based on parallelogram.



#### Theorem 8.4:

In a parallelogram, opposite angles are equal

<u>Given:</u> A parallelogram ABCD with AC as its diagonal



To prove:  $\angle A = \angle C \& \angle B = \angle D$ 

#### Proof:

Opposite sides of parallelogram is parallel

So, AB || DC and AD || BC

#### Since AB || DC

& AC is the transversal

$$\angle$$
 BAC =  $\angle$  DCA (Alternate ...(1) angles)

Since AD || BC

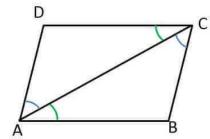
& AC is the transversal

$$\angle$$
 DAC =  $\angle$  BCA (Alternate ...(2) angles)



#### Adding (1) and (2)

$$\angle$$
BAC +  $\angle$ DAC =  $\angle$ DCA +  $\angle$ BCA  $\angle$ BAD =  $\angle$ DCB



Similarly,

we can prove  $\angle ADC = \angle ABC$ 

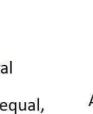
Hence Proved.



#### Theorem 8.5

If in a quadrilateral, each pair of opposite angles is equal, then it is

a parallelogram.



with opposite angles equal,

i.e. 
$$\angle 1 = \angle 3 \& \angle 2 = \angle 4$$

To Prove: ABCD is a Parallelogram

<u>Proof</u>: By angle sum property of quadrilateral

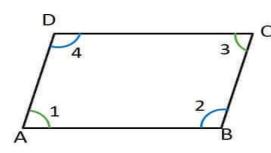
$$\angle 1 + \angle 2 + \angle 3 + \angle 4 = 360^{\circ}$$

$$\angle 1 + \angle 2 + \angle 1 + \angle 2 = 360^{\circ}$$
 (Given  $\angle 1 = \angle 3 \& \angle 2 = \angle 4$ )

$$2(\angle 1 + \angle 2) = 360^{\circ}$$



$$\angle 1 + \angle 2 = \frac{360^{\circ}}{2}$$



Similarly we can prove that,

$$\angle 1 + \angle 4 = 180^{\circ}$$
 ...(2)

For lines AD and BC

with AB as transversal,

∠1 and ∠2 are interior angles on the same side of transversal, and

Since interior angles on same side of transversal are supplementary, Hence, AD || BC

For lines AB and DC

with AD as transversal,

∠1 and ∠4 are interior angles on the same side of transversal, and

$$\angle 1 + \angle 4 = 180^{\circ}$$

Since interior angles on same sid of transversal are supplementary Hence, AB || DC

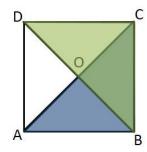


#### Ex 8.1, 4

Show that the diagonals of a square are equal and bisect each other at right angles.

Given: ABCD be a square.

Diagonals intersect at O.



#### To prove: We need to prove 3 things

- 1. The diagonals of a square are equal, i.e. AC = BD
- 2. bisect each other, i.e. OA = OC & OB = OD,
- 3. at right angles ,any of ∠AOB , ∠BOC , ∠COD , ∠AOD is 90°

#### Proof:

In ΔABC and ΔDCB,

$$\angle ABC = \angle DCB$$
 (Both 90°, as all angles of square are 90°)

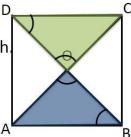
$$BC = BC$$
 (Common)

∴ 
$$\triangle ABC \cong \triangle DCB$$
 (SAS congruence rule)



$$\Rightarrow$$
 AC = DB (CPCT) ...(1)

Hence, the diagonals of a square are equal in length



Now we need to prove diagonals bisect each other i.e. AO = CO, BO = DO

(AB || CD & BD as transversal, alternate angles equal)

(Sides of square are equal)

$$AB = CD$$

( AAS congruence rule)

$$\therefore \triangle AOB \cong \triangle COD$$

( CPCT) ...(2)

Hence, the diagonals of a square bisect each other.

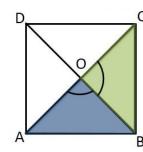


In ΔAOB and ΔCOB,

$$OA = OC$$
 (From (2))

∴ 
$$\triangle AOB \cong \triangle COB$$
 (SSS congruency)

$$\therefore \angle AOB = \angle COB$$
 (CPCT) ...(3)



Now

$$\angle AOB + \angle COB = 180^{\circ}$$
 (Linear Pair)

$$\angle AOB + \angle AOB = 180^{\circ}$$
 (From (3))

$$\angle AOB = \frac{180^{\circ}}{2}$$

Hence, AC & BD bisect at right angles

Hence proved



#### Ex 8.1, 5

Show that if the diagonals of a quadrilateral are equal and bisect each other at right angles, then it is a square.

D\_\_\_\_\_C

#### Given:

Let ABCD be the quadrilateral.

Diagonals are equal, i.e., AC = BD ...(1)

& bisect each other, i.e. OA = OC & OB = OD,

at right angles ,i.e.,  $\angle AOB = \angle BOC = \angle COD = \angle AOD = 90^{\circ}$  ...(3)

...(2)

To prove: ABCD is a square

<u>Proof:</u> Square is a parallelogram with all sides equal and one angle 90° First we will prove ABCD is a parallelogram and then prove all sides equal , and one angle equal to 90°



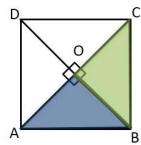
In ΔAOB and ΔCOB,

$$OA = OC$$
 (From (2))

$$\angle AOB = \angle COB$$
 (From (3), both 90°)

∴ 
$$\triangle AOB \cong \triangle COB$$
 (SAS congruence rule)

$$\therefore AB = CB$$
 (CPCT)



Similarly we can prove

$$\triangle AOB \cong \triangle DOA$$
, so  $AB = AD$ 

& 
$$\triangle BOC \cong \triangle COD$$
, so  $CB = DC$ 

So, 
$$AB = AD = CB = DC$$

Now we can say that

$$AB = CD \& AD = BC$$

In ABCD, both pairs of opposite sides are equal,

Hence, ABCD is a parallelogram



# Square is a parallelogram with all sides equal and one angle 90° So, we prove one angle 90°

In  $\triangle$ ABC and  $\triangle$ DCB,

$$AC = BD$$
 (From (1))

∴ 
$$\triangle ABC \cong \triangle DCB$$
 (SSS congruence rule)

$$\Rightarrow \angle ABC = \angle DCB$$
 (CPCT) ...(4)

Now,

AB || CD (Opposite sides of parallelogram are parallel)

& BC is transversal

$$\angle$$
 B +  $\angle$  C = 180°

(Interior angles on same side of transversal is supplementary)

$$\angle B + \angle B = 180^{\circ}$$
 (From (4))



$$\angle B = \frac{180^{\circ}}{2} = 90^{\circ}$$

Thus, ABCD is a parallelogram with all sides equal and one angle 90° So, ABCD is a square



# **HOMEWORK ASSIGNMENT**

Exercise 8.1 Question number 4,5



#### AHA

1. Show that the diagonals of a rhombus bisect each other at right angles.



# THANKING YOU ODM EDUCATIONAL GROUP

